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VARIABILITY: HEADS vs CONCENTRATIONS 
Example from Cape Cod 

Disposal Beds 

Wastewater Plant 
1936 – Dec. 1995 

From: D. LeBlanc (USGS) 



NO3-N 
mg/L 

Modified from: Barbaro, Walter, and LeBlanc (2013) USGS Sci. Inv. Report 2013-5061 

Boron 
2007 

2 km 



1. GROUNDWATER FLOW EQUATION 
 

2. SOLUTE-TRANSPORT EQUATION  

COMPUTER SIMULATION:  
SOLVE SET OF GOVERNING 
MATHEMATICAL EQUATIONS 



CLASSICAL SIMPLIFIED FORM OF  
SOLUTE-TRANSPORT EQUATION 
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   where: Dm is the effective coefficient of molecular diffusion (L2/T), and 

          a is the dispersivity tensor (L) 
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SOLUTE-TRANSPORT 
MODELING ISSUES 

 
• CONCEPTUAL ACCURACY OF 

GOVERNING EQUATION 
 

• ACCURACY OF NUMERICAL SOLUTION 
TO GOVERNING EQUATION 
 

• PARAMETER ESTIMATION 
 

• MODEL COMPLEXITY 



GEOLOGIC MATERIALS ARE HETEROGENEOUS 

Carbonate rocks in  
central Pennsylvania 



Sand and Gravel Aquifer, Cape Cod, MA 

Source: D. LeBlanc, USGS 

~1 m 



Source: Al Shapiro, USGS 



CLASSICAL SIMPLIFIED FORM OF  
SOLUTE-TRANSPORT EQUATION 
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MAJOR PROBLEM IN ANALYSIS 

OF GROUNDWATER SYSTEMS: 
  
  

GEOLOGY  HETEROGENEITY 
  

HETEROGENEITY  UNCERTAINTY  
  

UNCERTAINTY  NONUNIQUENESS 



Approximate fluid velocity distribution  
in a single pore 

Tortuous paths of fluid movement 
at intergranular scale 

From: Reilly, Franke, Buxton, and Bennett (1987),    

USGS WRI Report  87-4191 



1979 

     “As a working hypothesis, we 
shall assume that the dispersive 
flux can be expressed as a Fickian 
type law” 



CLASSICAL SIMPLIFIED FORM OF  
SOLUTE-TRANSPORT EQUATION 
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 Characteristics of Fickian Model: 
 
  • dispersive flux proportional to  
   concentration gradient 
 

  • concentration>0 at all locations 
 
  • upstream dispersion 
 
  • Gaussian normal distribution 
 
  • no scale effects (macrodispersion) 
 
  • irreversible spreading 



 

   where: Dm is the effective coefficient of molecular diffusion (L2/T), and 

          a is the dispersivity tensor (L) 

  
  
  

The dispersivity (a) of an isotropic porous medium can be 

defined by two constants: 

  
aL  and  aT 
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From: National Research Council (1990) Ground Water Models: Scientific and Regulatory Applications,  

National Academy Press 

VARIATION OF DISPERSIVITY  
WITH DISTANCE (OR SCALE  
OF MEASUREMENT). 



 
 
 

Matrix Diffusion vs Variable Advection 

Source: Al Shapiro, USGS 

“Effective” matrix diffusion is an artifact of large variability in fluid 
advection. . .  



Courtesy of Steve Silliman, University of Notre Dame 

(experiments performed at University of  Arizona) 



Courtesy of Steve Silliman, University of Notre Dame 

(experiments performed at University of  Arizona) 



Courtesy of Steve Silliman, University of Notre Dame 

(experiments performed at University of  Arizona) 



Courtesy of Steve Silliman, University of Notre Dame 

(experiments performed at University of  Arizona) 



Courtesy of Steve Silliman, University of Notre Dame 

(experiments performed at University of  Arizona) 
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Courtesy of Steve Silliman, University of Notre Dame 

(experiments performed at University of  Arizona) 







NUMERICAL PROBLEMS IN SOLVING ADVECTIVE-DISPERSIVE EQUATION 
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RELATIVE DISTANCE 



CLASSICAL SIMPLIFIED FORM OF  
SOLUTE-TRANSPORT EQUATION 

DISPERSION    ADVECTION   

 
*

i

ij i

j i

C C C W
D CV

t x x x 

     
        



SIMULATED MAGNITUDE OF GROUNDWATER VELOCITY 
FROM MODEL OF GROUNDWATER FLOW IN 

SHENANDOAH VALLEY, VIRGINIA & WEST VIRGINIA 

Modified From: Yager, Southworth, and Voss (2008),  USGS Sci. Inv. Report 2008-5002 

EXPLANATION 
 

Groundwater velocity, 
in m/day 
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Rocky Mt. Arsenal, Colorado 
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SIMPLIFICATION OF ROCKY MOUNTAIN ARSENAL CONTAMINATION 
PROBLEM TO COMPARE NUMERICAL ALGORITHMS 



CALCULATED SOLUTE CONCENTRATIONS

MOCWT Solver
Unconfined; constant porosity
Time = 30 yrs.



MODFLOW-GWT 
 

MT3D 

MOC MOCWT MOCWT1 MOCIMP ELLAM MOC MMOC HMOC FD TVD 

Transport time 
steps 

190 99 99 99 99 194 194 194 433 433 

Run time 
(seconds) 

15.5 10.0 5.7 8.7 8.5 3.0 2.5 3.0 2.9 5.1 

Maximum 
concentration 

1009 1005 1001 1026 1342 999 999 999 986 1053 

Minimum 
concentration 

-3.0 -0.8 -4.0 -38 -88 0 0 0 0 -9 

Mass-balance 
error (%) 

2.3 5x10-5 7x10-6 0.6 4x10-5 2.8 5.7 3.3 2x10-5 1x10-4 

1 Spatially varying distribution of particles, ranging from 25 to 4 per cell, decreasing in number with distance from plume 

RESULTS OF NUMERICAL EXPERIMENTS 
SIMPLIFIED ANALOG TO ROCKY MT. ARSENAL, CO, PROBLEM 

Unconfined aquifer; variable thickness;  
randomly distributed heterogeneous porosity 



CALCULATED SOLUTE CONCENTRATIONS
Unconfined; randomly distributed porosity

Time = 20 yrs.

GWT: MOCWT Solver
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EMERGING TREND 

• LARGER & MORE COMPLEX MODELS 
 

• EXAMPLES: 
– Multi-scale (telescopic or adaptive meshes) 
– Detailed heterogeneity 
– Ecological problems 
– Reactive transport 
– Variable density  
– Stochatic processes 



MODEL COMPLEXITY 
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MODEL COMPLEXITY & EASE OF 
UNDERSTANDING MODEL BEHAVIOR 



MAJOR CONCERN 
 
 
 Does model complexity mask conceptual 

& parameterization errors and biases? 

 

 



GROUNDWATER MODELING: 

• GROUNDWATER FLOW 
MODELING IS RELATIVELY 
EASY/SIMPLE COMPARED TO 
SOLUTE TRANSPORT 



SUCCESSFUL SOLUTE- 
TRANSPORT MODELING: 

• Start simple and add complexities in 
“bite-sized” increments 



SUCCESSFUL SOLUTE- 
TRANSPORT MODELING: 

• Grid size can make a difference 
(especially in transport modeling) 

 



SUCCESSFUL SOLUTE- 
TRANSPORT MODELING: 

• Calculated plumes will be sensitive to 
how heterogeneity is represented 



SUCCESSFUL SOLUTE- 
TRANSPORT MODELING: 

• Scale of heterogeneity adequate to 
simulate groundwater flow may not 
be satisfactory for simulating solute 
transport 



SUCCESSFUL SOLUTE- 
TRANSPORT MODELING: 

• Watch out for numerical errors—you 
will have some 



SUCCESSFUL SOLUTE- 
TRANSPORT MODELING: 

• Numerical dispersion can lead to 
erroneous estimates of risk (over or 
under, depending on nature of safety 
criteria) 



SUCCESSFUL SOLUTE- 
TRANSPORT MODELING: 

• Uncertainty in your conceptual 
model may dominate the errors in 
your solution & predictions 



SUCCESSFUL SOLUTE- 
TRANSPORT MODELING: 

• In simulating historical concentrations 
or in predicting future concentrations … 

the secret to successful solute-
transport modeling is to …  
 LOWER YOUR EXPECTATIONS! 

 




