Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada

Volume 1, Book 2
(Chapters 5 through 15)
AVAILABILITY OF THE FINAL SITE-WIDE ENVIRONMENTAL IMPACT STATEMENT FOR THE CONTINUED OPERATION OF THE DEPARTMENT OF ENERGY/NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA NATIONAL SECURITY SITE AND OFF-SITE LOCATIONS IN THE STATE OF NEVADA (NNSS SWEIS)

For further information on this final SWEIS, or to request a copy of the SWEIS or references, please contact:

Linda M. Cohn, SWEIS Document Manager
NNSA Nevada Site Office
U.S. Department of Energy
P. O. Box 98518
Las Vegas, Nevada 89193-8518
Telephone: 702-295-0077
Fax: 702-295-5300
Email: nepa@nv.doe.gov

Printed with soy ink on recycled paper
Abstract: This Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada (NNSS SWEIS) analyzes the potential environmental impacts of proposed alternatives for continued management and operation of the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) and other U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)-managed sites in Nevada, including the Remote Sensing Laboratory (RSL) on Nellis Air Force Base in North Las Vegas, the North Las Vegas Facility (NLVF), the Tonopah Test Range (TTR), and environmental restoration areas on the U.S. Air Force Nevada Test and Training Range. The purpose and need for agency action is to provide support for meeting NNSA’s core missions established by Congress and the President and to satisfy the requirements of Executive Orders and comply with Congressional mandates to promote, expedite, and advance the production of environmentally sound energy resources, including renewable energy resources such as solar and geothermal energy systems.

The NNSS has a long history of supporting national security objectives by conducting underground nuclear tests and other nuclear and nonnuclear activities. Since the October 1992 moratorium on nuclear testing, NNSA’s mission at the NNSS has evolved from one that focuses on active nuclear weapons tests to one that maintains readiness and the capability to conduct underground nuclear weapons tests; such a test would be conducted only if so directed by the President in the interest of national security. Resources have been reallocated to introduce and expand other mission activities/programs at the NNSS, RSL, NLVF, and TTR to support three DOE/NNSA core missions: National Security/Defense, Environmental Management, and Nondefense. The National Security/Defense Mission includes the Stockpile Stewardship and Management,

The NNSS, RSL, NLVF, and TTR support DOE/NNSA’s core missions by providing the capabilities to process and dispose of a damaged nuclear weapon or improvised nuclear device and to conduct high-hazard experiments involving special nuclear material and high explosives, nonnuclear experiments, and hydrodynamic testing. Nuclear stockpile stewardship activities at the NNSS include dynamic plutonium experiments that provide technical information to maintain the safety and reliability of the U.S. nuclear weapons stockpile and research and training in areas such as nuclear safeguards, criticality safety, and emergency response. Special nuclear materials are also stored at the NNSS. In addition, in accordance with the amended Record of Decision (ROD) (DOE/EIS-0243) for the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (1996 NTS EIS), DOE/NNSA receives low-level and mixed low-level radioactive waste for disposal at the NNSS.

This NNSS SWEIS analyzes the potential environmental impacts of three reasonable alternatives for continued operations at the NNSS, RSL, NLVF, and TTR. These alternatives include a No Action Alternative and two action alternatives: Expanded Operations and Reduced Operations. The No Action Alternative, which is analyzed as a baseline for evaluating the two action alternatives, would continue implementation of the 1996 NTS EIS ROD (DOE/EIS-0243) and subsequent amendments (61 FR 65551 and 65 FR 10061), as well as other decisions supported by separate NEPA analyses completed since issuance of the final 1996 NTS EIS. The No Action Alternative reflects activity levels consistent with those seen since 1996. The Expanded Operations Alternative considers adding new work at the NNSS in the areas of nonproliferation and counterterrorism, high-hazard and other experiments, research and development, and testing. Such expanded operations could include developing test beds for concept testing of sensors, mitigation strategies, and weapons effectiveness. The Reduced Operations Alternative would reduce the overall level of operations and close specific buildings and structures. NNSA would also consider allowing the development of solar power generation facilities under each alternative.

Public Comments: In preparing this Final NNSS SWEIS, NNSA considered comments received during the scoping period (July 24, 2009, to October 16, 2009) and during the public comment period on the Draft NNSS SWEIS (July 29, 2011, to December 2, 2011), as well as those received after the close of the public comment period on the Draft NNSS SWEIS. Five public hearings on the Draft NNSS SWEIS were held to provide interested members of the public with opportunities to learn more about NNSA missions, programs, and activities and the content of the Draft NNSS SWEIS from exhibits, factsheets, and discussion with NNSA subject matter experts. From September 20 through 28, 2011, public hearings were held in Las Vegas, Pahrump, Tonopah, and Carson City, Nevada, and St. George, Utah. An additional hearing was conducted for the Consolidated Group of Tribes and Organizations on October 6, 2011. All comments received were considered during preparation of this Final NNSS SWEIS.

This Final NNSS SWEIS contains revisions and new information based in part on comments received on the Draft NNSS SWEIS. Vertical change bars in the margins indicate the locations of these revisions and new information. Volume 3 contains the comments received on the Draft NNSS SWEIS and DOE/NNSA’s responses to those comments. DOE/NNSA will use the analysis presented in this Final NNSS SWEIS, as well as other information, in preparing a ROD regarding the continued operation of the NNSS and offsite locations in Nevada. DOE/NNSA will issue a ROD no sooner than 30 days after the U.S. Environmental Protection Agency publishes a Notice of Availability of this Final NNSS SWEIS in the Federal Register.
TABLE OF CONTENTS
TABLE OF CONTENTS

Volume 1 – Book 1
(Chapters 1 through 4)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xxvii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxx</td>
</tr>
<tr>
<td>Acronyms, Abbreviations, and Conversion Charts</td>
<td>xxxix</td>
</tr>
</tbody>
</table>

Chapter 1
Introduction and Purpose and Need for Agency Action ... 1-1

- **1.1 Introduction** ... 1-1
- **1.2 Purpose and Need for Agency Action** ... 1-3
- **1.3 Alternatives Analyzed** ... 1-4
 - **1.3.1 No Action Alternative** ... 1-6
 - **1.3.2 Expanded Operations Alternative** .. 1-7
 - **1.3.3 Reduced Operations Alternative** .. 1-7
 - **1.3.4 Preferred Alternative** .. 1-8
 - **1.3.5 Relationship to 1996 NTS EIS** .. 1-8
- **1.4 Potential Decisions Supported by this Site-Wide Environmental Impact Statement** 1-13
- **1.5 Relationship Between this Site-Wide Environmental Impact Statement and Other National Environmental Policy Act Analyses** 1-14
- **1.6 Cooperating Agencies/Tribal Involvement** ... 1-19
- **1.7 Public Involvement Process in this NNSS SWEIS** ... 1-20
 - **1.7.1 Scoping** ... 1-20
 - **1.7.2 Draft NNSS SWEIS Public Involvement** ... 1-29
 - **1.7.2.1 Draft NNSS SWEIS Comment Summary** .. 1-30
 - **1.7.2.2 Changes from the Draft Site-Wide Environmental Impact Statement** 1-31
 - **1.7.3 Next Steps** ... 1-31

Chapter 2
Site Overview and Update ... 2-1

- **2.1 Nevada National Security Site** ... 2-1
 - **2.1.1 Major Facilities** .. 2-7
- **2.2 Remote Sensing Laboratory** .. 2-11
- **2.3 North Las Vegas Facility** .. 2-12
- **2.4 Tonopah Test Range** .. 2-12
- **2.5 Overview of Changes Since the 1996 NTS EIS** ... 2-12
 - **2.5.1 Administrative Changes** ... 2-12
 - **2.5.2 Physical Changes** .. 2-13
 - **2.5.3 Program and Activity Changes** .. 2-15
Chapter 3
Description of Alternatives ..3-1

3.1 No Action Alternative ...3-11
 3.1.1 National Security/Defense Mission ..3-11
 3.1.1.1 Stockpile Stewardship and Management Program ..3-11
 3.1.1.2 Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs3-16
 3.1.1.3 Work for Others Program ..3-18
 3.1.2 Environmental Management Mission ..3-20
 3.1.2.1 Waste Management Program ..3-21
 3.1.2.2 Environmental Restoration Program ..3-24
 3.1.3 Nondefense Mission ...3-28
 3.1.3.1 General Site Support and Infrastructure Program ..3-28
 3.1.3.2 Conservation and Renewable Energy Program ...3-28
 3.1.3.3 Other Research and Development Programs ..3-31

3.2 Expanded Operations Alternative ..3-31
 3.2.1 National Security/Defense Mission ..3-33
 3.2.1.1 Stockpile Stewardship and Management Program ..3-33
 3.2.1.2 Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs3-35
 3.2.1.3 Work for Others Program ..3-36
 3.2.2 Environmental Management Mission ..3-39
 3.2.2.1 Waste Management Program ..3-39
 3.2.2.2 Environmental Restoration Program ..3-41
 3.2.3 Nondefense Mission ...3-41
 3.2.3.1 General Site Support and Infrastructure Program ..3-41
 3.2.3.2 Conservation and Renewable Energy Program ...3-42
 3.2.3.3 Other Research and Development Programs ..3-43

3.3 Reduced Operations Alternative ..3-46
 3.3.1 National Security/Defense Mission ..3-46
 3.3.1.1 Stockpile Stewardship and Management Program ..3-46
 3.3.1.2 Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs3-48
 3.3.1.3 Work for Others Program ..3-48
 3.3.2 Environmental Management Mission ..3-49
 3.3.3 Nondefense Mission ...3-49
 3.3.3.1 General Site Support and Infrastructure Program ..3-49
 3.3.3.2 Conservation and Renewable Energy Program ...3-50
 3.3.3.3 Other Research and Development Programs ..3-50

3.4 Identification of the Preferred Alternative ..3-50

3.5 Comparison of Potential Consequences of the Alternatives ..3-51

3.6 Alternatives Eliminated from Detailed Study ...3-92
 3.6.1 Discontinue Operations at the Nevada National Security Site ..3-92
 3.6.2 Transfer the Nevada National Security Site to Another Agency3-92
 3.6.3 Prepare a Programmatic Environmental Impact Statement ..3-92
 3.6.4 Renewable Energy Alternative ...3-93
 3.6.5 1996 Record of Decision-Based No Action Alternative ..3-93
Chapter 4
Affected Environments .. 4-1

4.1 Nevada National Security Site ... 4-1
 4.1.1 Land Use .. 4-1
 4.1.1.1 Adjacent Land Use .. 4-2
 4.1.1.2 Historical Nevada National Security Site Development and Current Land Use 4-3
 4.1.1.3 Public Land Orders and Withdrawals ... 4-7
 4.1.1.4 Land Use Designations ... 4-9
 4.1.1.5 Airspace ... 4-9
 4.1.2 Infrastructure and Energy .. 4-12
 4.1.2.1 Infrastructure and Utilities .. 4-12
 4.1.2.1.1 Infrastructure .. 4-12
 4.1.2.1.2 Utilities .. 4-16
 4.1.2.2 Energy .. 4-20
 4.1.2.2.1 Electrical Energy .. 4-20
 4.1.2.2.2 Natural Gas ... 4-20
 4.1.2.2.3 Liquid Fuels ... 4-20
 4.1.2.2.4 Conservation and Renewable Energy ... 4-21
 4.1.3 Transportation and Traffic .. 4-21
 4.1.3.1 Onsite Transportation .. 4-21
 4.1.3.2 Regional Transportation ... 4-24
 4.1.3.2.1 Regional Transportation System ... 4-24
 4.1.3.2.2 Traffic Volumes and Level of Service Analysis ... 4-27
 4.1.4 Socioeconomics ... 4-32
 4.1.4.1 Region of Influence ... 4-32
 4.1.4.2 Economic Activity ... 4-32
 4.1.4.3 Population .. 4-35
 4.1.4.4 Housing .. 4-35
 4.1.4.5 Public Finance .. 4-36
 4.1.4.6 Public Services ... 4-37
 4.1.4.6.1 Public Education .. 4-37
 4.1.4.6.2 Police Protection .. 4-38
 4.1.4.6.3 Fire Protection ... 4-39
 4.1.4.6.4 Health Care ... 4-41
 4.1.5 Geology and Soils .. 4-42
 4.1.5.1 Physiography .. 4-43
 4.1.5.2 Regional Geology ... 4-43
 4.1.5.2.1 Site-Specific Geology .. 4-49
 4.1.5.2.2 Structural History ... 4-50
 4.1.5.2.3 Faulting and Seismic Activity ... 4-50
 4.1.5.2.4 Geotechnical Hazards .. 4-52
 4.1.5.2.5 Geologic Resources .. 4-53
 4.1.5.2.6 Geothermal Resources .. 4-54
 4.1.5.3 Soils .. 4-54
 4.1.5.4 Radiological Sources as a Result of Testing .. 4-55
 4.1.5.4.1 Soils .. 4-55
 4.1.5.4.2 Subsurface ... 4-59
 4.1.6 Hydrology ... 4-66
 4.1.6.1 Surface Water ... 4-66
 4.1.6.2 Groundwater .. 4-77
 4.1.7 Biological Resources .. 4-113
 4.1.7.1 Flora .. 4-114
 4.1.7.1.1 Mojave Desert ... 4-117
 4.1.7.1.2 Transition Zone .. 4-117
4.1.7.1.3 Great Basin Desert ... 4-117
4.1.7.1.4 Important Habitats ... 4-118
4.1.7.2 Fauna ... 4-120
4.1.7.3 Threatened and Endangered Species 4-122
4.1.7.4 Other Species of Concern .. 4-124
4.1.7.5 Effects of Past Radiological Tests and Project Activities 4-125
4.1.7.6 Plant and Animal Monitoring for Radioactivity 4-127
4.1.8 Air Quality and Climate .. 4-130
4.1.8.1 Meteorology ... 4-130
4.1.8.2 Ambient Air Quality ... 4-132
4.1.8.2.1 Region of Influence .. 4-132
4.1.8.2.2 Existing Air Quality .. 4-132
4.1.8.3 Radiological Air Quality .. 4-139
4.1.8.3.1 Ambient Radiological Monitoring on and near the Nevada National Security Site 4-142
4.1.8.3.2 Sources of Radiation on the Nevada National Security Site .. 4-142
4.1.8.3.3 Radiation Levels on and near the Nevada National Security Site . 4-145
4.1.8.4 Climate Change ... 4-145
4.1.8.4.1 Greenhouse Gas Emissions .. 4-145
4.1.8.4.2 Greenhouse Gas Emissions Due to Nevada National Security Site-Related Activities 4-146
4.1.8.4.3 Current Changes in Climate .. 4-146
4.1.9 Visual Resources .. 4-147
4.1.10 Cultural Resources ... 4-152
4.1.10.1 Recorded Cultural Resources .. 4-153
4.1.10.1.1 Mercury Valley ... 4-155
4.1.10.1.2 Rock Valley ... 4-155
4.1.10.1.3 Fortymile Canyon–Jackass Flats ... 4-155
4.1.10.1.4 Fortymile Canyon–Buckboard Mesa 4-156
4.1.10.1.5 Oasis Valley ... 4-156
4.1.10.1.6 Gold Flat ... 4-156
4.1.10.1.7 Kawich Valley .. 4-156
4.1.10.1.8 Emigrant Valley .. 4-156
4.1.10.1.9 Yucca Flat ... 4-156
4.1.10.1.10 Frenchman Flat ... 4-157
4.1.10.2 Sites of American Indian Significance 4-157
4.1.10.3 American Indian Cultural Resources 4-157
4.1.11 Waste Management ... 4-159
4.1.11.1 Radioactive Waste Management .. 4-162
4.1.11.1.1 Low-Level and Mixed Low-Level Radioactive Waste Management and Disposal ... 4-162
4.1.11.1.1.1 Area 3 Radioactive Waste Management Site 4-163
4.1.11.1.1.2 Area 5 Radioactive Waste Management Complex 4-164
4.1.11.1.1.3 Waste Disposal Support Activities 4-168
4.1.11.1.2 Mixed Low-Level Radioactive Waste Management 4-172
4.1.11.1.3 Transuranic Waste Management .. 4-172
4.1.11.1.4 Tritium Waste Disposal by Evaporation 4-172
4.1.11.2 Nonradioactive Waste Management 4-173
4.1.11.2.1 Hazardous Waste Management ... 4-173
4.1.11.2.2 Explosive Ordnance Disposal ... 4-173
4.1.11.2.3 Nonhazardous Waste Management 4-174
4.1.11.2.4 Nonradioactive Classified Waste 4-174
4.1.11.3 Pollution Prevention and Waste Minimization 4-174
4.1.12 Human Health and Safety ... 4-175
 4.1.12.1 Public Radiation Exposure and Safety .. 4-176
 4.1.12.1.1 General Site Description ... 4-176
 4.1.12.2 Occupational Radiation Exposure and Safety ... 4-179
 4.1.12.3 Chemical Exposure and Risk ... 4-180
 4.1.12.4 Health Effects Studies ... 4-181
 4.1.12.5 Accident History .. 4-182
 4.1.12.6 Emergency Preparedness ... 4-183
 4.1.12.7 Environmental Noise .. 4-183
 4.1.13 Environmental Justice .. 4-184
 4.1.13.1 Methodology ... 4-185
 4.1.13.2 Low-Income Populations ... 4-185
 4.1.13.3 Minority Populations .. 4-185

4.2 Remote Sensing Laboratory .. 4-188

 4.2.1 Land Use ... 4-188
 4.2.1.1 Adjacent Land Use .. 4-188
 4.2.2 Infrastructure and Energy ... 4-188
 4.2.2.1 Infrastructure and Utilities .. 4-188
 4.2.2.1.1 Infrastructure ... 4-188
 4.2.2.1.2 Utilities ... 4-189
 4.2.2.2 Energy .. 4-189
 4.2.2.2.1 Electrical Energy ... 4-189
 4.2.2.2.2 Natural Gas ... 4-189
 4.2.2.2.3 Liquid Fuels .. 4-190
 4.2.3 Transportation .. 4-190
 4.2.3.1 Onsite Transportation .. 4-190
 4.2.3.2 Regional Transportation ... 4-191
 4.2.4 Socioeconomics ... 4-191
 4.2.5 Geology and Soils .. 4-191
 4.2.5.1 Physiography ... 4-191
 4.2.5.2 Geology ... 4-191
 4.2.5.2.1 Structural History ... 4-192
 4.2.5.2.2 Faulting and Seismic Activity ... 4-192
 4.2.5.2.3 Geotechnical Hazards ... 4-193
 4.2.5.2.4 Geologic Resources .. 4-193
 4.2.5.3 Soils ... 4-193
 4.2.5.4 Radiological Sources as a Result of Testing ... 4-193
 4.2.6 Hydrology ... 4-193
 4.2.6.1 Surface Hydrology .. 4-193
 4.2.6.2 Groundwater .. 4-194
 4.2.7 Biological Resources ... 4-195
 4.2.7.1 Flora .. 4-195
 4.2.7.2 Fauna ... 4-195
 4.2.7.3 Threatened and Endangered Species .. 4-195
 4.2.7.4 Other Species of Concern ... 4-196
 4.2.7.5 Effects of Past Radiological Tests and Project Activities .. 4-196
 4.2.8 Air Quality and Climate ... 4-196
 4.2.8.1 Meteorology .. 4-196
 4.2.8.2 Ambient Air Quality ... 4-197
 4.2.8.2.1 Region of Influence .. 4-197
 4.2.8.2.2 Existing Air Quality ... 4-198
 4.2.8.3 Radiological Air Quality .. 4-201
 4.2.8.4 Climate Change .. 4-201
 4.2.8.4.1 Greenhouse Gas Emissions ... 4-201
 4.2.8.4.2 Current Changes in Climate .. 4-202
 4.2.9 Visual Resources .. 4-202
4.4 **Tonopah Test Range** .. 4-226
 4.4.1 Land Use .. 4-226
 4.4.1.1 Public Land Orders and Withdrawals ... 4-226
 4.4.2 Infrastructure and Energy .. 4-227
 4.4.2.1 Infrastructure and Utilities .. 4-227
 4.4.2.1.1 Infrastructure ... 4-227
 4.4.2.1.2 Utilities ... 4-228
 4.4.2.2 Electrical Energy .. 4-228
 4.4.2.2.1 Natural Gas ... 4-228
 4.4.2.2.2 Liquid Fuels ... 4-228
 4.4.3 Transportation .. 4-229
 4.4.3.1 Onsite Transportation .. 4-229
 4.4.3.2 Regional Transportation .. 4-230
 4.4.4 Socioeconomics ... 4-230
 4.4.5 Geology and Soils ... 4-230
 4.4.5.1 Physiography .. 4-230
 4.4.5.1.1 Physiography ... 4-230
 4.4.5.2 Geology .. 4-230
 4.4.5.2.1 Structural History .. 4-231
 4.4.5.2.2 Faulting and Seismic Activity .. 4-231
 4.4.5.2.3 Geotechnical Hazards ... 4-231
 4.4.5.2.4 Geologic Resources .. 4-231
 4.4.5.3 Soils .. 4-232
 4.4.5.4 Radiological Sources as a Result of Testing ... 4-232
 4.4.5.4.1 Soils .. 4-232
 4.4.6 Hydrology .. 4-233
 4.4.6.1 Surface Hydrology ... 4-233
 4.4.6.2 Groundwater ... 4-235
 4.4.7 Biological Resources ... 4-238
 4.4.7.1 Flora ... 4-239
 4.4.7.2 Fauna ... 4-239
 4.4.7.3 Threatened and Endangered Species .. 4-241
 4.4.7.4 Other Species of Concern ... 4-241
 4.4.7.5 Effects of Past Radiological Tests and Project Activities 4-241
 4.4.8 Air Quality and Climate ... 4-241
 4.4.8.1 Meteorology ... 4-241
 4.4.8.1.1 Meteorology ... 4-241
 4.4.8.2 Ambient Air Quality .. 4-242
 4.4.8.2.1 Region of Influence .. 4-242
 4.4.8.2.2 Existing Air Quality .. 4-242
 4.4.8.3 Radiological Air Quality ... 4-244
 4.4.8.4 Climate Change ... 4-244
 4.4.8.4.1 Greenhouse Gas Emissions ... 4-246
 4.4.8.4.2 Current Changes in Climate ... 4-246
 4.4.9 Visual Resources .. 4-246
 4.4.10 Cultural Resources ... 4-247
 4.4.10.1 Recorded Cultural Resources ... 4-247
 4.4.10.1.1 Gold Flat ... 4-249
 4.4.10.1.2 Stonewall Flat .. 4-249
 4.4.10.1.3 Ralston Valley .. 4-249
 4.4.10.1.4 Cactus Flat ... 4-249
 4.4.10.1.5 Stone Cabin Valley ... 4-250
 4.4.10.2 Sites of American Indian Significance ... 4-250
 4.4.11 Waste Management ... 4-250
 4.4.12 Human Health and Safety .. 4-252
 4.4.12.1 Public Radiation Exposure and Safety ... 4-252
 4.4.12.1.1 General Site Description .. 4-252
 4.4.12.2 Occupational Radiation Exposure and Safety .. 4-254
4.4.12.3 Chemical Exposure and Risk ... 4-254
4.4.12.4 Health Effects Studies ... 4-255
4.4.12.5 Accident History .. 4-255
4.4.12.6 Emergency Preparedness .. 4-255
4.4.12.7 Environmental Noise ... 4-255
4.4.13 Environmental Justice ... 4-255

5.1 Nevada National Security Site .. 5-8

5.1.1 No Action Alternative ... 5-10
5.1.1.1 National Security/Defense Mission ... 5-10
5.1.1.2 Environmental Management Mission ... 5-12
5.1.1.3 Nondefense Mission ... 5-12
5.1.1.3.1 National Security/Defense Mission ... 5-12
5.1.1.3.2 Environmental Management Mission .. 5-12
5.1.1.3.3 Nondefense Mission .. 5-12
5.1.1.4 Socioeconomics .. 5-68
5.1.1.4.1 No Action Alternative ... 5-68
5.1.1.4.1.1 Economic Activity, Population, and Housing 5-68
5.1.1.4.1.2 Public Services ... 5-70

4.5 Former Yucca Mountain Site Affected Environment .. 4-256

Volume 1 – Book 2
(Chapters 5 through 15)

Chapter 5
Environmental Consequences ... 5-1

5.1 Nevada National Security Site .. 5-8

5.1.1 Land Use .. 5-8
5.1.1.1 No Action Alternative ... 5-10
5.1.1.1.1 National Security/Defense Mission ... 5-10
5.1.1.1.2 Environmental Management Mission .. 5-12
5.1.1.1.3 Nondefense Mission .. 5-12
5.1.1.1.3.1 National Security/Defense Mission .. 5-12
5.1.1.1.3.2 Environmental Management Mission 5-12
5.1.1.1.3.3 Nondefense Mission .. 5-12
5.1.1.2 Infrastructure and Energy ... 5-19
5.1.1.2.1 National Security/Defense Mission .. 5-13
5.1.1.2.2 Environmental Management Mission .. 5-16
5.1.1.2.3 Nondefense Mission .. 5-16
5.1.1.3 Transportation and Traffic ... 5-37
5.1.1.3.1 Expanded Operations Alternative .. 5-54
5.1.1.3.1.1 Constrained Case ... 5-54
5.1.1.3.1.2 Unconstrained Case ... 5-55
5.1.1.3.2 No Action Alternative .. 5-58
5.1.1.3.3 Reduced Operations Alternative (Constrained Case) 5-58
5.1.1.3.3.1 National Security/Defense Mission ... 5-59
5.1.1.3.3.2 Environmental Management Mission 5-61
5.1.1.3.3.3 Nondefense Mission ... 5-61
5.1.1.3.3.4 Public Services ... 5-62

5.1.2 Socioeconomics .. 5-68
5.1.2.1 National Security/Defense Mission .. 5-68
5.1.2.2 Environmental Management Mission .. 5-68
5.1.2.3 Nondefense Mission ... 5-68
5.1.7.1.3 Impacts on Sensitive and Protected Species ... 5-121
 5.1.7.1.3.1 National Security/Defense Mission .. 5-123
 5.1.7.1.3.2 Environmental Management Mission ... 5-124
 5.1.7.1.3.3 Nondefense Mission .. 5-124
5.1.7.1.4 Impacts on Offsite Biota .. 5-125

5.1.7.2 Expanded Operations Alternative ... 5-126
 5.1.7.2.1 Impacts on Vegetation ... 5-126
 5.1.7.2.1.1 National Security/Defense Mission .. 5-127
 5.1.7.2.1.2 Environmental Management Mission ... 5-128
 5.1.7.2.1.3 Nondefense Mission .. 5-128
 5.1.7.2.2 Impacts on Wildlife .. 5-129
 5.1.7.2.3 Impacts on Sensitive and Protected Species ... 5-130
 5.1.7.2.3.1 National Security/Defense Mission .. 5-131
 5.1.7.2.3.2 Environmental Management Mission ... 5-133
 5.1.7.2.3.3 Nondefense Mission .. 5-133
 5.1.7.2.4 Impacts on Offsite Biota .. 5-134

5.1.7.3 Reduced Operations Alternative ... 5-135
 5.1.7.3.1 Impacts on Vegetation ... 5-135
 5.1.7.3.1.1 National Security/Defense Mission .. 5-136
 5.1.7.3.1.2 Environmental Management Mission ... 5-137
 5.1.7.3.1.3 Nondefense Mission .. 5-137
 5.1.7.3.2 Impacts on Wildlife .. 5-138
 5.1.7.3.3 Impacts on Sensitive and Protected Species ... 5-139
 5.1.7.3.3.1 National Security/Defense Mission .. 5-139
 5.1.7.3.3.2 Environmental Management Mission ... 5-141
 5.1.7.3.3.3 Nondefense Mission .. 5-141
 5.1.7.3.4 Impacts on Offsite Biota .. 5-142

5.1.8 Air Quality and Climate ... 5-142
 5.1.8.1 No Action Alternative .. 5-144
 5.1.8.1.1 Air Quality .. 5-144
 5.1.8.1.2 Radiological Air Quality .. 5-149
 5.1.8.1.3 Climate Change ... 5-149
 5.1.8.2 Expanded Operations Alternative ... 5-151
 5.1.8.2.1 Air Quality .. 5-151
 5.1.8.2.2 Radiological Air Quality .. 5-155
 5.1.8.2.3 Climate Change ... 5-156
 5.1.8.3 Reduced Operations Alternative ... 5-158
 5.1.8.3.1 Air Quality .. 5-158
 5.1.8.3.2 Radiological Air Quality .. 5-161
 5.1.8.3.3 Climate Change ... 5-161

5.1.9 Visual Resources .. 5-164
 5.1.9.1 No Action Alternative .. 5-164
 5.1.9.2 Expanded Operations Alternative ... 5-165
 5.1.9.3 Reduced Operations Alternative ... 5-168

5.1.10 Cultural Resources ... 5-169
 5.1.10.1 No Action Alternative .. 5-172
 5.1.10.1.1 National Security/Defense Mission .. 5-172
 5.1.10.1.2 Environmental Management Mission ... 5-174
 5.1.10.1.3 Nondefense Mission .. 5-174
 5.1.10.2 Expanded Operations Alternative ... 5-175
 5.1.10.2.1 National Security/Defense Mission .. 5-175
 5.1.10.2.2 Environmental Management Mission ... 5-177
 5.1.10.2.3 Nondefense Mission .. 5-177
5.1.10.3 Reduced Operations Alternative.. 5-178
 5.1.10.3.1 National Security/Defense Mission... 5-180
 5.1.10.3.2 Environmental Management Mission.. 5-180
 5.1.10.3.3 Nondefense Mission... 5-180
5.11 Waste Management... 5-181
 5.11.1 No Action Alternative .. 5-183
 5.11.1.1 DOE/NNSA Activities... 5-183
 5.11.1.2 Commercial Solar Power Generation Facility.. 5-186
 5.11.2 Expanded Operations Alternative.. 5-187
 5.11.2.1 DOE/NNSA Activities... 5-187
 5.11.2.2 Commercial Solar Power Generation Facility.. 5-190
 5.11.3 Reduced Operations Alternative.. 5-191
 5.11.3.1 DOE/NNSA Activities... 5-191
 5.11.3.2 Commercial Solar Power Generation Facility.. 5-192
5.12 Human Health... 5-194
 5.12.1 Normal Operations ... 5-196
 5.12.1.1 No Action Alternative ... 5-196
 5.12.1.2 Expanded Operations Alternative... 5-199
 5.12.1.3 Reduced Operations Alternative... 5-202
 5.12.1.4 Waste Disposal Facilities Performance Assessments...................................... 5-204
 5.12.2 Facility Accidents... 5-206
 5.12.2.1 No Action Alternative ... 5-209
 5.12.2.2 Expanded Operations Alternative... 5-213
 5.12.2.3 Reduced Operations Alternative... 5-214
 5.12.2.4 Wildland Fires... 5-214
 5.12.3 Intentional Destructive Acts... 5-217
 5.12.3.1 Assessment of Vulnerability to Terrorist Threats.. 5-217
 5.12.3.2 Terrorist Impacts Analysis... 5-219
5.13 Environmental Justice... 5-221
 5.13.1 No Action Alternative ... 5-221
 5.13.2 Expanded Operations Alternative.. 5-222
 5.13.3 Reduced Operations Alternative.. 5-222
5.2 Remote Sensing Laboratory... 5-224
 5.2.1 Land Use.. 5-224
 5.2.2 Infrastructure and Energy... 5-224
 5.2.2.1 Infrastructure ... 5-224
 5.2.2.1.1 No Action Alternative .. 5-224
 5.2.2.1.2 Expanded Operations Alternative... 5-224
 5.2.2.1.3 Reduced Operations Alternative.. 5-224
 5.2.2.2 Energy.. 5-224
 5.2.2.2.1 No Action Alternative .. 5-224
 5.2.2.2.2 Expanded Operations Alternative... 5-225
 5.2.2.2.3 Reduced Operations Alternative.. 5-225
 5.2.3 Transportation and Traffic.. 5-225
 5.2.3.1 Transportation... 5-225
 5.2.3.2 Traffic.. 5-225
 5.2.4 Socioeconomics.. 5-225
 5.2.5 Geology and Soils.. 5-225
 5.2.5.1 No Action Alternative ... 5-225
 5.2.5.1.1 National Security/Defense Mission... 5-225
 5.2.5.1.2 Environmental Management Mission.. 5-226
 5.2.5.1.3 Nondefense Mission.. 5-226
 5.2.5.2 Expanded Operations Alternative... 5-226
 5.2.5.3 Reduced Operations Alternative.. 5-226
Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada

5.3 North Las Vegas Facility

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1</td>
<td>Land Use</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.1.1</td>
<td>No Action Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>Expanded Operations Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.1.3</td>
<td>Reduced Operations Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Infrastructure and Energy</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Infrastructure</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.2.1.1</td>
<td>No Action Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.2.1.2</td>
<td>Expanded Operations Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.2.1.3</td>
<td>Reduced Operations Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.2.2</td>
<td>Reduced Operations Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.2.3</td>
<td>Expanded Operations Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.3.2.4</td>
<td>No Action Alternative</td>
<td>5-232</td>
</tr>
</tbody>
</table>

5.6 Hydrology

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.1</td>
<td>Surface-Water Hydrology</td>
<td>5-226</td>
</tr>
<tr>
<td>5.6.1.1</td>
<td>No Action Alternative</td>
<td>5-226</td>
</tr>
<tr>
<td>5.6.1.1.1</td>
<td>National Security/Defense Mission</td>
<td>5-226</td>
</tr>
<tr>
<td>5.6.1.1.2</td>
<td>Environmental Management Mission</td>
<td>5-226</td>
</tr>
<tr>
<td>5.6.1.1.3</td>
<td>Nondefense Mission</td>
<td>5-226</td>
</tr>
<tr>
<td>5.6.1.2</td>
<td>Expanded Operations Alternative</td>
<td>5-226</td>
</tr>
<tr>
<td>5.6.1.2.1</td>
<td>National Security/Defense Mission</td>
<td>5-226</td>
</tr>
<tr>
<td>5.6.1.2.2</td>
<td>Environmental Management Mission</td>
<td>5-227</td>
</tr>
<tr>
<td>5.6.1.2.3</td>
<td>Nondefense Mission</td>
<td>5-227</td>
</tr>
<tr>
<td>5.6.1.3</td>
<td>Reduced Operations Alternative</td>
<td>5-227</td>
</tr>
<tr>
<td>5.6.1.3.1</td>
<td>National Security/Defense Mission</td>
<td>5-227</td>
</tr>
<tr>
<td>5.6.1.3.2</td>
<td>Environmental Management Mission</td>
<td>5-227</td>
</tr>
<tr>
<td>5.6.1.3.3</td>
<td>Nondefense Mission</td>
<td>5-227</td>
</tr>
</tbody>
</table>

5.26 Groundwater

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.26.1</td>
<td>No Action Alternative</td>
<td>5-227</td>
</tr>
<tr>
<td>5.26.2</td>
<td>Expanded Operations Alternative</td>
<td>5-227</td>
</tr>
<tr>
<td>5.26.3</td>
<td>Reduced Operations Alternative</td>
<td>5-227</td>
</tr>
</tbody>
</table>

5.27 Biological Resources

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.7.1</td>
<td>No Action Alternative</td>
<td>5-227</td>
</tr>
<tr>
<td>5.2.7.2</td>
<td>Expanded Operations Alternative</td>
<td>5-227</td>
</tr>
<tr>
<td>5.2.7.3</td>
<td>Reduced Operations Alternative</td>
<td>5-227</td>
</tr>
</tbody>
</table>

5.28 Air Quality and Climate

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.28.1</td>
<td>No Action, Expanded Operations, and Reduced Operations Alternatives</td>
<td>5-228</td>
</tr>
<tr>
<td>5.28.1.1</td>
<td>Air Quality</td>
<td>5-228</td>
</tr>
<tr>
<td>5.28.1.2</td>
<td>Radiological Air Quality</td>
<td>5-229</td>
</tr>
<tr>
<td>5.28.1.3</td>
<td>Climate Change</td>
<td>5-229</td>
</tr>
</tbody>
</table>

5.29 Visual Resources

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.29.1</td>
<td>No Action Alternative</td>
<td>5-230</td>
</tr>
<tr>
<td>5.29.2</td>
<td>Expanded Operations Alternative</td>
<td>5-230</td>
</tr>
<tr>
<td>5.29.3</td>
<td>Reduced Operations Alternative</td>
<td>5-230</td>
</tr>
</tbody>
</table>

5.10 Cultural Resources

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10.1</td>
<td>No Action Alternative</td>
<td>5-230</td>
</tr>
<tr>
<td>5.10.2</td>
<td>Expanded Operations Alternative</td>
<td>5-230</td>
</tr>
<tr>
<td>5.10.3</td>
<td>Reduced Operations Alternative</td>
<td>5-230</td>
</tr>
</tbody>
</table>

5.11 Waste Management

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11.1</td>
<td>No Action Alternative</td>
<td>5-230</td>
</tr>
<tr>
<td>5.11.2</td>
<td>Expanded Operations Alternative</td>
<td>5-230</td>
</tr>
<tr>
<td>5.11.3</td>
<td>Reduced Operations Alternative</td>
<td>5-230</td>
</tr>
</tbody>
</table>

5.12 Human Health

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12.1</td>
<td>Normal Operations</td>
<td>5-231</td>
</tr>
<tr>
<td>5.12.1.1</td>
<td>No Action Alternative</td>
<td>5-231</td>
</tr>
<tr>
<td>5.12.1.2</td>
<td>Expanded Operations Alternative</td>
<td>5-231</td>
</tr>
<tr>
<td>5.12.1.3</td>
<td>Reduced Operations Alternative</td>
<td>5-231</td>
</tr>
<tr>
<td>5.12.2</td>
<td>Facility Accidents</td>
<td>5-231</td>
</tr>
<tr>
<td>5.12.2.1</td>
<td>No Action Alternative</td>
<td>5-231</td>
</tr>
<tr>
<td>5.12.2.2</td>
<td>Expanded Operations Alternative</td>
<td>5-231</td>
</tr>
<tr>
<td>5.12.2.3</td>
<td>Reduced Operations Alternative</td>
<td>5-231</td>
</tr>
</tbody>
</table>

5.13 Environmental Justice

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13.1</td>
<td>No Action Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.13.2</td>
<td>Expanded Operations Alternative</td>
<td>5-232</td>
</tr>
<tr>
<td>5.13.3</td>
<td>Reduced Operations Alternative</td>
<td>5-232</td>
</tr>
</tbody>
</table>
5.3.2.2 Energy .. 5-233
5.3.2.2.1 No Action Alternative ... 5-233
5.3.2.2.2 Expanded Operations Alternative .. 5-233
5.3.2.2.3 Reduced Operations Alternative ... 5-233
5.3.3 Transportation and Traffic ... 5-234
5.3.3.1 Transportation ... 5-234
5.3.3.2 Traffic ... 5-234
5.3.4 Socioeconomics .. 5-235
5.3.4.1 No Action Alternative ... 5-235
5.3.4.2 Expanded Operations Alternative .. 5-235
5.3.4.2.1 Economic Activity, Population, and Housing .. 5-235
5.3.4.2.2Public Services ... 5-235
5.3.4.3 Reduced Operations Alternative .. 5-235
5.3.4.3.1 Economic Activity, Population, and Housing .. 5-235
5.3.4.3.2Public Services ... 5-235
5.3.5 Geology and Soils ... 5-236
5.3.5.1 No Action Alternative ... 5-236
5.3.5.1.1 National Security/Defense Mission ... 5-236
5.3.5.1.2 Environmental Management Mission ... 5-236
5.3.5.1.3 Nondefense Mission ... 5-236
5.3.5.2 Expanded Operations Alternative .. 5-236
5.3.5.2.1 National Security/Defense Mission ... 5-236
5.3.5.2.2 Environmental Management Mission ... 5-236
5.3.5.2.3 Nondefense Mission ... 5-236
5.3.5.3 Reduced Operations Alternative .. 5-237
5.3.6 Hydrology .. 5-237
5.3.6.1 Surface-Water Hydrology ... 5-237
5.3.6.1.1 No Action Alternative ... 5-237
5.3.6.1.1.1 National Security/Defense Mission .. 5-237
5.3.6.1.1.2 Environmental Management Mission .. 5-237
5.3.6.1.1.3 Nondefense Mission .. 5-237
5.3.6.1.2 Expanded Operations Alternative .. 5-237
5.3.6.1.2.1 National Security/Defense Mission .. 5-237
5.3.6.1.2.2 Environmental Management Mission .. 5-237
5.3.6.1.2.3 Nondefense Mission .. 5-237
5.3.6.1.3 Reduced Operations Alternative .. 5-238
5.3.6.1.3.1 National Security/Defense Mission .. 5-238
5.3.6.1.3.2 Environmental Management Mission .. 5-238
5.3.6.1.3.3 Nondefense Mission .. 5-238
5.3.6.2 Groundwater ... 5-238
5.3.6.2.1 No Action Alternative ... 5-238
5.3.6.2.2 Expanded Operations Alternative .. 5-238
5.3.6.2.3 Reduced Operations Alternative .. 5-238
5.3.7 Biological Resources .. 5-239
5.3.8 Air Quality and Climate .. 5-239
5.3.8.1 No Action Alternative ... 5-239
5.3.8.1.1 Air Quality ... 5-239
5.3.8.1.2 Radiological Air Quality ... 5-241
5.3.8.1.3 Climate Change ... 5-241
5.3.8.2 Expanded Operations Alternative ... 5-241
5.3.8.2.1 Air Quality ... 5-241
5.3.8.2.2 Radiological Air Quality ... 5-242
5.3.8.2.3 Climate Change ... 5-242
5.3.8.3 Reduced Operations Alternative ... 5-242
5.3.8.3.1 Air Quality ... 5-242
5.3.8.3.2 Radiological Air Quality ... 5-246
5.3.8.3.3 Climate Change ... 5-246
Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada

5.9 Visual Resources .. 5-247
 5.9.1 No Action Alternative ... 5-247
 5.9.2 Expanded Operations Alternative ... 5-247
 5.9.3 Reduced Operations Alternative .. 5-247

5.10 Cultural Resources .. 5-247

5.11 Waste Management .. 5-247

5.12 Human Health .. 5-248
 5.12.1 Normal Operations ... 5-248
 5.12.1.1 No Action Alternative ... 5-248
 5.12.1.2 Expanded Operations Alternative ... 5-248
 5.12.1.3 Reduced Operations Alternative .. 5-249
 5.12.2 Facility Accidents ... 5-249
 5.12.2.1 No Action Alternative ... 5-249
 5.12.2.2 Expanded Operations Alternative ... 5-249
 5.12.2.3 Reduced Operations Alternative .. 5-249
 5.12.3 Intentional Destructive Acts Analysis ... 5-250

5.13 Environmental Justice ... 5-250
 5.13.1 No Action Alternative ... 5-250
 5.13.2 Expanded Operations Alternative ... 5-250
 5.13.3 Reduced Operations Alternative .. 5-250

5.4 Tonopah Test Range ... 5-250
 5.4.1 Land Use .. 5-250
 5.4.1.1 National Security/Defense Mission ... 5-250
 5.4.1.1.1 No Action Alternative ... 5-250
 5.4.1.1.2 Expanded Operations Alternative ... 5-250
 5.4.1.1.3 Reduced Operations Alternative .. 5-251
 5.4.2 Infrastructure and Energy .. 5-251
 5.4.2.1 Infrastructure .. 5-251
 5.4.2.1.1 No Action Alternative ... 5-251
 5.4.2.1.2 Expanded Operations Alternative ... 5-251
 5.4.2.1.3 Reduced Operations Alternative .. 5-251
 5.4.2.2 Energy ... 5-251
 5.4.2.2.1 No Action Alternative ... 5-251
 5.4.2.2.2 Expanded Operations Alternative ... 5-251
 5.4.2.2.3 Reduced Operations Alternative .. 5-252
 5.4.3 Transportation and Traffic .. 5-252
 5.4.3.1 Transportation .. 5-252
 5.4.3.1.1 No Action Alternative ... 5-252
 5.4.3.1.2 Expanded Operations Alternative ... 5-252
 5.4.3.1.3 Reduced Operations Alternative .. 5-252
 5.4.3.2 Traffic .. 5-252
 5.4.4 Socioeconomics .. 5-252
 5.4.4.1 No Action Alternative ... 5-252
 5.4.4.2 Expanded Operations Alternative .. 5-253
 5.4.4.2.1 Economic Activity, Population, and Housing ... 5-253
 5.4.4.2.2 Public Services .. 5-253
 5.4.4.3 Reduced Operations Alternative .. 5-253
 5.4.4.3.1 Economic Activity, Population, and Housing ... 5-253
 5.4.4.3.2 Public Services .. 5-254
 5.4.5 Geology and Soils .. 5-254
 5.4.5.1 No Action Alternative ... 5-254
 5.4.5.1.1 National Security/Defense Mission ... 5-254
 5.4.5.1.2 Environmental Management Mission .. 5-255
 5.4.5.1.3 Nondefense Mission ... 5-255
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.5.2 Expanded Operations Alternative</td>
<td>5-255</td>
</tr>
<tr>
<td>5.4.5.2.1 National Security/Defense Mission</td>
<td>5-255</td>
</tr>
<tr>
<td>5.4.5.2.2 Environmental Management Mission</td>
<td>5-255</td>
</tr>
<tr>
<td>5.4.5.2.3 Nondefense Mission</td>
<td>5-255</td>
</tr>
<tr>
<td>5.4.5.3 Reduced Operations Alternative</td>
<td>5-256</td>
</tr>
<tr>
<td>5.4.5.3.1 National Security/Defense Mission</td>
<td>5-256</td>
</tr>
<tr>
<td>5.4.5.3.2 Environmental Management Mission</td>
<td>5-256</td>
</tr>
<tr>
<td>5.4.5.3.3 Nondefense Mission</td>
<td>5-256</td>
</tr>
<tr>
<td>5.4.6 Hydrology</td>
<td>5-256</td>
</tr>
<tr>
<td>5.4.6.1 Surface-Water Hydrology</td>
<td>5-256</td>
</tr>
<tr>
<td>5.4.6.1.1 No Action Alternative</td>
<td>5-256</td>
</tr>
<tr>
<td>5.4.6.1.1.1 National Security/Defense Mission</td>
<td>5-256</td>
</tr>
<tr>
<td>5.4.6.1.1.2 Environmental Management Mission</td>
<td>5-257</td>
</tr>
<tr>
<td>5.4.6.1.1.3 Nondefense Mission</td>
<td>5-257</td>
</tr>
<tr>
<td>5.4.6.1.2 Expanded Operations Alternative</td>
<td>5-257</td>
</tr>
<tr>
<td>5.4.6.1.2.1 National Security/Defense Mission</td>
<td>5-258</td>
</tr>
<tr>
<td>5.4.6.1.2.2 Environmental Management Mission</td>
<td>5-258</td>
</tr>
<tr>
<td>5.4.6.1.2.3 Nondefense Mission</td>
<td>5-258</td>
</tr>
<tr>
<td>5.4.6.1.3 Reduced Operations Alternative</td>
<td>5-258</td>
</tr>
<tr>
<td>5.4.6.1.3.1 National Security/Defense Mission</td>
<td>5-258</td>
</tr>
<tr>
<td>5.4.6.1.3.2 Environmental Management Mission</td>
<td>5-259</td>
</tr>
<tr>
<td>5.4.6.1.3.3 Nondefense Mission</td>
<td>5-259</td>
</tr>
<tr>
<td>5.4.6.2 Groundwater</td>
<td>5-259</td>
</tr>
<tr>
<td>5.4.6.2.1 No Action Alternative</td>
<td>5-259</td>
</tr>
<tr>
<td>5.4.6.2.1.1 National Security/Defense Mission</td>
<td>5-259</td>
</tr>
<tr>
<td>5.4.6.2.1.2 Environmental Management Mission</td>
<td>5-259</td>
</tr>
<tr>
<td>5.4.6.2.1.3 Nondefense Mission</td>
<td>5-259</td>
</tr>
<tr>
<td>5.4.6.2.2 Expanded Operations Alternative</td>
<td>5-260</td>
</tr>
<tr>
<td>5.4.6.2.2.1 National Security/Defense Mission</td>
<td>5-260</td>
</tr>
<tr>
<td>5.4.6.2.2.2 Environmental Management Mission</td>
<td>5-260</td>
</tr>
<tr>
<td>5.4.6.2.2.3 Nondefense Mission</td>
<td>5-260</td>
</tr>
<tr>
<td>5.4.6.2.3 Reduced Operations Alternative</td>
<td>5-260</td>
</tr>
<tr>
<td>5.4.6.2.3.1 National Security/Defense Mission</td>
<td>5-260</td>
</tr>
<tr>
<td>5.4.6.2.3.2 Environmental Management Mission</td>
<td>5-260</td>
</tr>
<tr>
<td>5.4.6.2.3.3 Nondefense Mission</td>
<td>5-260</td>
</tr>
<tr>
<td>5.4.7 Biological Resources</td>
<td>5-260</td>
</tr>
<tr>
<td>5.4.7.1 No Action, Expanded Operations, and Reduced Operations Alternatives</td>
<td>5-261</td>
</tr>
<tr>
<td>5.4.7.1.1 National Security/Defense Mission</td>
<td>5-261</td>
</tr>
<tr>
<td>5.4.7.1.2 Environmental Management Mission</td>
<td>5-261</td>
</tr>
<tr>
<td>5.4.7.1.3 Nondefense Mission</td>
<td>5-262</td>
</tr>
<tr>
<td>5.4.8 Air Quality and Climate</td>
<td>5-263</td>
</tr>
<tr>
<td>5.4.8.1 No Action Alternative</td>
<td>5-263</td>
</tr>
<tr>
<td>5.4.8.1.1 Air Quality</td>
<td>5-263</td>
</tr>
<tr>
<td>5.4.8.1.2 Radiological Air Quality</td>
<td>5-263</td>
</tr>
<tr>
<td>5.4.8.1.3 Climate Change</td>
<td>5-265</td>
</tr>
<tr>
<td>5.4.8.2 Expanded Operations Alternative</td>
<td>5-266</td>
</tr>
<tr>
<td>5.4.8.2.1 Air Quality</td>
<td>5-266</td>
</tr>
<tr>
<td>5.4.8.2.2 Radiological Air Quality</td>
<td>5-266</td>
</tr>
<tr>
<td>5.4.8.2.3 Climate Change</td>
<td>5-268</td>
</tr>
<tr>
<td>5.4.8.3 Reduced Operations Alternative</td>
<td>5-269</td>
</tr>
<tr>
<td>5.4.8.3.1 Air Quality</td>
<td>5-269</td>
</tr>
<tr>
<td>5.4.8.3.2 Radiological Air Quality</td>
<td>5-269</td>
</tr>
<tr>
<td>5.4.8.3.3 Climate Change</td>
<td>5-269</td>
</tr>
</tbody>
</table>
Chapter 6
Cumulative Impacts .. 6-1

6.1 Methodology and Analytical Baseline .. 6-1

6.2 Potentially Cumulative Actions ... 6-3

6.2.1 U.S. Department of Energy .. 6-3

6.2.1.1 Greater-Than-Class C Low-Level Radioactive Waste Disposal ... 6-3

6.2.1.2 Yucca Mountain Repository Project .. 6-4

6.2.2 U.S. Air Force .. 6-5

6.2.3 U.S. Fish and Wildlife Service .. 6-9

6.2.3.1 Desert Wildlife Refuge Complex ... 6-9

6.2.3.2 Clark County Multi-Species Habitat Conservation Plan ... 6-9

6.2.4 Bureau of Land Management .. 6-10

6.2.4.1 Renewable Energy Projects .. 6-11

6.2.4.2 National Wild Horse Range ... 6-13

6.2.4.3 Designation of Energy Corridors on Federal Land ... 6-14

6.2.4.4 Electrical Transmission Line Projects .. 6-14

6.2.4.5 Groundwater Development Projects ... 6-16

6.2.4.6 Las Vegas Valley Land Disposal ... 6-16

6.2.4.7 Amargosa River Area of Critical Environmental Concern ... 6-16

6.2.5 U.S. Department of Justice .. 6-17

6.2.6 Federal Aviation Administration .. 6-17

6.2.7 National Park Service ... 6-17

6.2.8 U.S. Forest Service .. 6-18

6.2.9 Nye County .. 6-18

6.2.9.1 Nye County Water District ... 6-18

6.2.9.2 U.S. Route 95 Technology Corridor .. 6-19

6.2.9.3 Nye County’s Amargosa Valley Land Use Concept Plan ... 6-19

6.2.9.4 Nye County Input for this Site-Wide Environmental Impact Statement 6-20

6.2.10 Clark County and Las Vegas Area, Nevada ... 6-27

6.2.11 Lincoln County, Nevada .. 6-27

6.2.12 Esmeralda County, Nevada .. 6-28

6.2.13 Inyo County, California ... 6-28

6.3 Cumulative Impacts Analysis .. 6-28
 6.3.1 Land Use .. 6-30
 6.3.2 Infrastructure and Energy .. 6-30
 6.3.3 Transportation ... 6-31
 6.3.4 Socioeconomics ... 6-36
 6.3.5 Geology and Soils .. 6-37
 6.3.6 Hydrology .. 6-38
 6.3.6.1 Surface Water ... 6-38
 6.3.6.2 Groundwater ... 6-40
 6.3.7 Biological Resources .. 6-47
 6.3.8 Air Quality and Climate ... 6-49
 6.3.8.1 Criteria and Hazardous Air Pollutants ... 6-49
 6.3.8.1.1 Nye County ... 6-50
 6.3.8.1.2 Clark County .. 6-51
 6.3.8.1.3 Inyo County .. 6-53
 6.3.8.2 Greenhouse Gas Emissions ... 6-53
 6.3.9 Visual Resources .. 6-53
 6.3.10 Cultural Resources .. 6-54
 6.3.11 Waste Management ... 6-55
 6.3.12 Human Health .. 6-58
 6.3.13 Environmental Justice .. 6-60

6.4 Summary of Cumulative Impacts ... 6-60

Chapter 7
Mitigation Measures ... 7-1
 7.1 Land Use .. 7-2
 7.2 Infrastructure and Energy .. 7-2
 7.3 Transportation ... 7-3
 7.4 Socioeconomics ... 7-3
 7.5 Geology and Soils .. 7-3
 7.6 Hydrology .. 7-4
 7.7 Biological Resources .. 7-6
 7.8 Air Quality and Climate ... 7-10
 7.9 Visual Resources ... 7-11
 7.10 Cultural Resources ... 7-12
 7.11 Waste Management .. 7-15
 7.12 Human Health ... 7-15
 7.13 Environmental Justice .. 7-16
 7.14 Environmental Management Systems .. 7-17
Chapter 8
Resource Commitments.. 8-1

8.1 Nevada National Security Site .. 8-1
 8.1.1 Unavoidable Adverse Effects .. 8-1
 8.1.1.1 No Action Alternative .. 8-1
 8.1.1.1.1 National Security/Defense Mission 8-1
 8.1.1.1.2 Environmental Management Mission 8-2
 8.1.1.1.3 Nondefense Mission 8-2
 8.1.1.2 Expanded Operations Alternative 8-3
 8.1.1.2.1 National Security/Defense Mission 8-3
 8.1.1.2.2 Environmental Management Mission 8-4
 8.1.1.2.3 Nondefense Mission 8-4
 8.1.1.3 Reduced Operations Alternative 8-5
 8.1.1.3.1 National Security/Defense Mission 8-5
 8.1.1.3.2 Environmental Management Mission 8-5
 8.1.1.3.3 Nondefense Mission 8-5
 8.1.2 Relationship of Short-Term Uses and Long-Term Productivity .. 8-6
 8.1.2.1 No Action Alternative .. 8-7
 8.1.2.2 Expanded Operations Alternative 8-7
 8.1.2.3 Reduced Operations Alternative 8-7
 8.1.3 Irreversible and Irretrievable Commitment of Resources .. 8-7
 8.1.3.1 No Action Alternative .. 8-8
 8.1.3.2 Expanded Operations Alternative 8-8
 8.1.3.3 Reduced Operations Alternative 8-9

8.2 Remote Sensing Laboratory .. 8-9
 8.2.1 Unavoidable Adverse Effects .. 8-9
 8.2.2 Relationship of Short-Term Uses and Long-Term Productivity .. 8-9
 8.2.3 Irreversible and Irretrievable Commitment of Resources .. 8-9

8.3 North Las Vegas Facility .. 8-9
 8.3.1 Unavoidable Adverse Effects .. 8-9
 8.3.1.1 No Action Alternative .. 8-9
 8.3.1.2 Expanded Operations Alternative 8-9
 8.3.1.3 Reduced Operations Alternative 8-9
 8.3.2 Relationship of Short-Term Uses and Long-Term Productivity .. 8-9
 8.3.3 Irreversible and Irretrievable Commitment of Resources .. 8-9

8.4 Tonopah Test Range .. 8-10
 8.4.1 Unavoidable Adverse Effects .. 8-10
 8.4.1.1 No Action Alternative .. 8-10
 8.4.1.2 Expanded Operations Alternative 8-10
 8.4.1.3 Reduced Operations Alternative 8-10
 8.4.2 Relationship of Short-Term Uses and Long-Term Productivity .. 8-10
 8.4.3 Irreversible and Irretrievable Commitment of Resources .. 8-10
Chapter 9
Laws, Regulations, and Permits

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>9-1</td>
</tr>
<tr>
<td>9.1.1 Environmental Quality</td>
<td>9-4</td>
</tr>
<tr>
<td>9.1.2 Land Use</td>
<td>9-7</td>
</tr>
<tr>
<td>9.1.3 Infrastructure and Energy</td>
<td>9-7</td>
</tr>
<tr>
<td>9.1.4 Transportation</td>
<td>9-8</td>
</tr>
<tr>
<td>9.1.5 Geology and Soils</td>
<td>9-9</td>
</tr>
<tr>
<td>9.1.6 Hydrology</td>
<td>9-10</td>
</tr>
<tr>
<td>9.1.7 Biological Resources</td>
<td>9-12</td>
</tr>
<tr>
<td>9.1.8 Air Quality and Climate</td>
<td>9-14</td>
</tr>
<tr>
<td>9.1.9 Visual Resources</td>
<td>9-16</td>
</tr>
<tr>
<td>9.1.10 Cultural Resources</td>
<td>9-16</td>
</tr>
<tr>
<td>9.1.11 Waste Management</td>
<td>9-19</td>
</tr>
<tr>
<td>9.1.12 Human Health</td>
<td>9-21</td>
</tr>
<tr>
<td>9.1.13 Environmental Justice</td>
<td>9-25</td>
</tr>
<tr>
<td>9.1.14 Emergency Planning, Pollution Prevention, and Conservation</td>
<td>9-25</td>
</tr>
</tbody>
</table>

| 9.2 Applicable Permits | 9-28 |

Chapter 10
Consultation and Coordination

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Cooperating Agencies</td>
<td>10-1</td>
</tr>
<tr>
<td>10.2 American Indian Groups</td>
<td>10-2</td>
</tr>
</tbody>
</table>

Chapter 11
References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11-1</td>
</tr>
</tbody>
</table>

Chapter 12
Glossary

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12-1</td>
</tr>
</tbody>
</table>

Chapter 13
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13-1</td>
</tr>
</tbody>
</table>

Chapter 14
Distribution List

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14-1</td>
</tr>
</tbody>
</table>

Chapter 15
List of Preparers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15-1</td>
</tr>
</tbody>
</table>
Volume 2
(Appendices A through I)

Appendix A
Detailed Description of Alternatives

Appendix B
Federal Register Notices

Appendix C
American Indian Assessment of Resources and Alternatives Presented in the SWEIS

Appendix D
Air Quality and Climate

Appendix E
Evaluation of Human Health Effects from Transportation

Appendix F
Biological Resources

Appendix G
Human Health Impacts

Appendix H
Underground Nuclear Testing

Appendix I
Contractor Disclosure Statements

Appendix J
Classified Appendix – Intentional Destructive Acts

(Not Included)
List of Figures

Chapter 1
- Figure 1–1 Location of the Nevada National Security Site and Offsite Locations .. 1-2
- Figure 1–2 The National Environmental Policy Act Process .. 1-20

Chapter 2
- Figure 2–1 Geographic Areas of the Nevada National Security Site ... 2-2
- Figure 2–2 Nevada National Security Site Areas and Major Facilities .. 2-4
- Figure 2–3 Aboveground Facilities of the U1a Complex ... 2-8
- Figure 2–4 Large-scale Release Experiment Under Way at the Nonproliferation Test and Evaluation Complex ... 2-8
- Figure 2–5 Device Assembly Facility at the Nevada National Security Site .. 2-9
- Figure 2–6 Radiological/Nuclear Countermeasures Test and Evaluation Complex Provides Capabilities for Evaluating Transportation Monitoring Equipment .. 2-10
- Figure 2–7 The Joint Actinide Shock Physics Experimental Research Facility Two-stage Gas Gun (top) and Target Chamber (bottom) ... 2-11

Chapter 3
- Figure 3–1 Nevada National Security Site Land Use Zones and Major Facilities Under the No Action Alternative .. 3-12
- Figure 3–2 Nevada National Security Site Land Use Zones and Major Facilities Under the Expanded Operations Alternative ... 3-32
- Figure 3–3 Nevada National Security Site Land Use Zones and Major Facilities Under the Reduced Operations Alternative .. 3-47

Chapter 4
- Figure 4–1 Location of Nevada National Security Site and Offsite Locations in the State of Nevada 4-4
- Figure 4–2 Nevada National Security Site Boundary Resulting from the Military Lands Withdrawal Act of 1999 (Public Law 106-65) .. 4-8
- Figure 4–3 Existing Land Use Zones and Major Facilities on the Nevada National Security Site 4-11
- Figure 4–4 Airspace Within the Vicinity of the Nevada National Security Site .. 4-13
- Figure 4–5 Nevada National Security Site Transportation System .. 4-23
- Figure 4–6 Regional Transportation Routes Surrounding the Nevada National Security Site 4-25
- Figure 4–7 Transportation Routes Within the Las Vegas Metropolitan Area .. 4-26
- Figure 4–8 Simplified Map of the Geologic Units .. 4-45
- Figure 4–9 Location of Corrective Action Sites on the Nevada National Security Site, Tonopah Test Range, and Nevada Test and Training Range that are Closed under the Federal Facility Agreement and Consent Order ... 4-57
- Figure 4–10 Location of Corrective Action Sites on the Nevada National Security Site, Tonopah Test Range, and Nevada Test and Training Range that are not yet Closed under the Federal Facility Agreement and Consent Order ... 4-58
- Figure 4–11 Areas on the Nevada National Security Site that are Fenced and/or Posted as Radiation Areas and/or Contamination Areas in Accordance with Nevada Test Site Radiation Control Manual (DOE/NV/25946-801, Revision 1, February 2010) .. 4-58
- Figure 4–12 Areas on the Nevada Test and Training Range that are Fenced and/or Posted as Radiation Areas and/or Contamination Areas in Accordance with Nevada Test Site Radiation Control Manual (DOE/NV/25946-801, Revision 1, February 2010): the Double Tracks Site .. 4-61
- Figure 4–13 Areas on the Nevada Test and Training Range that are Fenced and/or Posted as Radiation Areas and/or Contamination Areas in Accordance with Nevada Test Site Radiation Control Manual (DOE/NV/25946-801, Revision 1, February 2010): Clean Slate 1, 2, and 3 Sites on the Tonopah Test Range .. 4-62
Figure 4–14 Areas on the Nevada Test and Training Range that are Fenced and/or Posted as Radiation Areas and/or Contamination Areas in Accordance with Nevada Test Site Radiation Control Manual (DOE/NV/25946-801, Revision 1, February 2010): Project 57 Site .. 4-63
Figure 4–15 Hydrographic Basins and Surface-Water Features on the Nevada National Security Site 4-67
Figure 4–16 Hydrographic Basins at the Nevada National Security Site ... 4-78
Figure 4–17 Groundwater Subbasins and Flow at the Nevada National Security Site 4-80
Figure 4–18 Water Service Areas at the Nevada National Security Site ... 4-85
Figure 4–19 Underground Test Area Project Corrective Action Units and Underground Nuclear Test Locations at the Nevada National Security Site .. 4-89
Figure 4–20 Modeled Extent of the Contaminant Boundary in the Frenchman Flat Corrective Action Unit in 1,000 Years ... 4-97
Figure 4–21 Concentration of Tritium Detected in Monitoring and Hydrogeologic Investigation Wells and Springs of the Nevada National Security Site ... 4-103
Figure 4–22 Nevada National Security Site Soil Alliances ... 4-116
Figure 4–23 Important Habitats on the Nevada National Security Site .. 4-119
Figure 4–24 Northern Boundary of the Desert Tortoise Range on the Nevada National Security Site 4-123
Figure 4–25 Meteorological Data Acquisition System Stations Across the Nevada National Security Site, as of 2010 ... 4-131
Figure 4–26 Annual Average Wind Roses for Meteorological Data Acquisition Stations near NPTEC, Test Cell C, and BEEF, 2004–2008 ... 4-133
Figure 4–27 Locations of the Four Historical PM₁₀ Monitors at the Former Yucca Mountain Site 4-138
Figure 4–28 Ambient Radiological Monitoring and Critical Receptor Sampling Locations for Air Particulates and Tritium ... 4-143
Figure 4–29 Community Environmental Monitoring Program Air Surveillance Network Locations near the Nevada Test and Training Range and Las Vegas, 2008 ... 4-144
Figure 4–30 Photograph Locations and Sensitivity Levels at the Nevada National Security Site and Other Nevada Locations Managed by the U.S. Department of Energy/National Nuclear Security Administration ... 4-149
Figure 4–31 Landscape Photographs – Visual Interest of Terrain near the Nevada National Security Site 4-151
Figure 4–32 Landscape Photographs – Developed Areas near the Nevada National Security Site 4-152
Figure 4–33 Area 3 Radioactive Waste Management Site .. 4-163
Figure 4–34 Area 5 Radioactive Waste Management Complex .. 4-164
Figure 4–35 Distributions of Low-Income Populations for the Nevada National Security Site and the Tonopah Test Range ... 4-186
Figure 4–36 Nevada National Security Site and Tonopah Test Range Distributions of Minority Populations Greater than 50 Percent ... 4-187
Figure 4–37 Remote Sensing Laboratory Roadways .. 4-190
Figure 4–38 Wind Roses for J. D. Smith and E. Craig Road Clark County DAQEM Sites, 2004–2008 4-197
Figure 4–39 Distributions of Low-Income Populations for the North Las Vegas Facility and Remote Sensing Laboratory ... 4-204
Figure 4–40 North Las Vegas Facility and Remote Sensing Laboratory Distributions of Minority Populations Greater than 50 Percent ... 4-205
Figure 4–41 Zoning in the City of North Las Vegas and the North Las Vegas Facility 4-207
Figure 4–42 North Las Vegas Facility Roadways .. 4-209
Figure 4–43 Photograph Locations and Sensitivity Levels near the North Las Vegas Facility 4-222
Figure 4–44 Landscape Photographs near North Las Vegas Facility .. 4-223
Figure 4–45 Tonopah Test Range Roadways ... 4-229
Figure 4–46 Hydrographic Basins on the Tonopah Test Range .. 4-234
Figure 4–47 Groundwater Basins and Flow at the Tonopah Test Range .. 4-236
Figure 4–48 Vegetation Types on the Tonopah Test Range .. 4-240
Figure 4–49 Wind Rose for Tonopah Test Range Airport Surface Station, 2004–2008 4-243
Figure 4–50 Hydrographic Basins Within the Tonopah Test Range Boundary .. 4-248
Chapter 5

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–1</td>
<td>Land Use Zones on the Nevada National Security Site Under the No Action Alternative</td>
<td>5-11</td>
</tr>
<tr>
<td>5–2</td>
<td>Expanded Operations Alternative and Major Facilities</td>
<td>5-14</td>
</tr>
<tr>
<td>5–3</td>
<td>Reduced Operations Alternative and Major Facilities</td>
<td>5-18</td>
</tr>
<tr>
<td>5–4</td>
<td>Transportation Routes Analyzed in Las Vegas for the Transport of Low-Level and Mixed Low-Level Radioactive Waste for the Unconstrained Case</td>
<td>5-42</td>
</tr>
<tr>
<td>5–5</td>
<td>Transfer Station Locations and Analyzed Routes from These Locations to Las Vegas for the Unconstrained Case</td>
<td>5-43</td>
</tr>
<tr>
<td>5–6</td>
<td>Areas Burned During Major Wildland Fires on the Nevada National Security Site from 2002 through 2011</td>
<td>5-215</td>
</tr>
</tbody>
</table>

Chapter 6

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–1</td>
<td>Cumulative Impacts Analysis Region of Influence</td>
<td>6-2</td>
</tr>
<tr>
<td>6–2</td>
<td>Location of Underground Test Area Corrective Action Units, Projected Groundwater Flow Directions, Characterization Well ER-EC-11, and the Nearest Private Water Well</td>
<td>6-41</td>
</tr>
<tr>
<td>6–3</td>
<td>Modeled Extent of the Contaminant Boundary in the Frenchman Flat Corrective Action Unit in 1,000 Years</td>
<td>6-43</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Chapter 1
Table 1–1 Comparison of the 1996 NTS EIS Expanded Use Alternative and the NNSS SWEIS
No Action Alternative ... 1-10
Table 1–2 Summary of Major Scoping Comments and DOE/NNSA Responses 1-21

Chapter 2
Table 2–1 Description and Historical Use of Nevada National Security Site Areas 2-5

Chapter 3
Table 3–1 Comparison of Mission-Based Program Activities Under the Proposed Alternatives ... 3-4
Table 3–2 The National Nuclear Security Administration Conservation and Renewable Energy Program Under the No Action Alternative .. 3-30
Table 3–3 Mission-Based Program Activities Under the Preferred Alternative (in blue) 3-52
Table 3–4 Summary of Potential Impacts at the Nevada National Security Site 3-59
Table 3–5 Summary of Potential Impacts at the Remote Sensing Laboratory 3-76
Table 3–6 Summary of Potential Impacts at the North Las Vegas Facility 3-80
Table 3–7 Summary of Potential Impacts at the Tonopah Test Range 3-85

Chapter 4
Table 4–1 Description of the Nevada National Security Site Land Use Zone Designations 4-10
Table 4–2 Nevada National Security Site Building Floor Space by Function 4-14
Table 4–3 Roads Assigned to Each Level of Hierarchy Established on the Nevada National Security Site .. 4-15
Table 4–4 Potable Water Consumption for the Nevada National Security Site by Year 4-18
Table 4–5 Wastewater Production for the Mercury and Yucca Lake Lagoons at the Nevada National Security Site by Year .. 4-18
Table 4–6 Nevada National Security Site Septic Tank Locations and Capacities for 2010 4-19
Table 4–7 Estimated Total Wastewater Treatment Capacity at the Nevada National Security Site .. 4-20
Table 4–8 Fuel Usage in Fiscal Year 2009 at the Nevada National Security Site 4-21
Table 4–9 Annual Average Daily Traffic Volumes, 1999–2008 ... 4-27
Table 4–10 Level-of-Service and Volume-to-Capacity Criteria .. 4-28
Table 4–11 Traffic Volumes and Levels of Service on Key Roads During Peak Hour Conditions . 4-29
Table 4–12 Clark County’s Largest Employers ... 4-33
Table 4–13 Nye County’s Largest Employers .. 4-34
Table 4–14 Onsite Employment ... 4-34
Table 4–15 Summary Stratigraphy of the Nevada National Security Site 4-46
Table 4–16 General Characteristics of Potential Wetland Areas on the Nevada National Security Site .. 4-69
Table 4–17 Chemical Analyses of Water from Springs on the Nevada National Security Site (1957 – 1959) .. 4-70
Table 4–18 Water Quality Measurements of Natural Water Sources on the Nevada National Security Site (June 1996 – February 1997) 4-71
Table 4–19 Annual Radiological Results for Sewage Lagoon Effluent (2008) 4-72
Table 4–20 Annual Nonradiological Toxicity Analysis Results of Sewage Lagoon Pond Water (2008) .. 4-74
Table 4–21 Annual Water Quality Results for Sewage Lagoon Influent Waters (2010) 4-75
Table 4–22 Radiological Results for E-Tunnel Waste Water Disposal System Discharge Water Samples (2010) ... 4-76
Table 4–23 Nonradiological Results for E-Tunnel Waste Water Disposal System Discharge Water Samples (2010) ... 4-76
Table 4–24 Perennial Yield of Hydrographic Basins at the Nevada National Security Site 4-79
Table 4–25 Hydraulic Parameters of the Major Aquifers Below the Nevada National Security Site .. 4-82
Table 4–26 Nevada National Security Site Supply Well Characteristics 4-83
Table 4–27 Nevada National Security Site Well Withdrawal Totals (2005 through 2009) 4-86
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4-28</td>
<td>Nevada National Security Site Nonpotable Fillstand Flow Totals for 2009</td>
<td>4-86</td>
</tr>
<tr>
<td>Table 4-29</td>
<td>Potable and Nonpotable Water Use at the Nevada National Security Site for 2009</td>
<td>4-86</td>
</tr>
<tr>
<td>Table 4-30</td>
<td>Summary of Water Withdrawals from Hydrographic Basins</td>
<td>4-87</td>
</tr>
<tr>
<td>Table 4-31</td>
<td>Potable Groundwater Chemistry Data on the Nevada National Security Site</td>
<td>4-88</td>
</tr>
<tr>
<td>Table 4-32</td>
<td>Groundwater Characterization and/or Monitoring Wells Used by the Underground Test Area Project and the Routine Radiological Environmental Monitoring Program on and near the Nevada National Security Site</td>
<td>4-90</td>
</tr>
<tr>
<td>Table 4-33</td>
<td>“Hot Well” Tritium Analysis Summary Table (2003 to 2008)</td>
<td>4-98</td>
</tr>
<tr>
<td>Table 4-34</td>
<td>Routine Radiological Environmental Monitoring Plan Tritium Analysis Summary Table (2000 to 2008)</td>
<td>4-100</td>
</tr>
<tr>
<td>Table 4-35</td>
<td>Tritium Analysis Results for the Nevada National Security Site Monitoring Wells (2008)</td>
<td>4-100</td>
</tr>
<tr>
<td>Table 4-36</td>
<td>Vegetation Alliances and Associations on the Nevada National Security Site</td>
<td>4-115</td>
</tr>
<tr>
<td>Table 4-37</td>
<td>Number of Individual Horses Observed on the Nevada National Security Site by Age Class, Sex, and Year</td>
<td>4-121</td>
</tr>
<tr>
<td>Table 4-38</td>
<td>Nevada National Security Site Animals Monitored for Radionuclides</td>
<td>4-127</td>
</tr>
<tr>
<td>Table 4-39</td>
<td>Site-Specific Dose Assessment Results for Terrestrial Plants and Animals Sampled on the Nevada National Security Site</td>
<td>4-128</td>
</tr>
<tr>
<td>Table 4-40</td>
<td>State of Nevada and National Ambient Air Quality Standards</td>
<td>4-134</td>
</tr>
<tr>
<td>Table 4-41</td>
<td>Estimated 2008 Air Emissions of Criteria Pollutants and Hazardous Air Pollutants Due to Nevada National Security Site Related Activities</td>
<td>4-137</td>
</tr>
<tr>
<td>Table 4-42</td>
<td>YMIE Station Maximum Observed Ambient Air Quality Concentrations, October 1991 through September 1995, Compared with State of Nevada or National Ambient Air Quality Standards in Place at the Time of Monitoring</td>
<td>4-139</td>
</tr>
<tr>
<td>Table 4-43</td>
<td>Summary of PM$_{10}$ Concentrations, 1989 through 2005, for Four Monitoring Stations in Area 25</td>
<td>4-140</td>
</tr>
<tr>
<td>Table 4-44</td>
<td>Average Natural Background Radiation Exposure, Excluding That from Radon, for Select U.S. Cities</td>
<td>4-141</td>
</tr>
<tr>
<td>Table 4-45</td>
<td>The Concentration Levels for Five Radionuclides Corresponding to the NESHAPs Effective Dose Equivalent of 10 Millirem per Year in One Year</td>
<td>4-141</td>
</tr>
<tr>
<td>Table 4-46</td>
<td>Carbon-Dioxide-Equivalent Emissions of Greenhouse Gases by Activities Related to the Nevada National Security Site in 2008</td>
<td>4-146</td>
</tr>
<tr>
<td>Table 4-47</td>
<td>Nevada National Security Site Cultural Resources Sites by Site Type and Hydrographic Basin</td>
<td>4-154</td>
</tr>
<tr>
<td>Table 4-48</td>
<td>Current Nevada National Security Site Waste Management Activities</td>
<td>4-160</td>
</tr>
<tr>
<td>Table 4-49</td>
<td>Area 3 Radioactive Waste Management Site Disposal Units</td>
<td>4-164</td>
</tr>
<tr>
<td>Table 4-50</td>
<td>Area 5 Radioactive Waste Management Complex Disposal Units</td>
<td>4-165</td>
</tr>
<tr>
<td>Table 4-51</td>
<td>Waste Reduction Activities, Calendar Years 2006–2008</td>
<td>4-175</td>
</tr>
<tr>
<td>Table 4-52</td>
<td>Sources of Radiation Exposure of Individuals Unrelated to Nevada National Security Site Operations</td>
<td>4-176</td>
</tr>
<tr>
<td>Table 4-53</td>
<td>Radiation Doses to the Public from Nevada National Security Site Operations in 2008 (Total Effective Dose Equivalent)</td>
<td>4-177</td>
</tr>
<tr>
<td>Table 4-54</td>
<td>Radiation Doses to Workers from Nevada National Security Site Normal Operations in 2008 (Total Effective Dose Equivalent)</td>
<td>4-179</td>
</tr>
<tr>
<td>Table 4-55</td>
<td>Remote Sensing Laboratory Building Floor Space by Function</td>
<td>4-189</td>
</tr>
<tr>
<td>Table 4-56</td>
<td>Water Quality Results for Remote Sensing Laboratory Industrial Wastewater Discharges in 2010</td>
<td>4-194</td>
</tr>
<tr>
<td>Table 4-57</td>
<td>Estimated 2008 Air Emissions of Criteria Pollutants and Hazardous Air Pollutants Due to Remote Sensing Laboratory Activities</td>
<td>4-199</td>
</tr>
<tr>
<td>Table 4-58</td>
<td>Ambient Air Quality Monitoring Data in the Vicinity of the Remote Sensing Laboratory, 2006–2008</td>
<td>4-200</td>
</tr>
<tr>
<td>Table 4-59</td>
<td>Carbon-Dioxide-Equivalent Emissions of Greenhouse Gases from Remote Sensing Laboratory Activities in 2008</td>
<td>4-201</td>
</tr>
<tr>
<td>Table 4-60</td>
<td>North Las Vegas Facility Building Floor Space by Function</td>
<td>4-207</td>
</tr>
<tr>
<td>Table 4-61</td>
<td>Water Quality Results for North Las Vegas Facility Sewer Discharges in 2010</td>
<td>4-212</td>
</tr>
<tr>
<td>Table 4-62</td>
<td>Water Quality Results for North Las Vegas Facility Dewatering Operations Measured at Water Storage Tank in 2010</td>
<td>4-212</td>
</tr>
</tbody>
</table>
Table 5–1
Estimated Area of Land Disturbance at the Nevada National Security Site

Table 5–2	Changes in Land Use Zones Under the Expanded Operations Alternative	5-13
Table 5–3	Changes in Land Use Zones Under the Reduced Operations Alternative	5-17
Table 5–4	Proposed New Infrastructure for Program Support Under the Expanded Operations Alternative	5-23
Table 5–5	Estimated Annual Liquid Fuel Usage Under the No Action Alternative	5-30
Table 5–6	Estimated Annual Liquid Fuel Usage Under the Expanded Operations Alternative	5-34
Table 5–7	Estimated Annual Liquid Fuel Usage Under the Reduced Operations Alternative	5-36
Table 5–8	Estimated Numbers of Truck Shipments of Low-Level and Mixed Low-Level Radioactive Waste Under Each Alternative Over a 10-Year Period	5-45
Table 5–9	Estimated Numbers of Shipments of Transuranic Waste, Radioisotopic Thermoelectric Generators, Sealed Sources, and Special Nuclear Material Over a 10-Year Period	5-46
Table 5–10	Risks of Transporting Radioactive Waste Under Each Alternative – Constrained Case	5-47
Table 5–11	Risks of Transporting Radioactive Materials Under Each Alternative – Constrained Case	5-50
Table 5–12	Estimated Dose to the Population and to Maximally Exposed Individuals Under Most Severe Accident Conditions	5-51
Table 5–13	Range of Risks for Unconstrained Truck Transport from U.S. Regions to the Nevada National Security Site	5-56
Table 5–14	Range of Risks for Unconstrained Rail-Truck Transport from U.S. Regions to the Nevada National Security Site	5-57
Table 5–15	Transport to Regional Transfer Stations – Impacts	5-57
Table 5–16	Incremental Change in Onsite Daily Vehicle Trips on Mercury Highway at the Nevada National Security Site	5-58
Table 5–17	Projected Traffic Volumes on Mercury Highway	5-59
Table 5–18	Peak Hour Conditions	5-63

Table 4–65
Estimated Annual Air Releases of Radionuclides at the North Las Vegas Facility

Table 4–66	Average Annual Average and Maximum Annual Average Radiation Levels Among the North Las Vegas Facility Boundary Monitors and Control Monitors Operating in a Given Year	4-219
Table 4–67	Estimated 2008 Air Emissions of Criteria Pollutants and Hazardous Air Pollutants Due to North Las Vegas Facility Activities	4-217
Table 4–68	Annual Hazardous and Toxic Waste Disposal or Recycle Quantities for the North Las Vegas Facility (tons)	4-225
Table 4–69	Tonopah Test Range Propane Storage Tank Capacities	4-229
Table 4–70	Soil Families Identified in the Tonopah Test Range	4-232
Table 4–71	Water Rights Status for Hydrographic Basins at the Tonopah Test Range	4-237
Table 4–72	Estimated 2008 Air Emissions of Criteria Pollutants and Hazardous Air Pollutants Due to Tonopah Test Range Activities	4-245
Table 4–73	Carbon-Dioxide-Equivalent Emissions of Greenhouse Gases Due to Tonopah Test Range Activities in 2008	4-246
Table 4–74	Tonopah Test Range Cultural Resources Sites by Site Type and Hydrographic Basin	4-249
Table 4–75	Tonopah Test Range Operations Hazardous Waste Disposed or Recycled, Calendar Years 2006–2008 (tons)	4-250
Table 4–76	Tonopah Test Range Operations Solid Wastes Disposed, Calendar Years 2006–2008 (tons)	4-251
Table 4–77	Environmental Restoration Wastes Disposed or Recycled, Calendar Years 2006–2008 (tons)	4-252
Table 4–78	Radiation Doses to the Public from Tonopah Test Range Operations in 2008 (Total Effective Dose Equivalent)	4-253

Chapter 5

Table 5-1
Potential Area of Land Disturbance at the Nevada National Security Site for Each Mission Area, Program, and Activity by Alternative | 5-3

Table 5-2
Changes in Land Use Zones Under the Expanded Operations Alternative | 5-13

Table 5-3
Changes in Land Use Zones Under the Reduced Operations Alternative | 5-17

Table 5-4
Proposed New Infrastructure for Program Support Under the Expanded Operations Alternative | 5-23

Table 5-5
Wastewater Treatment Capacity at the Nevada National Security Site Under the Expanded Operations Alternative | 5-26

Table 5-6
Estimated Annual Liquid Fuel Usage Under the No Action Alternative | 5-30

Table 5-7
Estimated Annual Liquid Fuel Usage Under the Expanded Operations Alternative | 5-34

Table 5-8
Estimated Annual Liquid Fuel Usage Under the Reduced Operations Alternative | 5-36

Table 5-9
Estimated Numbers of Truck Shipments of Low-Level and Mixed Low-Level Radioactive Waste Under Each Alternative Over a 10-Year Period | 5-45

Table 5-10
Estimated Numbers of Shipments of Transuranic Waste, Radioisotopic Thermoelectric Generators, Sealed Sources, and Special Nuclear Material Over a 10-Year Period | 5-46

Table 5-11
Risks of Transporting Radioactive Waste Under Each Alternative – Constrained Case | 5-47

Table 5-12
Risks of Transporting Radioactive Materials Under Each Alternative – Constrained Case | 5-50

Table 5-13
Estimated Dose to the Population and to Maximally Exposed Individuals Under Most Severe Accident Conditions | 5-51

Table 5-14
Range of Risks for Unconstrained Truck Transport from U.S. Regions to the Nevada National Security Site | 5-56

Table 5-15
Range of Risks for Unconstrained Rail-Truck Transport from U.S. Regions to the Nevada National Security Site | 5-57

Table 5-16
Transport to Regional Transfer Stations – Impacts | 5-57

Table 5-17
Incremental Change in Onsite Daily Vehicle Trips on Mercury Highway at the Nevada National Security Site | 5-58

Table 5-18
Projected Traffic Volumes on Mercury Highway | 5-59

Table 5-19
Traffic Volumes and Level of Service Impacts on Key Roads in Nye County During Peak Hour Conditions | 5-63
Table 5–20 Traffic Volumes and Level of Service Impacts on Key Roads in Clark County During Peak Hour Conditions ..5-65
Table 5–21 Onsite Employment...5-68
Table 5–22 Construction Employment..5-68
Table 5–23 Impacts on Groundwater Supply Under the No Action Alternative ...5-98
Table 5–24 Potable Water Production Goals ...5-102
Table 5–25 Impacts on Groundwater Supply Under the Expanded Operations Alternative5-103
Table 5–26 Impacts on Groundwater Supply Under the Reduced Operations Alternative5-107
Table 5–27 Habitat Disturbance from Proposed Projects and Activities at the Nevada National Security Site ..5-110
Table 5–28 Parameters and Threshold Values for Desert Tortoise Take on the Nevada National Security Site ...5-113
Table 5–29 Number of Desert Tortoises Injured or Killed on Nevada National Security Site Roadways, 1992 through 2011 ...5-114
Table 5–30 Potential Impacts on Desert Tortoises Under the No Action Alternative5-122
Table 5–31 Potential Impacts on Desert Tortoises Under the Expanded Operations Alternative5-132
Table 5–32 Potential Impacts on Desert Tortoises Under the Reduced Operations Alternative5-139
Table 5–33 De minimis Thresholds in Nonattainment Areas ...5-143
Table 5–34 No Action Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Nevada National Security Site in 2015 ...5-146
Table 5–35 No Action Alternative Annual Average Emissions of Criteria Pollutants and Hazardous Air Pollutants from the Transport of Low-Level and Mixed Low-Level Radioactive Waste to the Nevada National Security Site ..5-147
Table 5–36 No Action Alternative Construction Emissions of Criteria Pollutants and Hazardous Air Pollutants ...5-148
Table 5–37 No Action Alternative Greenhouse Gas Emissions by Nevada National Security Site Activity in 2015 ..5-150
Table 5–38 Expanded Operations Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Nevada National Security Site in 2015 ...5-152
Table 5–39 Expanded Operations Alternative Construction Emissions of Criteria Pollutants and Hazardous Air Pollutants ...5-153
Table 5–40 Expanded Operations Alternative Annual Average Emissions of Criteria Pollutants and Hazardous Air Pollutants from the Transport of Low-Level and Mixed Low-Level Radioactive Waste to the Nevada National Security Site ..5-154
Table 5–41 Expanded Operations Alternative Greenhouse Gas Emissions at the Nevada National Security Site in 2015 ..5-157
Table 5–42 Reduced Operations Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Nevada National Security Site in 2015 ...5-159
Table 5–43 Reduced Operations Alternative Annual Average Emissions of Criteria Pollutants and Hazardous Air Pollutants from the Transport of Low-Level and Mixed Low-Level Radioactive Waste to the Nevada National Security Site ..5-160
Table 5–44 Reduced Operations Alternative Construction Emissions of Criteria Pollutants and Hazardous Air Pollutants ...5-161
Table 5–45 Reduced Operations Alternative Greenhouse Gas Emissions at the Nevada National Security Site in 2015 ..5-162
Table 5–46 Approximate Nevada National Security Site Cultural Resources Site Densities by Hydrographic Basin ..5-170
Table 5–47 No Action Alternative – Estimated Number of Potentially Affected Cultural Resources Sites on the Nevada National Security Site and Nevada Test and Training Range (except Tonopah Test Range) ...5-173
Table 5–48 Expanded Operations Alternative – Estimated Numbers of Potentially Affected Cultural Resources Sites on the Nevada National Security Site and Nevada Test and Training Range (except Tonopah Test Range) ...5-176
Table 5–49 Reduced Operations Alternative – Estimated Number of Potentially Affected Cultural Resources Sites on the Nevada National Security Site and Nevada Test and Training Range5-179
Chapter 6
Table 6–1 U.S. Air Force National Environmental Policy Act Documents Completed for Activities Within the Cumulative Impacts Region of Influence Since 1996 ... 6-6
Table 6–2 Summary of Renewable Energy Projects Within the Cumulative Impacts Region of Influence 6-12
Table 6–3 Area of Potential and Existing Ground Disturbance Used in the Cumulative Impacts Analysis 6-29
Table 6–4 Transportation Related Radiological Collective Doses and Risks from Other U.S. Department of Energy/National Nuclear Security Administration Actions .. 6-33
Table 6–5 Cumulative Transportation Impacts Under the Expanded Operations Alternative 6-35
Table 6–6 Annual Cumulative Water Demand at the Nevada National Security Site and the Tonopah Test Range Under the Expanded Operations Alternative ... 6-35
Table 6–7 Cumulative Incidental Take and Desert Tortoise Habitat Disturbance from 1992 to 2008 at the Nevada National Security Site .. 6-45
Table 6–8 Criteria and Hazardous Air Pollutants from All Sources; Total Emissions for U.S. Department of Energy/National Nuclear Security Administration Operations in Nevada Under the Expanded Operations Alternative .. 6-48
Table 6–9 Current and Projected Annual Emissions of Criteria and Hazardous Air Pollutants in Nye County, Nevada, from Activities Associated With the Nevada National Security Site and the Tonopah Test Range Under the Expanded Operations Alternative Compared with Current Reported Criteria Air Pollutant Emissions in Nye County .. 6-49
Table 6–10 Cumulative Estimated Emissions of Criteria Air Pollutants from U.S. Department of Energy/National Nuclear Security Administration Facilities and Major Reasonably Foreseeable Future Actions in Nye County, Nevada .. 6-50
Table 6–11 Estimated Annual Mobile Source Emissions of Criteria Pollutants that have been in Nonattainment from U.S. Department of Energy/National Nuclear Security Administration Activities in Clark County, Nevada, Under the Expanded Operations Alternative .. 6-51
Table 6–12 Comparison of Estimated U.S. Department of Energy/National Nuclear Security Administration-Related Mobile Source Emissions of Nonattainment Pollutants in Clark County with Emissions Projected for All Clark County Mobile Sources .. 6-52
Table 6–13 Historical and Projected Waste Disposal at the Nevada National Security Site 6-56
Table 6–14 Projected Greater-Than-Class C Waste Generation Rates through 2083 6-57
Table 6–15 Summary of Cumulative Impacts .. 6-61

Chapter 9
Table 9–1 Potentially Applicable Laws, Regulations, Orders, and Other Requirements .. 9-1
Table 9–2 Environmental Permits Required for the Nevada National Security Site and the Nevada National Security Site Facility Operations .. 9-29

Chapter 10
Table 10–1 Cooperating Agency Meetings .. 10-2
Table 10–2 Consolidated Group of Tribes and Organizations/American Indian Writers Subgroup Meetings 10-3
ACRONYMS, ABBREVIATIONS, AND CONVERSION CHARTS
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEC</td>
<td>Area of Critical Environmental Concern</td>
</tr>
<tr>
<td>AEA</td>
<td>Atomic Energy Act</td>
</tr>
<tr>
<td>AFVs</td>
<td>Alternate Fuel Vehicles</td>
</tr>
<tr>
<td>AIWS</td>
<td>American Indian Writers Subgroup</td>
</tr>
<tr>
<td>ALARA</td>
<td>as low as is reasonably achievable</td>
</tr>
<tr>
<td>ALOHA</td>
<td>Areal Locations of Hazardous Atmospheres</td>
</tr>
<tr>
<td>AMS</td>
<td>Aerial Measuring System</td>
</tr>
<tr>
<td>ARG</td>
<td>Accident Response Group</td>
</tr>
<tr>
<td>ASSESS</td>
<td>Analytical System and Software for Evaluating Safeguards and Security</td>
</tr>
<tr>
<td>ATLAS</td>
<td>Adversary Time-Line Analysis System</td>
</tr>
<tr>
<td>BEEF</td>
<td>Big Explosives Experimental Facility</td>
</tr>
<tr>
<td>BLM</td>
<td>Bureau of Land Management</td>
</tr>
<tr>
<td>BMP</td>
<td>best management practice</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAPP</td>
<td>Chemical Accident Prevention Program</td>
</tr>
<tr>
<td>CARE</td>
<td>Communities Against a Radioactive Environment</td>
</tr>
<tr>
<td>CAS</td>
<td>corrective action sites</td>
</tr>
<tr>
<td>CAU</td>
<td>corrective action unit</td>
</tr>
<tr>
<td>CEMP</td>
<td>Community Environmental Monitoring Program</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CERT</td>
<td>Community Emergency Response Team</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CGTO</td>
<td>Consolidated Group of Tribes and Organizations</td>
</tr>
<tr>
<td>CSP</td>
<td>Concentrated Solar Power</td>
</tr>
<tr>
<td>CY</td>
<td>calendar year</td>
</tr>
<tr>
<td>D&D</td>
<td>decontamination and decommissioning</td>
</tr>
<tr>
<td>DAF</td>
<td>Device Assembly Facility</td>
</tr>
<tr>
<td>DAQEM</td>
<td>Department of Air Quality and Environmental Management</td>
</tr>
<tr>
<td>DARE</td>
<td>Drug Abuse Resistance Education</td>
</tr>
<tr>
<td>DART</td>
<td>days away, restricted, or transferred</td>
</tr>
<tr>
<td>dBA</td>
<td>decibels A-weighted</td>
</tr>
<tr>
<td>DHS</td>
<td>U.S. Department of Homeland Security</td>
</tr>
<tr>
<td>DoD</td>
<td>U.S. Department of Defense</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DOE/NNSA</td>
<td>U.S. Department of Energy/National Nuclear Security Administration</td>
</tr>
<tr>
<td>DOT</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>DTRA</td>
<td>Defense Threat Reduction Agency</td>
</tr>
<tr>
<td>DU</td>
<td>depleted uranium</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EIS</td>
<td>environmental impact statement</td>
</tr>
<tr>
<td>EMAC</td>
<td>Ecological Monitoring and Compliance</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>E-MAD</td>
<td>Engine Maintenance, Assembly, and Disassembly</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>EPCRA</td>
<td>Emergency Planning and Community Right-to-Know Act</td>
</tr>
<tr>
<td>ERPG</td>
<td>Emergency Response Planning Guideline</td>
</tr>
<tr>
<td>ETDS</td>
<td>E-Tunnel Waste Water Disposal System</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FACE</td>
<td>Free-Air Carbon Dioxide Enrichment</td>
</tr>
<tr>
<td>FBI</td>
<td>Federal Bureau of Investigation</td>
</tr>
<tr>
<td>FFACO</td>
<td>Federal Facility Agreement and Consent Order</td>
</tr>
<tr>
<td>FLPMA</td>
<td>Federal Land Policy and Management Act</td>
</tr>
<tr>
<td>FONSI</td>
<td>Finding of No Significant Impact</td>
</tr>
<tr>
<td>FR</td>
<td>Federal Register</td>
</tr>
<tr>
<td>FRMAC</td>
<td>Federal Radiological Monitoring and Assessment Center</td>
</tr>
<tr>
<td>FTE</td>
<td>full-time equivalent</td>
</tr>
<tr>
<td>FY</td>
<td>fiscal year</td>
</tr>
<tr>
<td>GBUAPCD</td>
<td>Great Basin Unified Air Pollution Control District</td>
</tr>
<tr>
<td>GCD</td>
<td>greater confinement disposal</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>gpd</td>
<td>gallons per day</td>
</tr>
<tr>
<td>GTCC</td>
<td>greater-than-Class C [waste]</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>HABS</td>
<td>Historic American Buildings Survey</td>
</tr>
<tr>
<td>HAER</td>
<td>Historic American Engineering Record</td>
</tr>
<tr>
<td>HAP</td>
<td>hazardous air pollutant</td>
</tr>
<tr>
<td>HAZMAT</td>
<td>hazardous materials</td>
</tr>
<tr>
<td>HLW</td>
<td>high-level radioactive waste</td>
</tr>
<tr>
<td>INL</td>
<td>Idaho National Laboratory</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>JASPER</td>
<td>Joint Actinide Shock Physics Experimental Research</td>
</tr>
<tr>
<td>JCATS</td>
<td>Joint Conflict and Tactical Simulations</td>
</tr>
<tr>
<td>KLF</td>
<td>Kistler Launch Facility</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>LCF</td>
<td>latent cancer fatality</td>
</tr>
<tr>
<td>LLW</td>
<td>low-level radioactive waste</td>
</tr>
<tr>
<td>LOS</td>
<td>level of service</td>
</tr>
<tr>
<td>MCL</td>
<td>maximum contaminant level</td>
</tr>
<tr>
<td>MEI</td>
<td>maximally exposed individual</td>
</tr>
<tr>
<td>MGCF</td>
<td>Mojave Global Change Facility</td>
</tr>
<tr>
<td>MGD</td>
<td>million gallons per day</td>
</tr>
<tr>
<td>MLLW</td>
<td>mixed low-level radioactive waste</td>
</tr>
<tr>
<td>MSHCP</td>
<td>Multi-Species Habitat Conservation Plan</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>NAC</td>
<td>Nevada Administrative Code</td>
</tr>
<tr>
<td>NAGPRA</td>
<td>Native American Graves Protection and Repatriation Act</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NDEP</td>
<td>Nevada Division of Environmental Protection</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act of 1969</td>
</tr>
<tr>
<td>NESHAPs</td>
<td>National Emission Standards for Hazardous Air Pollutants</td>
</tr>
<tr>
<td>NEST</td>
<td>nuclear emergency support team</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NLVF</td>
<td>North Las Vegas Facility</td>
</tr>
<tr>
<td>NSO</td>
<td>Nevada Site Office</td>
</tr>
<tr>
<td>NNSS</td>
<td>Nevada National Security Site</td>
</tr>
<tr>
<td>NOI</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant discharge Elimination System</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NPTEC</td>
<td>Nonproliferation Test and Evaluation Complex</td>
</tr>
<tr>
<td>NRC</td>
<td>U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NRS</td>
<td>Nevada Revised Statute</td>
</tr>
<tr>
<td>NSO</td>
<td>Nevada Site Office</td>
</tr>
<tr>
<td>NSTec</td>
<td>National Security Technologies, LLC</td>
</tr>
<tr>
<td>NTS</td>
<td>Nevada Test Site</td>
</tr>
<tr>
<td>NUREG</td>
<td>U.S. Nuclear Regulatory Commission Regulation</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Act</td>
</tr>
<tr>
<td>OST</td>
<td>Office of Secure Transportation</td>
</tr>
<tr>
<td>P.L.</td>
<td>Public Law</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PEIS</td>
<td>Programmatic Environmental Impact Statement</td>
</tr>
<tr>
<td>pH</td>
<td>a measure of acidity or basicity</td>
</tr>
<tr>
<td>PMₙ</td>
<td>particulate matter with an aerodynamic diameter less than or equal to n micrometers</td>
</tr>
<tr>
<td>PSD</td>
<td>Prevention of Significant Deterioration</td>
</tr>
<tr>
<td>PWS</td>
<td>public water system</td>
</tr>
<tr>
<td>QAPP</td>
<td>Quality Assurance Program Plan</td>
</tr>
<tr>
<td>rad</td>
<td>radiation absorbed dose</td>
</tr>
<tr>
<td>RADTRAN</td>
<td>Radioactive Material Transportation Risk Assessment Code 6</td>
</tr>
<tr>
<td>RAP</td>
<td>Radiological Assistance Program</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>rem</td>
<td>roentgen equivalent man</td>
</tr>
<tr>
<td>RIMS II</td>
<td>Regional Input-Output Modeling System II</td>
</tr>
<tr>
<td>RISKIND</td>
<td>Risks and Consequences of Radioactive Material Transport computer code</td>
</tr>
<tr>
<td>RNCTEC</td>
<td>Radiological/Nuclear Countermeasures Test and Evaluation Complex</td>
</tr>
<tr>
<td>ROD</td>
<td>Record of Decision</td>
</tr>
<tr>
<td>ROI</td>
<td>region of influence</td>
</tr>
<tr>
<td>RREM</td>
<td>Routine Radiological Environmental Monitoring</td>
</tr>
<tr>
<td>RSL</td>
<td>Remote Sensing Laboratory</td>
</tr>
<tr>
<td>RTG</td>
<td>radioisotope thermoelectric generator</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RWAP</td>
<td>Radioactive Waste Acceptance Program</td>
</tr>
<tr>
<td>RWMC</td>
<td>Radioactive Waste Management Complex</td>
</tr>
<tr>
<td>RWMS</td>
<td>Radioactive Waste Management Site</td>
</tr>
<tr>
<td>SA</td>
<td>Supplement Analysis</td>
</tr>
<tr>
<td>SARA</td>
<td>Superfund Amendments and Reauthorization Act</td>
</tr>
<tr>
<td>SEZ</td>
<td>solar energy zones</td>
</tr>
<tr>
<td>SNM</td>
<td>special nuclear materials</td>
</tr>
<tr>
<td>SNWA</td>
<td>Southern Nevada Water Authority</td>
</tr>
<tr>
<td>SPA</td>
<td>Specific Planning Area</td>
</tr>
<tr>
<td>SSO</td>
<td>Sandia Site Office</td>
</tr>
<tr>
<td>SWAT</td>
<td>special weapons and tactics</td>
</tr>
<tr>
<td>SWEIS</td>
<td>site-wide environmental impact statement</td>
</tr>
<tr>
<td>TCE</td>
<td>tetrachloroethene</td>
</tr>
<tr>
<td>TNT</td>
<td>2,4,6-trinitrotoluene</td>
</tr>
<tr>
<td>TPH</td>
<td>total petroleum hydrocarbons</td>
</tr>
<tr>
<td>TRAGIS</td>
<td>Transportation Routing Analysis Geographic Information System</td>
</tr>
<tr>
<td>TRC</td>
<td>total recordable cases</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic waste</td>
</tr>
<tr>
<td>TSCA</td>
<td>Toxic Substances Control Act</td>
</tr>
<tr>
<td>TSD</td>
<td>treatment, storage, and disposal</td>
</tr>
<tr>
<td>TTR</td>
<td>Tonopah Test Range</td>
</tr>
<tr>
<td>TRUPACT</td>
<td>Transuranic Package Transporter</td>
</tr>
<tr>
<td>TYSP</td>
<td>Ten-Year Site Plan</td>
</tr>
<tr>
<td>UGTA</td>
<td>Underground Test Area</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>USFS</td>
<td>U.S. Forest Service</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>UXO</td>
<td>unexploded ordnance</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>WAC</td>
<td>waste acceptance criteria</td>
</tr>
<tr>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
<tr>
<td>ZPPR</td>
<td>zero power plutonium reactor</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Centigrade</td>
</tr>
<tr>
<td>°F</td>
<td>degrees Fahrenheit</td>
</tr>
<tr>
<td>μS</td>
<td>microsiemens</td>
</tr>
</tbody>
</table>
CONVERSIONS

METRIC TO ENGLISH

<table>
<thead>
<tr>
<th>Metric</th>
<th>Multiply</th>
<th>by</th>
<th>To get</th>
<th>Multiply</th>
<th>by</th>
<th>To get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square meters</td>
<td>10.764</td>
<td></td>
<td>Square feet</td>
<td>0.092903</td>
<td></td>
<td>Square meters</td>
</tr>
<tr>
<td>Square kilometers</td>
<td>247.1</td>
<td></td>
<td>Acres</td>
<td>0.0040469</td>
<td></td>
<td>Square kilometers</td>
</tr>
<tr>
<td>Square kilometers</td>
<td>0.3861</td>
<td></td>
<td>Square miles</td>
<td>2.59</td>
<td></td>
<td>Square kilometers</td>
</tr>
<tr>
<td>Hectares</td>
<td>2.471</td>
<td></td>
<td>Acres</td>
<td>0.40469</td>
<td></td>
<td>Hectares</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilograms/square meter</td>
<td>0.1667</td>
<td></td>
<td>Tons/acre</td>
<td>0.5999</td>
<td></td>
<td>Kilograms/square meter</td>
</tr>
<tr>
<td>Milligrams/liter</td>
<td>1.0</td>
<td></td>
<td>Parts/million</td>
<td>1.0</td>
<td></td>
<td>Milligrams/liter</td>
</tr>
<tr>
<td>Micrograms/liter</td>
<td>1.0</td>
<td></td>
<td>Parts/billion</td>
<td>1.0</td>
<td></td>
<td>Micrograms/liter</td>
</tr>
<tr>
<td>Micrograms/cubic meter</td>
<td>1.0</td>
<td></td>
<td>Parts/trillion</td>
<td>1.0</td>
<td></td>
<td>Micrograms/cubic meter</td>
</tr>
<tr>
<td>Density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grams/cubic meter</td>
<td>62.428</td>
<td></td>
<td>Pounds/cubic feet</td>
<td>0.016018</td>
<td></td>
<td>Grams/cubic meter</td>
</tr>
<tr>
<td>Grams/cubic meter</td>
<td>0.0000624</td>
<td></td>
<td>Pounds/cubic feet</td>
<td>16.025.6</td>
<td></td>
<td>Grams/cubic meter</td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centimeters</td>
<td>0.3937</td>
<td></td>
<td>Inches</td>
<td>2.54</td>
<td></td>
<td>Centimeters</td>
</tr>
<tr>
<td>Meters</td>
<td>3.2808</td>
<td></td>
<td>Feet</td>
<td>0.3048</td>
<td></td>
<td>Meters</td>
</tr>
<tr>
<td>Kilometers</td>
<td>0.62137</td>
<td></td>
<td>Miles</td>
<td>1.6093</td>
<td></td>
<td>Kilometers</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degrees C + 17.78</td>
<td>1.8</td>
<td></td>
<td>Degrees F</td>
<td>Degrees F - 32</td>
<td>0.55556</td>
<td>Degrees C</td>
</tr>
<tr>
<td>Relative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degrees C</td>
<td>1.8</td>
<td></td>
<td>Degrees F</td>
<td>0.55556</td>
<td></td>
<td>Degrees C</td>
</tr>
<tr>
<td>Velocity/Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubic meters/second</td>
<td>2118.9</td>
<td></td>
<td>Cubic feet/minute</td>
<td>0.00047195</td>
<td></td>
<td>Cubic meters/second</td>
</tr>
<tr>
<td>Grams/second</td>
<td>7.9366</td>
<td></td>
<td>Pounds/hour</td>
<td>0.126</td>
<td></td>
<td>Grams/second</td>
</tr>
<tr>
<td>Meters/second</td>
<td>2.237</td>
<td></td>
<td>Miles/hour</td>
<td>0.44704</td>
<td></td>
<td>Meters/second</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liters</td>
<td>0.26418</td>
<td></td>
<td>Gallons</td>
<td>3.78533</td>
<td></td>
<td>Liters</td>
</tr>
<tr>
<td>Liters</td>
<td>0.035316</td>
<td></td>
<td>Cubic feet</td>
<td>28.316</td>
<td></td>
<td>Liters</td>
</tr>
<tr>
<td>Liters</td>
<td>0.001308</td>
<td></td>
<td>Cubic yards</td>
<td>764.54</td>
<td></td>
<td>Liters</td>
</tr>
<tr>
<td>Cubic meters</td>
<td>264.17</td>
<td></td>
<td>Gallons</td>
<td>0.0037854</td>
<td></td>
<td>Cubic meters</td>
</tr>
<tr>
<td>Cubic meters</td>
<td>35.315</td>
<td></td>
<td>Cubic feet</td>
<td>0.028317</td>
<td></td>
<td>Cubic meters</td>
</tr>
<tr>
<td>Cubic meters</td>
<td>1.3079</td>
<td></td>
<td>Cubic yards</td>
<td>0.76456</td>
<td></td>
<td>Cubic meters</td>
</tr>
<tr>
<td>Cubic meters</td>
<td>0.0008107</td>
<td></td>
<td>Acre-feet</td>
<td>123.49</td>
<td></td>
<td>Cubic meters</td>
</tr>
<tr>
<td>Weight/Mass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grams</td>
<td>0.035274</td>
<td></td>
<td>Ounces</td>
<td>28.35</td>
<td></td>
<td>Grams</td>
</tr>
<tr>
<td>Kilograms</td>
<td>2.2046</td>
<td></td>
<td>Pounds</td>
<td>0.45359</td>
<td></td>
<td>Kilograms</td>
</tr>
<tr>
<td>Kilograms</td>
<td>0.0011023</td>
<td></td>
<td>Tons (short)</td>
<td>907.18</td>
<td></td>
<td>Kilograms</td>
</tr>
<tr>
<td>Metric tons</td>
<td>1.1023</td>
<td></td>
<td>Tons (short)</td>
<td>0.90718</td>
<td></td>
<td>Metric tons</td>
</tr>
</tbody>
</table>

ENGLISH TO METRIC

<table>
<thead>
<tr>
<th>Metric</th>
<th>Multiply</th>
<th>by</th>
<th>To get</th>
<th>Multiply</th>
<th>by</th>
<th>To get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acre-feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acres</td>
<td>325,850.7</td>
<td></td>
<td>Gallons</td>
<td>0.0000003046</td>
<td></td>
<td>Acre-feet</td>
</tr>
<tr>
<td>Acres</td>
<td>43,560</td>
<td></td>
<td>Square feet</td>
<td>0.00022957</td>
<td></td>
<td>Acres</td>
</tr>
<tr>
<td>Square miles</td>
<td>640</td>
<td></td>
<td>Acres</td>
<td>0.0015625</td>
<td></td>
<td>Square miles</td>
</tr>
</tbody>
</table>

a. This conversion is only valid for concentrations of contaminants (or other materials) in water.

METRIC PREFIXES

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Multiplication factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>exa-</td>
<td>E</td>
<td>$1,000,000,000,000,000,000 = 10^{18}$</td>
</tr>
<tr>
<td>peta-</td>
<td>P</td>
<td>$1,000,000,000,000,000 = 10^{15}$</td>
</tr>
<tr>
<td>tera-</td>
<td>T</td>
<td>$1,000,000,000,000 = 10^{12}$</td>
</tr>
<tr>
<td>giga-</td>
<td>G</td>
<td>$1,000,000,000 = 10^{9}$</td>
</tr>
<tr>
<td>mega-</td>
<td>M</td>
<td>$1,000,000 = 10^{6}$</td>
</tr>
<tr>
<td>kilo-</td>
<td>k</td>
<td>$1,000 = 10^{3}$</td>
</tr>
<tr>
<td>deca-</td>
<td>D</td>
<td>$10 = 10^{1}$</td>
</tr>
<tr>
<td>deci-</td>
<td>d</td>
<td>$0.1 = 10^{-1}$</td>
</tr>
<tr>
<td>centi-</td>
<td>c</td>
<td>$0.01 = 10^{-2}$</td>
</tr>
<tr>
<td>milli-</td>
<td>m</td>
<td>$0.001 = 10^{-3}$</td>
</tr>
<tr>
<td>micro-</td>
<td>µ</td>
<td>$0.000 001 = 10^{-6}$</td>
</tr>
<tr>
<td>nano-</td>
<td>n</td>
<td>$0.000 000 001 = 10^{-9}$</td>
</tr>
<tr>
<td>pico-</td>
<td>p</td>
<td>$0.000 000 000 001 = 10^{-12}$</td>
</tr>
</tbody>
</table>
CHAPTER 5
ENVIRONMENTAL CONSEQUENCES
5.0 ENVIRONMENTAL CONSEQUENCES

This chapter provides the scientific and analytical basis for the comparison of the alternatives identified in this Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada (NNSS SWEIS). This discussion addresses the potential direct and indirect effects of each of the alternatives. Within this chapter, the analysis is organized based on the following geographic sites covered within this site-wide environmental impact statement (SWEIS): the Nevada National Security Site (NNSS); the Remote Sensing Laboratory (RSL) at Nellis Air Force Base; the North Las Vegas Facility (NLVF); and the Tonopah Test Range (TTR). For each geographic site, potential environmental consequences are then addressed for the following environmental resource areas:

- Land Use
- Infrastructure and Energy
- Transportation
- Socioeconomics
- Geology and Soils
- Hydrology
- Biological Resources
- Air Quality and Climate
- Visual Resources
- Cultural Resources
- Waste Management
- Human Health
- Environmental Justice

Within each environmental resource area, this SWEIS analyzes the potential environmental consequences associated with the three alternatives (No Action, Reduced Operations, and Expanded Operations) identified in Chapter 3 of this SWEIS. Under each alternative, the potential environmental consequences are also described in relation to the three major missions (National Security/Defense, Environmental Management, and Nondefense) described in Chapter 3 of this SWEIS. For some environmental resource areas, additional technical information used to support the analysis is contained in separate appendices. A summary comparison of the mission-based program activities under each of the proposed alternatives is presented in Chapter 3, Table 3–1, of this NNSS SWEIS. Section 5.5 provides the combined impacts of all four U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) sites in Nevada for certain resource areas. In Section 3.4, DOE/NNSA identified its Preferred Alternative. DOE/NNSA’s Preferred Alternative is a “hybrid” alternative comprising various programs, capabilities, projects, and activities selected from among the three alternatives. Chapter 3, Table 3–3, of this NNSS SWEIS provides a comparison of mission-based program activities under the three alternatives and visually identifies which elements of the three alternatives were selected for the Preferred Alternative. Tables 3–4, 3–5, 3–6, and 3–7 also summarize the potential environmental consequences associated with implementing the Preferred Alternative.

Throughout this chapter, the perspectives of American Indian tribes and groups regarding the environmental consequences of DOE/NNSA activities in Nevada are summarized in shaded and marked text boxes identified with a Consolidated Group of Tribes and Organizations (CGTO) feather icon. The full text of American Indian perspectives is contained in Appendix C of this SWEIS, which was prepared by the American Indian Writers Subgroup of the CGTO.
The impact analysis for this SWEIS is based on the best data available, considering current environmental conditions, activities, and facilities. This SWEIS considers ongoing and proposed programs, capabilities, and projects (i.e., activities) at DOE/NNSA facilities in Nevada over the next 10 years. The nature of ongoing activities and their relationship to associated environmental impacts are well understood. In contrast, however, the nature of proposed activities is less well known. In the interest of disclosing potential environmental impacts that could occur at the NNSS and offsite locations over the next 10 years, this SWEIS includes ongoing activities, as well as a number of activities that are in planning and development.

To assess potential environmental impacts from all such activities, it was necessary for DOE/NNSA to estimate at a programmatic level certain aspects of the proposed activities, such as the potential area of land disturbance or the amount of groundwater that may be required. DOE/NNSA incorporated these programmatic-level estimates, along with more-detailed information on ongoing, better-understood activities, into the analysis of impacts. For instance, estimated areas of land disturbance for both proposed and well-defined activities were used to determine the potential impacts on resources such as soils (area of disturbance and erosion), cultural resources (number of sites potentially affected), and biology (vegetation/habitat loss, number of desert tortoises affected).

DOE/NNSA understands that the level of National Environmental Policy Act (NEPA) analysis conducted for some proposed activities may not be sufficient to permit implementation, and such activities could require additional NEPA analysis. These activities are identified in Chapter 3. DOE/NNSA will conduct NEPA reviews for these activities, as appropriate, in the future. DOE/NNSA’s NEPA review procedures are described in Chapter 9, Section 9.1.1.

In this SWEIS, DOE/NNSA analyzed potential environmental impacts resulting from proposed activities that may occur within a 10-year planning window, including long-term as well as short-term effects. The durations of impacts vary for individual resource areas, and are dependent upon whether the impacts are due to construction activities, which typically would last no more than a few years, from the operation of facilities, which would last for many years, or from actions for which impacts could last for hundreds of years or longer. For some resource areas, such as biological and cultural resources, potential impacts are primarily dependent on the amount of land that would be newly disturbed due to ongoing or proposed projects and activities; these impacts would occur “one time” and would not change over time. For other resource areas, such as air quality, potential impacts are dependent primarily on the duration of project construction in the short term, and the level of operations in the longer term; such longer-term impacts would occur on an annual basis, and would continue for as long as these projects and activities continue. Although some activities may eventually cease, such as disposal of low-level radioactive waste (LLW), potential impacts would not appear for many decades, but would then last for hundreds or thousands of years. The presentation of potential environmental impacts in this NNSS SWEIS reflects these durations for each resource area, as appropriate.

In 2008, DOE/NNSA estimated that approximately 80,000 acres (9 percent) of NNSS land had been disturbed. Table 5–1 shows the potential amount of additional land disturbance that would result under each of the three alternatives addressed in this SWEIS. Under each alternative in the table, areas of potential land disturbances are noted by mission area, program, and activity. The data used to develop the table were derived from the descriptions in Chapter 3; these data include disturbances associated with ongoing and proposed activities that were used as a basis for an adequate NEPA analysis, as well as disturbances associated with potential activities that are less well developed at this time. In addition, all of these potential land disturbances were assumed to affect previously undisturbed land; however, in some cases, lands that are currently disturbed would be used for proposed and potential activities. For these reasons, the land disturbance areas displayed in Table 5–1 provide one of the bases for a conservative analysis of potential impacts.
Table 5–1 Potential Area of Land Disturbance at the Nevada National Security Site for Each Mission Area, Program, and Activity by Alternative

<table>
<thead>
<tr>
<th>Project or Activity</th>
<th>Number of “Events” Over 10 Years b</th>
<th>Disturbance per “Event” c (acres)</th>
<th>Disturbance by Project or Activity d (acres)</th>
<th>Total Disturbance by Program e (acres)</th>
<th>Total Disturbance by Mission and Alternative f (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATIONAL SECURITY/DEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockpile Stewardship and Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Experiments in Boreholes</td>
<td>5</td>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explosive Experiments</td>
<td>100</td>
<td>5</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drillback Operations</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OST Training and Exercises g</td>
<td>60</td>
<td>1</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Stockpile Stewardship and Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>685</td>
</tr>
<tr>
<td>Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases of Chemicals and Biological Simulants</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Work for Others Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Work for Others Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>TOTAL NATIONAL SECURITY/DEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>ENVIRONMENTAL MANAGEMENT MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 5 RWMC</td>
<td>1</td>
<td>190</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Waste Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>Environmental Restoration Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGTA Project Characterization and Monitoring Wells h</td>
<td>50</td>
<td>10</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soils Projects i</td>
<td>1</td>
<td>420</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Environmental Restoration Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>920</td>
</tr>
<tr>
<td>TOTAL ENVIRONMENTAL MANAGEMENT MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,110</td>
</tr>
</tbody>
</table>

* a

b

c

d

 e

f

<table>
<thead>
<tr>
<th>Project or Activity</th>
<th>Number of “Events” Over 10 Years b</th>
<th>Disturbance per “Event” c (acres)</th>
<th>Disturbance by Project or Activity d (acres)</th>
<th>Total Disturbance by Program e (acres)</th>
<th>Total Disturbance by Mission and Alternative f (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONDEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Site Support and Infrastructure Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total General Site Support and Infrastructure Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation and Renewable Energy Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Conservation and Renewable Energy Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NONDEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NO ACTION: DOE/NNSA</td>
<td></td>
<td></td>
<td></td>
<td>1,810</td>
<td></td>
</tr>
<tr>
<td>Commercial/Demonstration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial 240-Megawatt Solar Power Generation Facility j</td>
<td>1</td>
<td>2,650</td>
<td>2,650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Commercial/Demonstration</td>
<td></td>
<td></td>
<td></td>
<td>2,650</td>
<td></td>
</tr>
<tr>
<td>TOTAL EXPANDED OPERATIONS ALTERNATIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATIONAL SECURITY/DEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockpile Stewardship and Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Experiments in Boreholes</td>
<td>5</td>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explosives Experiments</td>
<td>500</td>
<td>5</td>
<td>2,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depleted Uranium Experiment Sites</td>
<td>3</td>
<td>40</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drillback Operations</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OST Training and Exercises g</td>
<td>60</td>
<td>1</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OST Training Facility</td>
<td>1</td>
<td>10,000</td>
<td>10,000</td>
<td>12,805</td>
<td></td>
</tr>
<tr>
<td>Total Stockpile Stewardship and Management Program</td>
<td></td>
<td></td>
<td></td>
<td>12,805</td>
<td></td>
</tr>
<tr>
<td>Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms Control Treaty Verification Test Bed k</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Warfare Complex k</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases of Chemicals and Biological Simulants</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs</td>
<td></td>
<td></td>
<td></td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Work for Others Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IED Research and Defeat Facility k</td>
<td>1</td>
<td>75</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Aviation Facilities</td>
<td>1</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Interrogation Facilities k</td>
<td>1</td>
<td>125</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactive Tracer Experiments</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project or Activity</td>
<td>Number of “Events” Over 10 Years</td>
<td>Disturbance per “Event” (acres)</td>
<td>Disturbance by Project or Activity (acres)</td>
<td>Total Disturbance by Program (acres)</td>
<td>Total Disturbance by Mission and Alternative (acres)</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Miscellaneous Test Bed Facilities</td>
<td>1</td>
<td>200</td>
<td>200</td>
<td>435</td>
<td>13,455</td>
</tr>
<tr>
<td>TOTAL NATIONAL SECURITY/DEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVIRONMENTAL MANAGEMENT MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 5 RWMC</td>
<td>1</td>
<td>600</td>
<td>600</td>
<td>635</td>
<td></td>
</tr>
<tr>
<td>Sanitary Landfill Area 23</td>
<td>1</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanitary/D&D/Construction Waste Landfill Area 25</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Waste Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>635</td>
</tr>
<tr>
<td>Environmental Restoration Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGTA Project Characterization and Monitoring Wells</td>
<td>50</td>
<td>10</td>
<td>500</td>
<td>920</td>
<td></td>
</tr>
<tr>
<td>Soils Project</td>
<td>1</td>
<td>420</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Environmental Restoration Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>920</td>
</tr>
<tr>
<td>TOTAL ENVIRONMENTAL MANAGEMENT MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,555</td>
</tr>
<tr>
<td>NONDEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Site Support and Infrastructure Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138-kilovolt Transmission Line Rebuild</td>
<td>38.5 miles</td>
<td>12</td>
<td>467</td>
<td>467</td>
<td></td>
</tr>
<tr>
<td>Total General Site Support and Infrastructure Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>467</td>
</tr>
<tr>
<td>Conservation and Renewable Energy Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Megawatt Photovoltaic Solar Power Generation Facility, Area 6</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total Conservation and Renewable Energy Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>TOTAL NONDEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>517</td>
</tr>
<tr>
<td>TOTAL DOE/NNSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,527</td>
</tr>
<tr>
<td>Commercial/Demonstration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial 1,000-Megawatt Solar Power Generation Facility(ies)</td>
<td>1</td>
<td>10,300</td>
<td>10,300</td>
<td>10,300</td>
<td></td>
</tr>
<tr>
<td>Geothermal Demonstration Project</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td>10,350</td>
<td>25,877</td>
</tr>
<tr>
<td>Total Commercial/Demonstration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL EXPANDED OPERATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25,877</td>
</tr>
<tr>
<td>Project or Activity</td>
<td>Number of “Events” Over 10 Years</td>
<td>Disturbance per “Event” (acres)</td>
<td>Disturbance by Project or Activity (acres)</td>
<td>Total Disturbance by Program (acres)</td>
<td>Total Disturbance by Mission and Alternative (acres)</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>REDUCED OPERATIONS ALTERNATIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATIONAL SECURITY/DEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockpile Stewardship and Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Experiments in Boreholes</td>
<td>5</td>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explosives Experiments</td>
<td>50</td>
<td>5</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drillback Operations</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OST Training and Exercises</td>
<td>40</td>
<td>1</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Stockpile Stewardship and Management</td>
<td>40</td>
<td>1</td>
<td>40</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases of Chemicals and Biological Simulants</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Work for Others Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Work for Others Program</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL NATIONAL SECURITY/DEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>ENVIRONMENTAL MANAGEMENT MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 5 RWMC</td>
<td>1</td>
<td>190</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Waste Management Program</td>
<td>1</td>
<td>190</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Restoration Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGTA Project Characterization and Monitoring Wells</td>
<td>50</td>
<td>10</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soils Project</td>
<td>1</td>
<td>420</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Environmental Restoration Program</td>
<td></td>
<td></td>
<td></td>
<td>920</td>
<td></td>
</tr>
<tr>
<td>TOTAL ENVIRONMENTAL MANAGEMENT MISSION</td>
<td></td>
<td></td>
<td></td>
<td>1,110</td>
<td></td>
</tr>
<tr>
<td>NONDEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Site Support and Infrastructure Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total General Site Support and Infrastructure Program</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Conservation and Renewable Energy Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Conservation and Renewable Energy Program</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL NONDEFENSE MISSION</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL DOE/NNSA</td>
<td></td>
<td></td>
<td></td>
<td>1,540</td>
<td></td>
</tr>
</tbody>
</table>
Project or Activity

<table>
<thead>
<tr>
<th>Project or Activity</th>
<th>Number of “Events” Over 10 Years</th>
<th>Disturbance per “Event” (acres)</th>
<th>Disturbance by Project or Activity (acres)</th>
<th>Total Disturbance by Program (acres)</th>
<th>Total Disturbance by Mission and Alternative (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial/Demonstration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial 100-Megawatt Solar Power Generation Facility</td>
<td>1</td>
<td>1,200</td>
<td>1,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Commercial/Demonstration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL REDUCED OPERATIONS</td>
<td></td>
<td></td>
<td></td>
<td>2,740</td>
<td>TOTAL REDUCED OPERATIONS</td>
</tr>
</tbody>
</table>

D&D = decontamination and decommissioning; IED = Improvised Explosive Device; OST = Office of Secure Transportation; RWMC = Radioactive Waste Management Complex; UGTA = Underground Test Area.

- This table includes potential projects and activities that could impact previously undisturbed land but excludes those, such as a new Security Building in Area 23 or Reconfiguration of Mercury, that DOE/NNSA is certain would be located in previously disturbed areas. In addition, some activities, such as explosive experiments and experiments involving releases of chemicals and/or biological simulants, may be conducted in either previously disturbed or undisturbed land. In these cases, a reasonable estimate was made of the number of such experiments that would result in disturbance of previously undisturbed land.
- Number of “Events” Over 10 Years is the estimated maximum number of times a proposed or potential project or activity would be conducted over the next 10 years or the number of facilities that would be developed for a type of activity.
- Disturbance per “Event” (acres) is the estimated area of land disturbance, in acres, resulting from a single occurrence of a proposed or potential project or activity.
- Total Disturbance by Activity equals Disturbance per “Event” × Disturbance per “Event” for a particular proposed project or activity.
- Total Disturbance by Program is the aggregated total of acres of potentially disturbed land in the Total Disturbance by Activity column for the specified program.
- Total Disturbance by Mission and Alternative is the aggregated total of acres of potentially disturbed land for all programs within a particular mission area and the cumulative total for a specified alternative.
- For OST exercises it was conservatively assumed that, for each event, 1 acre of land immediately adjacent to an existing road would be disturbed by overland vehicle movements.
- UGTA Project characterization and monitoring wells would be located on the NNSS, Nevada Test and Training Range, and possibly on Bureau of Land Management (BLM) land and private property.
- Soil Project land disturbance includes sites on the NNSS and Nevada Test and Training Range (except for the TTR).
- The acres of disturbance for the commercial solar power generation facility(ies) under each alternative include estimated disturbance to construct the necessary electrical transmission lines to interconnect the facilities to the main transmission grid.
- These projects are included in the analysis on a “programmatic” level; however, additional NEPA review would be required as specific projects are developed beyond a conceptual stage.
- Disturbance for rebuilding the “backbone” electrical transmission line on the NNSS assumes 100 feet of disturbance along the entire 38.5 miles of the project.
5.1 Nevada National Security Site

The following sections describe the potential environmental consequences associated with the proposed alternatives in this SWEIS, as well as ongoing programs at the NNSS.

5.1.1 Land Use

Land use impacts are considered broadly in this SWEIS to include both land and airspace. The following criteria are used in this analysis of potential impacts on land use and airspace resources resulting from activities of DOE/NNSA in the State of Nevada:

- Compatibility of proposed activities with existing land use and land use designations both on the NNSS and in the surrounding areas
- Availability of sufficient land within the appropriate land use zone for the proposed activities and facilities
- Compatibility of proposed airspace activities with existing airspace use and airspace classifications with both civilian and military airspace use
- Compatibility of proposed activities at RSL, NLVF, and the TTR with surrounding area land uses (determined by the evaluation of existing and future land use or resource management plans)

Impacts on land use were assessed by comparing the compatibility of proposed land uses with existing land uses, current and potential activities within the land use zone designations developed by the DOE/NNSA, and the assessment of land availability. Land use compatibility is defined here as the ability of two or more land uses to coexist without significant conflict. Examples of significant conflicts include interference of proposed activities with existing activities (including airspace activities); insufficient availability of facilities, infrastructure, and/or resources to safely accommodate a proposed activity; and activities resulting in human health and safety issues due to poor siting. Frequently, compatibility between land uses exists in varying degrees based on the frequency, duration, and intensity of a proposed activity. The land use zone designations preclude proposed activities from being located within a designated zone that would be incompatible with the current or proposed uses. However, an activity could be collocated within a land use zone that it is not normally associated with based on evaluation of its compatibility with nearby activities, including consideration of the availability of facilities and infrastructure, safety of personnel, and sensitive environments. All zones are considered compatible with environmental restoration activities. Potential impacts on land use compatibility are based on qualitative assessments and, to the extent possible, quantitative assessments, of the range of activities that could occur under the three missions. Land disturbance within a given land use zone is not considered a land use impact under these criteria unless the disturbance results from a project that is incompatible with the land use designation. Impacts associated with land disturbance that affect resources such as soil, biological resources, and cultural resources, are presented in their respective resource impact sections in this chapter. The following subsections present analyses of the land use impacts under each alternative by mission and program.

Potential development of commercial solar power generation facilities in Area 25 of the NNSS is addressed at varying levels under all three alternatives in this NNSS SWEIS. There is no specific schedule for constructing one or more solar power generation facilities at the NNSS, and the analysis of impacts in this NNSS SWEIS is included to enable DOE/NNSA to make a decision about whether to make land and infrastructure now under DOE/NNSA control available for another use by a commercial entity.
Impacts on the surrounding land uses near the NNSS, RSL, NLVF, and the TTR were evaluated by assessing existing and future land use and resource management plans to determine whether land uses at these DOE/NNSA site locations are compatible with the surrounding land uses. The primary land uses adjacent to the NNSS and the TTR include additional military training and exercises within the Nevada Test and Training Range lands, as well as grazing, mining, and recreation on the Bureau of Land Management (BLM)-managed lands. The assessment showed that NNSS operations would be compatible with surrounding land uses because NNSS activities would occur within appropriately designated land use zones and existing and proposed experiments and activities would be sited to prevent incompatibility with adjacent land uses. Land use at NLVF would be compatible with surrounding land use because no changes are proposed under any of the alternatives and NLVF is located within an area that is suitably zoned for DOE/NNSA’s activities. As RSL is located on Nellis Air Force Base and any activities occurring at this facility would be compatible with the U.S. Air Force’s (USAF’s) mission and would occur on land withdrawn for the purpose of military training and exercises, no impacts on surrounding land uses would occur. Therefore, discussion of the impacts of each alternative will focus on compatibility with DOE/NNSA land use designations.

Impacts on airspace were assessed by reviewing the existing airspace classifications and users within the region. Potential impacts on airspace are based on qualitative assessments of the range of potential activities under the three missions that could conflict with existing airspace classifications and existing airspace use. Accordingly, the only activities that would affect airspace would be defense-related. Therefore, only the National Security/Defense Mission is discussed and evaluated in this section for airspace impacts resulting from implementation of the alternatives.

The variety of DOE/NNSA programs requiring occasional flights of helicopters and fixed-wing aircraft carrying supplies and personnel would continue to occur under all three alternatives. The NNSS would continue to host the use of aerial platforms (airplanes and helicopters) for research and development, training, and exercises. The inherent constraints of the existing restricted airspace over the NNSS and Nevada Test and Training Range would continue to require nonparticipating civil and military aircraft to be routed around both sites, as necessary. NNSS use of airspace is contingent on joint-use status, operations in progress, and air traffic considerations. DOE/NNSA is required to coordinate scheduling of airspace activities through the Nellis Air Traffic Control Facility, which controls the movement of military aircraft in and out of restricted airspace. While the USAF does not own NNSS airspace, NNSS airspace is controlled by Nellis Air Force Base under agreement between DOE/NNSA and the USAF.

The current level of air traffic control and radar, radio, and navigational aid services would likely be maintained or improved under normal upgrade programs. Based on past trends and improvements in communication, no increased impacts on civilian air traffic are expected.
5.1.1.1 No Action Alternative

Under the No Action Alternative, current activities and operations would continue and the land use zone designations would remain unchanged, except for the Solar Enterprise Zone, which would be redesignated as the Renewable Energy Zone. Figure 5–1 depicts the land use zone designations on the NNSS under the No Action Alternative. No proposed changes would occur to affect existing and surrounding land use resources associated with the NNSS. Land use impacts resulting from the development of the Renewable Energy Zone in Area 25 are not expected because the facility would be within a land use zone designated for solar power development and would not impact surrounding land use resources.

The impacts on land use for the missions under the No Action Alternative are discussed below.

5.1.1.1.1 National Security/Defense Mission

There would be no land use impacts resulting from the continuation of National Security/Defense Mission activities at the current levels of operations under the No Action Alternative because activities under this alternative would not change. This section further discusses the potential impacts of the No Action Alternative on National Security/Defense Mission programs and use of airspace.

Stockpile Stewardship and Management Program. Activities associated with research, design, development, and testing of nuclear weapons components and the assessment and certification of their safety and reliability would continue within the applicable land use zones. The NNSS would maintain readiness to conduct underground nuclear tests, if directed by the President. The continuation of stockpile stewardship management activities would include disposition of damaged U.S. nuclear weapons, staging of nuclear weapons, and disassembly of nuclear weapons. Drillback operations, which were routinely conducted after an underground nuclear test to obtain samples within the explosive cavity region, would continue for the purposes of exercising and maintaining this capability and obtaining data for groundwater studies. Drillback operations would occur near the site of a former underground nuclear test event.

The No Action Alternative assumes the continuation of Stockpile Stewardship and Management Program operations at current levels, consistent with existing NNSS land use designations; therefore, no overall adverse land use impacts are expected.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Because the No Action Alternative assumes the continuation of these programs’ current operations and these operations are consistent with existing land use designations, no new impacts on land use are expected.

Work for Others Program. This program is hosted by DOE/NNSA and provides other Federal agencies, state and local government agencies, and nongovernmental organizations with the shared use of certain facilities on the NNSS. Because the No Action Alternative assumes the continuation of this program’s current operations and these operations are consistent with existing land use designations, no new impacts are expected.

Airspace. Under the No Action Alternative, activities at the NNSS would continue at the level of current operations; therefore, no new impacts are expected from anticipated airspace activities and requirements. DOE/NNSA would continue to coordinate the use of airspace with the controlling entity responsible for NNSS airspace, the Nellis Air Traffic Control Facility.
Figure 5–1 Land Use Zones on the Nevada National Security Site Under the No Action Alternative
5.1.1.1.2 Environmental Management Mission

There would be no land use impacts resulting from the continuation of Environmental Management Mission activities at the current levels of operations under the No Action Alternative because activities would not change. This section further discusses the potential impacts of the No Action Alternative on Environmental Management Mission activities.

Waste Management Program. Waste management activities would continue at all existing NNSS facilities in accordance with applicable regulatory requirements.

Environmental Restoration Program. Current Environmental Restoration Program activities would continue. These activities include the identification, characterization, and remediation of contaminated soils and facilities. Additional drilling of characterization and monitoring wells also is expected to continue under this program. Underground Test Area (UGTA) Project activities would occur on the NNSS, the Nevada Test and Training Range, BLM-managed lands, and privately owned land as necessary and as permission is obtained. These activities would not all occur in areas specifically zoned for this type of activity. There could be a temporary impact if restoration activities are carried out in areas that are not consistent with the designated land use identified for that land area; however, coordination with the Nevada Test and Range or BLM-managed lands and private landowners prior to the commencement of UGTA Project activities would reduce the impacts resulting from this activity.

5.1.1.1.3 Nondefense Mission

There would be no land use impacts resulting from the continuation of Nondefense Mission activities at the current levels of operations or foreseeable actions under the No Action Alternative because activities under this alternative would not change. This section further discusses the potential impacts of the No Action Alternative on Nondefense Mission activities.

General Site Support and Infrastructure Program. The substantial infrastructure of the NSSS provides all site support activities. This program includes those activities that are necessary to support mission-related programs, such as the construction and maintenance of facilities and warehousing. The infrastructure necessary to support the mission of the NNSS would continue to be maintained, repaired, and replaced as necessary. General Site Support and Infrastructure Program activities would not result in any changes to land use, so no land use impacts are expected.

Conservation and Renewable Energy Program. Under this program, DOE/NNSA would continue to ensure that new construction and renovation projects implement design, construction, maintenance, and operation practices that support high-performance building goals.

Land preparation activities associated with the development of a 240-megawatt commercial solar power generation facility and associated transmission lines within the Renewable Energy Zone in Area 25 would disturb an area of approximately 2,650 acres. Although a portion of Area 22 was identified in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (1996 NTS EIS) (DOE 1996c) for the Solar Enterprise Zone (now redesignated as the Renewable Energy Zone), with the currently available renewable energy technology, it is no longer considered a viable location to host a solar power generation facility because of the potential impacts that might result from groundwater withdrawal at Devils Hole, a sensitive environmental area that is downgradient from Area 22. Section 5.1.6.2 discusses impacts on groundwater under each alternative. No impacts on land use resulting from this foreseeable action are expected because a solar power generation facility would be located within a compatible land use zone.

Other Research and Development Programs. The NNSS supports scientific research projects conducted by academic entities and other parties under this program, which is currently inactive. Under the No Action Alternative, the NNSS would continue to support this program and, if activated in the future, these activities would occur in locations consistent with NNSS land use zone designations. Therefore, no impacts on land use are expected.
5.1.1.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, the following two changes would occur in the NNSS land use zone designations:

- The designated use for Area 15 would be changed from “Reserved” to “Research, Test, and Experiment.”
- Approximately 36,900 acres within Area 25 would be designated as a Renewable Energy Zone, a change that would increase the area available for development of a solar power generation facility by about 32,800 acres.

Figure 5–2 depicts land use zones and major facilities at the NNSS under the Expanded Operations Alternative. The proposed revisions to the total acreage of the land use zones under the Expanded Operations Alternative are shown in Table 5–2.

<table>
<thead>
<tr>
<th>Land Use Zone</th>
<th>Current Acreage</th>
<th>Proposed Acreage</th>
<th>Percent Change in Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved Zone</td>
<td>410,100</td>
<td>387,500</td>
<td>-5.5</td>
</tr>
<tr>
<td>Research, Test, and Experiment Zone</td>
<td>76,200</td>
<td>92,200</td>
<td>+21</td>
</tr>
<tr>
<td>Renewable Energy Zone a</td>
<td>11,900</td>
<td>44,700</td>
<td>+276</td>
</tr>
</tbody>
</table>

a The Solar Enterprise Zone was expanded and renamed the Renewable Energy Zone.

Although land use zones under the Expanded Operations Alternative would change, this change is not considered an adverse impact. The NNSS developed the land use zones for internal organizational and functional uses and to group similar uses and activities into specific areas based on the support needs of NNSS missions, as determined by previous and anticipated uses. The Renewable Energy Zone would reserve a larger land area under the Expanded Operations Alternative than under the No Action Alternative.

5.1.1.2.1 National Security/Defense Mission

There would be no land use impacts resulting from the increased National Security/Defense Mission activities under the Expanded Operations Alternative because the changes would be compatible with the land use zones. This section discusses the potential impacts of the Expanded Operations Alternative on National Security/Defense Mission programs and use of airspace.

Stockpile Stewardship and Management Program. This section highlights proposed projects for the Expanded Operations Alternative and provides an analysis of whether the projects are compatible with the land use designations.

As part of the Stockpile Stewardship and Management Program, DOE/NNSA would add additional equipment and ancillary features within the existing Big Explosives Experimental Facility (BEEF) to support activities occurring in the Nuclear and High Explosives Test Zone. Depleted uranium experiment sites would occupy 40 acres per experiment, with up to three experiments conducted during the period of analysis, while high-explosives experiments would occupy 5 acres per experiment, with up to 500 experiments conducted during the period of analysis. The areas for these experiments would be located in appropriately zoned operational areas on the NNSS; however, reserving these areas for the depleted uranium and high-explosives experiments would prevent other activities or uses from occurring within these reserved areas. Because this activity would occur in an already disturbed area at an active facility zoned for this type of activity, no additional impacts on land use are expected.
Figure 5–2 Expanded Operations Alternative and Major Facilities
Construction activities for new support facilities for the Office of Secure Transportation training would occur in Area 17. The training area would reserve about 10,000 acres of currently undisturbed land for use as an active training area with development of firing ranges and other training facilities and supporting infrastructure. Additionally, the Office of Secure Transportation would expand facilities in one of the following: Area 12 (12 Camp), Area 6 (Control Point Complex), or Area 23 (Mercury). Because these activities would be located in an area zoned for this type of activity, no land use impacts resulting from construction and utilization are expected.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. This section highlights proposed projects for the Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs under the Expanded Operations Alternative and provides an analysis of whether the projects are compatible with the land use designations. The Disposition Forensics Evidence Analysis Team under the multi-agency Disposition and Disposition Forensics Programs would be deployed to the NNSS, as needed for training, exercises, or an actual event. Impacts on land use resulting from disposition activities are not expected because the NNSS already provides facilities for disposition of improvised nuclear devices. Facilities and activities associated with this program would be sited in compatible land use zone designations to minimize land use conflicts.

Additional arms control, nonproliferation, and counterterrorism facilities would be needed to undertake the anticipated enhanced activities. These facilities are still conceptual in nature and their locations are unknown; however, they would be constructed in operational areas within compatible land use zones, which would result in minimal impacts. The land acreage needed for these facilities, to the extent known, are listed below:

- **Arms control** – Facilities would be sited at various locations at the NNSS and would require approximately 100 acres of land. An additional building encompassing 10,000 square feet (0.2 acres) would be integrated with other buildings.
- **Nonproliferation** – A new Nonproliferation Test Bed would be developed.
- **Counterterrorism** – In addition to utilizing existing facilities, an Urban Warfare Complex would be constructed on approximately 100 acres in a remote area on the NNSS.

Work for Others Program. In general, land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.1. This section highlights additional Work for Others Program projects that could have impacts under the Expanded Operations Alternative.

Counterterrorism activities would require the development of new test bed facilities (roads, intersections, small towns, etc.). To support this need, the disturbance of approximately 75 acres of land is expected. Construction of these facilities would require new buildings with about 10,000 square feet (0.2 acres) of new floor space, resulting in approximately 25 acres of land disturbance. These facilities would be constructed in operational areas within compatible land use zones; thus, no land use impacts are expected.

DOE/NNSA would provide support for the National Aeronautics and Space Administration (NASA) deep space propulsion system development. This activity would use existing boreholes for testing nuclear rocket motors; however, it is not expected that testing would occur within the 10-year planning period evaluated in this SWEIS. These facilities would be constructed in operational areas within compatible land use zones; thus, no land use impacts are expected.

Anticipated land disturbance resulting from the construction of additional hangars, shops, and buildings would total approximately 200,000 square feet (4.6 acres) at Desert Rock Airport. A 20,000-square-foot (0.5-acre) hangar would be constructed at the Area 6 Operations Facility. Activities and facilities would be sited in appropriately zoned areas and no land use impacts are anticipated.

Because of the increased activities occurring at the Radiological/Nuclear Countermeasures Test and Evaluation Complex (RNCCTEC) by the U.S. Department of Homeland Security (DHS) under this alternative, other Federal agencies performing activities involving active interrogation to detect nuclear
materials would require an additional facility, most likely located in Area 12 or 16. Construction of this new facility would disturb about 100 acres of previously undisturbed land. No impacts on land use are expected because this facility would be sited in a compatible land use zone.

Approximately 200 acres of land would be used to support additional test bed applications. New buildings would occupy approximately 50,000 square feet (1.1 acres). These facilities would be constructed in operational areas within compatible land use zones; thus, no land use impacts are expected.

Airspace. Under the Expanded Operations Alternative, usage of a variety of aerial platforms, such as airplanes and helicopters, would increase for research and development and training purposes. In addition, airspace use would increase, which could result in conflicts with use of airspace over the NNSS by Nellis Air Force Base. However, impacts resulting from the increased use of NNSS airspace would be minimized through scheduling and coordination with the Nellis Air Traffic Control Facility, which manages airspace activities occurring within Nevada Test and Training Range and NNSS airspace.

5.1.1.2.2 Environmental Management Mission

Overall impacts on Environmental Management Mission activities under the Expanded Operations Alternative would be minimal because such activities would occur in specified areas that are compatible with the land use designations and there is sufficient available land within the designated zones. Additionally, an activity could be collocated within a land use zone that is capable of adequately co-hosting the activity. This section further discusses the potential impacts of the Expanded Operations Alternative on Environmental Management Mission activities.

Waste Management Program. In general, potential land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.1. This section highlights additional projects anticipated for the Waste Management Program under the Expanded Operations Alternative that could have land use impacts.

Waste disposal activities would increase, including the storage (pending treatment or disposal) of mixed low-level radioactive waste (MLLW) received from authorized generators. New disposal units would be constructed, filled, and closed to accommodate the waste volumes and types. Because all existing waste management facilities on the NNSS are located within areas designated for their specific uses, there would be no impacts on land use from activities at existing facilities. Development of new sanitary landfills in Area 23 and Area 25 would convert a combined total of 35 acres of currently unused land into waste management facilities and preclude that land from other uses.

Environmental Restoration Program. Impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.2.

5.1.1.2.3 Nondefense Mission

No land use impacts were identified resulting from the increased Nondefense Mission activities under the Expanded Operations Alternative because the changes would be compatible with the land use zones. This section further discusses the potential impacts of the Expanded Operations Alternative on Nondefense Mission programs.

General Site Support and Infrastructure Program. In general, land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.3. This section highlights additional infrastructure projects anticipated under the Expanded Operations Alternative that were analyzed for land use impacts. Increasing capacities and capabilities or extending the ranges of facilities and/or services to accommodate new operational programs and projects would result in additional infrastructure enhancements under the Expanded Operations Alternative. The following infrastructure enhancements would likely be implemented:

- Rebuild 38.5 miles of the main 138-kilovolt transmission line between Mercury Switchyard in Area 23 and Valley Substation in Area 2.
• Construct an 85,000-square-foot (1.9-acre), two-story security building in Area 23 to consolidate and replace outdated security facilities built in the 1950s and 1960s. The building would include space for administrative offices, computer infrastructure, training, and emergency response to support NNSS operations.
• Expand the cellular telecommunication system through the addition of cell towers.
• Reconfigure Mercury to provide the necessary modern facilities and infrastructure.

These changes would be compatible with the land use zones.

Conservation and Renewable Energy Program. In general, land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.3. DOE/NNSA would pursue renewable energy projects and provide support for demonstration and/or commercial projects using geothermal and solar energy. Under the Expanded Operations Alternative, DOE/NNSA proposes to build a 5-megawatt photovoltaic solar power generation facility, which would require approximately 50 acres of land near the Area 6 Construction Facilities. This solar power generation facility would likely be located within the Nuclear Test Zone and would preclude DOE/NNSA from conducting weapons-related testing or other outdoor experiments in close proximity to this new facility. However, locating this facility within this area would not affect DOE/NNSA’s ability to conduct an underground nuclear test or any other weapons-related tests or experiments in other parts of the Nuclear Test Zone or Nuclear and High Explosives Test Zone. Additionally, DOE/NNSA would allow development of one or more commercial solar power generation facilities to be located within the 39,600-acre Renewable Energy Zone, with a maximum combined generating capacity of 1,000 megawatts. These facilities would be constructed in operational areas within compatible land use zones.

A Geothermal Demonstration Project would be developed as a laboratory that would both supply power to the NNSS and conduct research to improve similar systems. The NNSS would evaluate potential locations based on NNSS land use zone compatibility and other factors, including environmental considerations. Approximately 30 to 50 acres of land would be disturbed for construction of the enhanced geothermal power system. No land use impacts are expected because the geothermal power system would be sited in an appropriate land use zone.

5.1.1.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, the following changes to the NNSS land use zone designations would occur: the designated use for Areas 18, 19, 20, 29, and 30 would be changed from “Reserved” to “Limited Use” for military training and exercise use only.

The proposed revisions to the total acreage of the land use zones under the Reduced Operations Alternative are shown in Table 5–3. Although land use zones under the Reduced Operations Alternative would change, these changes are not considered adverse impacts. This is not an adverse impact on land use because the NNSS developed the land use zones for internal organizational and functional uses and to group similar uses and activities into specific areas based on the support needs of the NNSS mission, as determined by previous and anticipated uses.

<table>
<thead>
<tr>
<th>Land Use Zone</th>
<th>Current Acreage</th>
<th>Proposed Acreage</th>
<th>Percent Change in Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited Use</td>
<td>0</td>
<td>289,800</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Reserved Zone</td>
<td>410,100</td>
<td>120,200</td>
<td>-70.7</td>
</tr>
</tbody>
</table>

Figure 5–3 depicts the NNSS land use zones and major facilities under the Reduced Operations Alternative.
Figure 5-3 Reduced Operations Alternative and Major Facilities
5.1.1.3.1 National Security/Defense Mission

No land use impacts from National Security/Defense Mission activities under the Reduced Operations Alternative are expected because the activities would be compatible with the land use zones and there is sufficient available land within the designated zones. This section further discusses the potential impacts of the Reduced Operations Alternative on National Security/Defense Mission programs and use of airspace.

Stockpile Stewardship and Management Program. Stockpile stewardship and management activities would not be conducted in Areas 18, 19, 20, 29, and 30. There would be an approximately 10 percent decrease in activities relating to maintaining readiness to conduct underground nuclear tests and underground nuclear weapons experiments. Additionally, the Atlas Facility would be decommissioned and dispositioned. These changes would be compatible with the designated land use zones.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.1; however, no impacts are expected because activities have been curtailed.

Work for Others Program. Land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.1; however, no impacts are expected because activities have been curtailed.

Airspace. Land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.1.

5.1.1.3.2 Environmental Management Mission

Land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.2 for both the Waste Management Program and the Environmental Restoration Program.

5.1.1.3.3 Nondefense Mission

In general, land use impacts resulting from decreased Nondefense Mission activities under the Reduced Operations Alternative are not expected because the changes would be compatible with the land use zones. This section further discusses the potential impacts of the Reduced Operations Alternative on Nondefense Mission programs.

General Site Support and Infrastructure Program. Land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.1 (i.e., there would be no impacts on land use under the Reduced Operations Alternative).

Conservation and Renewable Energy Program. In general, land use impacts would be similar to those described under the No Action Alternative in Section 5.1.1.1.1. DOE/NNSA would continue to support development of a commercial solar power generation facility in Area 25, which would be sited on 2,400 acres of land; however, the net generating capacity under the Reduced Operations Alternative would be 100 megawatts. No impacts on land use are expected because this facility would be sited within a compatible land use designation zone.

5.1.2 Infrastructure and Energy

5.1.2.1 Infrastructure

This subsection presents the proposed new or expanded facilities and infrastructure projects under each alternative and addresses the potential impacts on the NNSS resulting from increases in personnel, as well as facility and project utility needs. Potential impacts are evaluated for transportation systems infrastructure, water supply infrastructure, wastewater treatment systems, and communication systems. Energy-related impacts are discussed in Section 5.1.2.2. Activities under an alternative would have an adverse impact on infrastructure and utilities if their implementation would result in any of the following effects:
• Projected increases in onsite vehicular and truck traffic, aircraft use, and parking needs would exceed the design capacity of the roads, airports, and parking lots, requiring them to be substantially expanded and improved. (Impacts on transportation system infrastructure are briefly discussed in this subsection and are analyzed in detail in Section 5.1.3, including impacts resulting from increased traffic congestion and delays, road maintenance requirements, and road safety risks.)

• Projected increases in personnel and activities would create a potable water demand exceeding the design capacity of the NNSS water supply system infrastructure, which require substantial unplanned water supply infrastructure improvements. (Impacts on water supply infrastructure are briefly discussed in this subsection and are analyzed in detail in Section 5.1.6, including impacts on groundwater aquifers.)

• Projected personnel increases would generate wastewater amounts exceeding the capacity of existing (or proposed) NNSS wastewater treatment systems, which would require substantial unplanned upgrades of sewer mains, treatment lagoons, or septic tank and leach field systems. Potential impacts on wastewater treatment systems were assessed by comparing projections of wastewater generation under each alternative against onsite treatment capacities.

• Communications infrastructure and capabilities become insufficient to support mission needs and would require substantial unplanned upgrades to resume normal functions.

5.1.2.1 No Action Alternative

Potential infrastructure impacts from construction and operation under the No Action Alternative are discussed below in regard to facilities, transportation systems, water supply, wastewater treatment systems, and communication systems.

Facilities. Under the No Action Alternative, DOE/NNSA would continue to maintain, repair, and replace facilities and infrastructure, as needed and within funding limits, as well as conduct small projects to maintain the present capabilities of the DOE/NNSA Nevada Site Office (NSO) facilities. Existing buildings and other facilities would be used and modified as necessary to accommodate the ongoing activities. The only significant new facility considered would be construction and operation of a 240-megawatt solar power generation facility and associated transmission lines by an outside commercial entity. DOE/NNSA estimates this facility would utilize approximately 2,000 acres (disturbing approximately 2,650 acres), including the mirror fields.

The DOE/NNSA NSO is committed to providing a smaller, safer, more-secure, and less-expensive infrastructure that leverages the scientific and technical capabilities of the workforce and meets national security requirements. To this end, ongoing operations at the NNSS aim to eliminate facility redundancies and dramatically improve efficiencies. This is being accomplished by dispositioning excess buildings that are no longer needed to support DOE/NNSA’s missions, programs, or support requirements and by consolidating personnel and programs into enduring buildings, thereby optimizing building use at the NNSS. The Ten-Year Site Plan, the Space Management Plan (NSTec 2009b), and other DOE/NNSA studies delineate recommendation for building disposition and program consolidation. Up to approximately 20 percent of the existing managed building square footage at the NNSS could be dispositioned under the No Action Alternative (NNSA/NSO 2010d).

New or future projects would be reviewed pursuant to requirements in DOE “National Environmental Policy Act Implementing Procedures” (10 CFR Part 1021) and Council on Environmental Quality NEPA regulations (40 CFR Parts 1500–1508).

Furthermore, DOE/NNSA would ensure that existing facilities, as well as all new construction and renovation projects, implement design, construction, maintenance, and operation practices in conformance with the high-performance building goals and statutory requirements of Executive Order 13423 (including those of Executive Order 13514, which expands on Executive Order 13423).
Executive Order 13514 includes a requirement for Federal agencies to prepare an annual Strategic Sustainability Performance Plan. DOE Order 436.1, *Departmental Sustainability*, establishes a requirement for each DOE site to prepare a Site Sustainability Plan. DOE/NNSA’s Site Sustainability Plan for the NNSS, RSL, and NLVF includes projected performance (i.e., goals) and reports accomplishment in meeting *High Performance and Sustainable Building Guidance of the Interagency Sustainability Working Group* (ISWG 2008).

Transportation Systems. The transportation infrastructure at the NNSS would be maintained for mission-related uses. Under the No Action Alternative, there would be no changes to the transportation infrastructure; therefore, no infrastructure and energy impacts are expected. The existing transportation infrastructure was designed for a considerably larger workforce and truck traffic than are expected under the No Action Alternative; therefore, it is expected to be sufficient for both present and projected future needs (see Chapter 4, Section 4.1.3, Transportation and Traffic, for further discussion of transportation issues). Transportation infrastructure maintenance expectations under the No Action Alternative are summarized below:

- **Roads** – DOE/NNSA would continue to maintain mission-essential and other NNSS roadways as resources permit.
- **Air facilities** – DOE/NNSA would continue to maintain mission-essential NNSS air facilities as resources permit.
- **Parking lots** – The parking infrastructure at the NNSS would be maintained.

Water Supply Infrastructure. Potable water at the NNSS is supplied through groundwater wells and a network of distribution systems, as described in Chapter 4, Section 4.1.2.1.2, Utilities. Under the No Action Alternative, water system infrastructure may require major recapitalization to meet long-term deterioration issues. Future system upgrades would be undertaken as needed, in accordance with physical infrastructure project needs; these upgrades would be conducted after appropriate NEPA review. (See Section 5.1.6 for a discussion of water supply capacity under the No Action Alternative.)

The impact of the No Action Alternative on water supply resources would be further reduced due to a concerted water conservation effort (see the discussion on water conservation in Chapter 4, Section 4.1.2), in compliance with Executive Order 13423, *Strengthening Federal Environmental, Energy, and Transportation Management*, and DOE Order 436.1, *Departmental Sustainability*. The NNSS expects to reduce water consumption by 16 percent from 2007 levels by 2015, an average reduction in water consumption of approximately 2 percent per year.

Under the No Action Alternative, the NNSS would continue installing water-conserving products (toilets, urinals, faucets, showerheads, boiler systems, and other water-using appliances and fixtures) when existing units require replacement. The NNSS also would continue implementing water conservation practices, including xeric landscaping, water-efficient irrigation, system audits, leak repairs, use of nonpotable water for dust suppression when possible, and the institution of 4-day workweeks (NSTec 2011c).

Wastewater Treatment Systems. Under the No Action Alternative, wastewater treatment needs would typically be maintained at current levels, except for the possible construction and operation of the solar power generation facility. The number of construction workers required for the No Action Alternative, predominantly for construction of the solar power generation facility, would average 500 workers over 35 months, with a peak of 1,000 workers. The sanitary needs of construction workers would be addressed through portable toilets and hand-washing stations, from which the sanitary waste would be transported off site by contracted septic haulers to a permitted sewage treatment facility. The sanitary needs of construction workers for this solar power generation facility would be managed by the commercial entity responsible for the project; the sanitary waste would be transported and disposed off site in accordance with all applicable regulations.
As discussed in Chapter 4, Section 4.1.2, the wastewater treatment systems at the NNSS (which include 2 wastewater treatment lagoons and 23 septic systems) are currently utilized collectively at 17 percent capacity. The existing systems have adequate capacity to handle the workers’ wastewater treatment needs. Maintenance of the NNSS sanitary system’s lagoons and septic systems would continue to ensure effective operation. Future system upgrades would be undertaken as needed, in accordance with physical infrastructure projects conducted after appropriate NEPA review.

The commercial solar power generation facility would include its own wastewater treatment system, for which the design and potential impacts would be defined in a subsequent NEPA review, should a project proponent come forward.

Communication Systems. The telecommunications information infrastructure is technologically dated and has been degraded in many locations (DOE 2008f). Under the No Action Alternative, the communications systems at the NNSS would be upgraded within existing utility corridors and facilities (i.e., there would be no new land disturbances) to improve the communications network in order to meet ongoing mission requirements.

5.1.2.1.2 Expanded Operations Alternative

The Expanded Operations Alternative includes the proposed new or expanded infrastructure for program support presented in Table 5–4. The modifications and improvements proposed to the existing infrastructure under the Expanded Operations Alternative would be adequate to accommodate the increased demand. Additional information on infrastructure demand and impacts during normal operations for the Expanded Operations Alternative is provided below. Please also see Chapter 3, “Description of Alternatives,” and Appendix A, “Detailed Description of Alternatives,” for further information on the Expanded Operations Alternative, as well as Section 5.1.2.2 for further discussion of energy-related infrastructure improvements. Potential infrastructure and energy impacts from construction and operation under the Expanded Operations Alternative are discussed below in regard to facilities, transportation systems infrastructure, water supply infrastructure, wastewater treatment systems, and communication systems.

In addition to impacts from DOE/NNSA activities under the Expanded Operations Alternative, Section 5.1.2.2 discusses how development of one or more commercial solar power generation facilities within the Fortymile Canyon–Jackass Flats Hydrographic Basin, as well as a Geothermal Demonstration Project that would be sited at a location to be determined, would impact the infrastructure at the NNSS. There is no specific schedule for constructing commercial-scale solar power generation facilities or a Geothermal Demonstration Project at the NNSS. The potential impacts of these projects are addressed in this NNSS SWEIS to enable DOE/NNSA to make a decision about whether to make land and infrastructure that is now under DOE/NNSA control available for another use by a commercial entity.

Facilities. Under the Expanded Operations Alternative, infrastructure-related activities would include increasing the capacities and capabilities or extending the ranges of facilities and/or services to accommodate new operational programs, projects, and activities, as well as repairs, replacements, and small projects required to maintain the present capabilities of the NNSS (discussed under the No Action Alternative). DOE/NNSA would also continue its commitment to eliminating facility redundancies and improving operating efficiencies by dispositioning excess buildings and consolidating personnel and programs into enduring buildings, thereby optimizing building use at the NNSS (NSTec 2009b). Up to approximately 28 percent of the existing managed building square footage at the NNSS could be dispositioned under the Expanded Operations Alternative (NNSA/NSO 2010d, 2010e).
Table 5–4 Proposed New Infrastructure for Program Support Under the Expanded Operations Alternative

Stockpile Stewardship and Management Program

<table>
<thead>
<tr>
<th>Office of Secure Transportation Complex</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 17</td>
<td></td>
</tr>
<tr>
<td>Administrative Offices</td>
<td>5,000 square feet</td>
</tr>
<tr>
<td>Mock Town</td>
<td>870,000 square feet</td>
</tr>
<tr>
<td>Shooting House</td>
<td>8,000–20,000 square feet</td>
</tr>
<tr>
<td>Two Modular Training Facilities with Restrooms</td>
<td>4,000 square feet (2,000 square feet each)</td>
</tr>
<tr>
<td>Two Butler Buildings</td>
<td>10,000 square feet (5,000 square feet each)</td>
</tr>
<tr>
<td>Electrical Substation</td>
<td>100 square feet</td>
</tr>
<tr>
<td>Communications Trailer</td>
<td>300 square feet</td>
</tr>
<tr>
<td>Potable Water Tank</td>
<td>10,000–20,000 gallons</td>
</tr>
<tr>
<td>Septic System with Leach Field</td>
<td>Size not yet determined – additional NEPA review would be required</td>
</tr>
<tr>
<td>Roads (single-lane dirt roads with shoulders, including up to 4 miles of paved asphalt double-lane roads with shoulders) and Firebreaks</td>
<td>25 miles</td>
</tr>
<tr>
<td>Electrical Power Line</td>
<td>4.5 miles (approximate)</td>
</tr>
<tr>
<td>Potable Water Pipeline</td>
<td>4.5 miles (approximate) from existing well</td>
</tr>
</tbody>
</table>

Area 6, 12, or 23 (Mercury)	
Maintenance Buildings	20,000 square feet
Administrative Buildings	10,000 square feet
Dormitory	20,000 square feet

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs

Arms Control Mission	
Indoor and Outdoor Laboratory Space and Test Ranges	100 acres
New Facility for Data Fusion, Analysis, and Visualization	10,000 square feet

| Nonproliferation Mission | |
| New Facility | Size not yet determined – additional NEPA review would be required |

| Counterterrorism Mission | |
| Urban Warfare Complex (located in remote location on the NNSS) | 100 acres (approximate) |

Work for Others Program

Counterterrorism	
Test Ranges to Include Roads, Intersections, Small Towns	75 acres
Future Training Facilities to support U.S. Department of Homeland Security Counterterrorism Operations Support	125 acres
Additional Facilities at Desert Rock Airport: Hangars, Shops, Other Buildings	200,000 square feet
Area 6 Aerial Operations Facility: Hangar	20,000 square feet
Pahute Mesa Airstrip Operations Support Building	Size not yet determined – additional NEPA review would be required
Other Locations to Support Air Operations	5,000 square feet
Active Interrogation to Detect Nuclear Material: Support Facilities in Area 12 or 16	125 acres
Test Bed Applications	200 acres
New Facilities	50,000 square feet
Stockpile Stewardship and Management Program

<table>
<thead>
<tr>
<th>Waste Management Program*</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactive Waste Management Complex in Area 5</td>
<td>600</td>
</tr>
<tr>
<td>Sanitary Landfill in Area 23</td>
<td>15</td>
</tr>
<tr>
<td>Construction and Demolition Waste Landfill in Area 25</td>
<td>20</td>
</tr>
</tbody>
</table>

Nondefense Mission

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Security Building in Area 23</td>
<td>85,000</td>
</tr>
<tr>
<td>Photovoltaic Solar Power Generation Facility (5 megawatts) in</td>
<td>50</td>
</tr>
<tr>
<td>Area 6</td>
<td></td>
</tr>
</tbody>
</table>

Possible Commercial Energy Projects

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Solar Power Generation Facilities (1,000 megawatts) in Area 25, b including associated on- and offsite transmission lines</td>
<td>10,300</td>
</tr>
<tr>
<td>Geothermal Demonstration Project</td>
<td>50</td>
</tr>
</tbody>
</table>

NEPA = National Environmental Policy Act; NNSS = Nevada National Security Site.

* See Section 5.1.11 for discussion of waste management impacts.

b The commercial solar power generation facilities and Geothermal Demonstration Project would be developed, if at all, by others. Acreages for energy projects are given for land area potentially disturbed. Actual footprints may be up to 15 percent lower.

Additional programs, projects, and activities considered under the Expanded Operations Alternative may require modification and/or expansion of existing facilities and construction of new facilities. As discussed in Chapter 3, “Description of Alternatives,” and Appendix A, “Detailed Description of Alternatives,” the Expanded Operations Alternative would require implementation of the following facility enhancements:

- **Security building construction** – A new security building in Area 23 would be constructed adjacent to existing security facilities. This project would consolidate security facilities (Buildings 1000, 1001, 1002, 114, 701, 1103, 1106, 1107, and 1108 and portions of Control Points 41, 111, and 525) and their functions into a new, approximately 85,000-square-foot, two-story facility. The facility would include space for administrative offices, computer servers for systems supporting NNSS operations, training, emergency response, locker rooms, restrooms, storage, an armory, technology development, electronic security system engineering and maintenance, and classified work areas. The new building would replace outdated facilities, most of which were built in the 1950s and 1960s, and decrease external exposure to critical security facilities. Buildings that are replaced would be evaluated and either demolished or used for another purpose.

- **Mercury reconfiguration** – Mercury would be reconfigured to provide the modern facilities and infrastructure needed to support advanced experimentation and production at the NNSS. Although undefined at this time, this proposed project would (1) demolish facilities that are no longer needed or are not economically salvageable; (2) identify functional zones to facilitate groupings of similar activities; (3) replace obsolete buildings that are needed to support NNSS activities; and (4) improve selected facilities and infrastructure to extend useful life to accommodate existing and future support requirements. Because the reconfiguration of Mercury is conceptual in nature, an appropriate level of NEPA review and documentation would be required before it may be implemented.

Transportation Systems. Under the Expanded Operations Alternative, the current transportation infrastructure at the NNSS would be maintained for mission-related uses, and new roads and air facilities would be constructed, expanded, or improved, as discussed below. Higher numbers of personnel and activities at the NNSS would generate increased regional traffic from privately owned vehicles and trucks transporting materials and waste (see Section 5.1.3 for a discussion of traffic issues under the Expanded Operations Alternative). Transportation infrastructure maintenance expectations under the Expanded Operations Alternative are summarized below:
Chapter 5
Environmental Consequences

- **Roads** – Under the Expanded Operations Alternative, new roadways would be constructed on the NNSS, when necessary, to access newly constructed facilities and accommodate the increased traffic on the roads.

 The proposed training complex for the Office of Secure Transportation would include 25 miles of new road and firebreak construction (as shown in Table 5–4). Most of these roads and firebreaks would be scraped-dirt, single-lane roads with shoulders, with eventually up to 4 miles of paved-asphalt, double-lane roads with shoulders. The main access to the complex would be from Tippipah Highway.

 Overall, the increased traffic at the NNSS under the Expanded Operations Alternative would be acceptably handled within the design capacity of the roadway infrastructure. The existing infrastructure was designed for a much larger workforce and increased program activities. Roads that are currently classified as substandard (DOE 2008f) would require improvements. However, traffic impacts would be mitigated by construction of new roads to the new facilities, as well as maintenance and improvements to the existing roads used most frequently for mission-related purposes. Because the incremental increase in onsite traffic volumes would be moderately high (see Section 5.1.3), the number of repairs and required maintenance on NNSS roadways would increase at a higher rate than currently experienced.

- **Air facilities** – Under the Expanded Operations Alternative, various aircraft facilities potentially would be used, expanded, or improved. The following infrastructure projects associated with these aircraft facilities were described previously under “Facilities” and are shown in Table 5–4:
 - Desert Rock Airport expansion
 - Aerial Operations Facility expansion
 - Pahute Mesa Airstrip improvements
 - New Air Operations Facility construction

 These planned expansions and improvements to the air facilities under the Expanded Operations Alternative would improve aviation operations at the NNSS. These actions would be undertaken after appropriate NEPA review.

- **Parking lots** – Additional parking areas would be provided to accommodate anticipated needs at new facilities or new uses of existing facilities.

 Water Supply. Under the Expanded Operations Alternative, the NNSS water supply system would be expanded as necessary to connect to new facilities. Increased potable water demand due to a 25 percent increase in workforce over current levels would affect the existing water supply infrastructure, which is currently in need of repair and upgrade. However, future system upgrades would be undertaken as needed in accordance with physical infrastructure projects conducted after appropriate NEPA review (see Section 5.1.6 for a discussion of water supply capacity under the Expanded Operations Alternative).

 DOE/NNSA would also continue to implement water conservation efforts under the Expanded Operations Alternative (see the discussion of water conservation in Chapter 4, Section 4.1.2).

 Wastewater Treatment Systems. Under the Expanded Operations Alternative, new facilities would be connected to existing permitted wastewater treatment systems when possible, or appropriately sized and permitted wastewater treatment systems would be constructed for the new facilities. The construction phase of the Expanded Operations Alternative would require an average of 750 workers over 42 months, with a peak of 1,500 workers. The sanitary needs of the construction workers would be addressed through portable toilets and hand-washing stations, from which the sanitary waste would be transported off site by contracted septic haulers to a permitted sewage treatment facility. Sanitary waste management required for the construction of one or more commercial solar power generation facilities would be
managed by the commercial entities responsible for the projects, and the sanitary waste would likely be transported and disposed off site in accordance with all applicable regulations.

During operations under the Expanded Operations Alternative, the workforce at the NNSS would increase by approximately 25 percent to about 2,575 persons, including permanent NNSS personnel, employees for solar power generation facilities, and an additional estimated 250 construction workers to implement the various construction projects proposed under the Expanded Operations Alternative.

As discussed in Chapter 4, Section 4.1.2.1, the wastewater treatment systems at the NNSS include two active sewage lagoon systems (the Mercury lagoon in Area 23 and the Yucca Lake lagoon in Area 6) and 23 currently permitted septic tank systems. These lagoons and septic tank systems have an estimated collective capacity of 199,260 gallons per day. To quantify the impact of the Expanded Operations Alternative, the capacity of each of the two lagoon systems was quantified with a projected 25 percent increase in wastewater inflow. As shown in Table 5–5, both sewage lagoon systems have adequate capacity to handle the estimated increase, as the Mercury lagoon would be operating at 45 percent of its capacity and the Yucca Lake lagoon at 12 percent of its capacity. New facilities proposed under this alternative are located in areas that currently use septic tank systems and would be either served by their own new septic tanks and leach fields or connected to existing septic tank systems with sufficient capacity if they are located in the vicinity.

The commercial solar power generation facilities would include their own wastewater treatment system, for which the design and potential impacts would be defined in a subsequent NEPA review, should a project proponent come forward.

Table 5–5 also shows the estimated capacity of the collective site-wide NNSS wastewater treatment systems, based on the projected new workforce population under the Expanded Operations Alternative. Given this site-wide scenario, an employee population of 2,575 workers would result in total wastewater generation of approximately 51,500 gallons per day, which amounts to 26 percent of the capacity of the collective existing wastewater treatment systems at the NNSS. Future system upgrades or installation of additional treatment systems would be undertaken as needed, in accordance with physical infrastructure projects conducted after appropriate NEPA review.

<table>
<thead>
<tr>
<th>Sewage Lagoon</th>
<th>Permit Capacity</th>
<th>Current Volume Treated (2009) (gallons per day)</th>
<th>Projected Volume Treated (25 percent increase) (gallons per day)</th>
<th>Percentage of Capacity Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>73,407</td>
<td>26,550</td>
<td>33,188</td>
<td>45</td>
</tr>
<tr>
<td>Yucca Lake</td>
<td>10,850</td>
<td>1,049</td>
<td>1,311</td>
<td>12</td>
</tr>
<tr>
<td>Workers</td>
<td>Wastewater Generation (gallons per day) *</td>
<td>Capacity of NNSS Wastewater Treatment System (gallons per day)</td>
<td>Percentage of Capacity Used</td>
<td></td>
</tr>
<tr>
<td>2,575</td>
<td>51,500</td>
<td>199,260</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

NNSS = Nevada National Security Site.

* Based on 20 gallons per day per person (see discussion in Chapter 4, Section 4.1.2.1) (CMU 2004, Table 9, p. 58; Lui and Liptak 1997, Tables 7.1.3 and 7.1.4, p. 518).

Communication Systems. Under the Expanded Operations Alternative, the NNSS telecommunication system would be upgraded to replace the existing wired telephone switch with a new one that would seamlessly transition between the older and newer technologies. The wireless elements of the trunked radio infrastructure also would be upgraded to interface with the packet-switched technology. This project would transition the subscriber units (telephones, radios, and cell phones) in a time-phased replacement program to blend all elements of the wired and wireless systems into an integrated telecommunications hierarchy (NNSA/NSO 2010c). These improvements would benefit the
communications network at the NNSS and would have no adverse impact on offsite resources. DOE/NNSA would continue to participate with local governments to ensure that reliable communications interconnectivity and interoperability are achieved in accordance with the National Incident Management System.

5.1.2.1.3 Reduced Operations Alternative

For construction associated with the Reduced Operations Alternative, the facilities, transportation systems infrastructure, water supply infrastructure, wastewater treatment systems, and communication systems are adequate to handle the temporary increased demands. Under the Reduced Operations Alternative, the DOE/NNSA NSO workforce would decline, thereby reducing use of infrastructure compared to the No Action Alternative, as discussed below.

Facilities. Under the Reduced Operations Alternative, DOE/NNSA would continue to maintain, repair, and modify operating facilities and infrastructure, as needed and within funding limits, and conduct small projects to maintain the present capabilities of DOE/NNSA NSO facilities (described under the No Action Alternative). In addition, under the Reduced Operations Alternative, most activities would cease in the northwestern portion of the NNSS within Areas 18, 19, 20, 29, and 30, with the exception of maintenance and operation of the Echo Peak, Motorola, and Shoshone communications facilities; the Echo Peak, Castle Rock, and Stockade Wash Substations, including electrical transmission lines interconnecting these substations; and Well 8. DOE/NNSA would continue environmental restoration, environmental monitoring, site security operations, and military training and exercises within these areas. No infrastructure projects would be conducted in these northwestern areas beyond maintaining the noted mission-essential facilities and critical electrical and communications systems. The only significant new facility considered under the Reduced Operations Alternative would be construction and operation of a 100-megawatt solar power generation facility by an outside commercial entity in Area 25. DOE/NNSA estimates this facility would utilize approximately 1,020 acres (disturbing approximately 1,200 acres), including the mirror fields.

Transportation Systems. Under the Reduced Operations Alternative, transportation-related infrastructure at the NNSS would be maintained only for mission-related uses. Only mission-essential roadways would be maintained, and all other roadways on the NNSS would be allowed to deteriorate. This would have a minor adverse impact on the regional transportation infrastructure; however, under this alternative, the roadways would rarely be used (see Section 5.1.3 for a discussion of traffic issues under the Reduced Operations Alternative). In addition, under the Reduced Operations Alternative, there would be no change compared with the No Action Alternative regarding use of air facilities and parking lots.

Water Supply. Under the Reduced Operations Alternative, the workforce would decrease by approximately 10 percent from current levels. This smaller workforce would require less wastewater during operations under the Reduced Operations Alternative, the workforce would decrease by approximately 10 percent from current levels. This smaller workforce would require less wastewater
treatment at the NNSS than current levels, so there would be more than adequate capacity. As the workforce is reduced and activities and facility use are curtailed, wastewater treatment systems would be deactivated as demand decreases.

The commercial solar power generation facility would include its own wastewater treatment system, for which the design and potential impacts would be defined in a subsequent NEPA review should a project proponent come forward.

Communication Systems. There would be no change in communication systems compared with the No Action Alternative within those areas that continue to operate under the Reduced Operations Alternative. All communication operations would cease in the northwestern portion of the NNSS within Areas 18, 19, 20, 29, and 30, including the Echo Peak, Motorola, and Shoshone communications facilities. DOE/NNSA would maintain only the critical infrastructure for these facilities.

5.1.2.2 Energy

This subsection addresses potential impacts on the energy resources and distribution systems that serve the NNSS. Activities under an alternative would have an adverse impact on energy resources if their implementation would result in any of the following effects:

- Peak electrical power demands would exceed the supply capacity of local or regional distribution systems, resulting in damage to system components, voltage fluctuations, and/or temporary loss of service at frequencies beyond historical averages.
- Growth in average electrical demand would strain the supply capacity of local or regional distribution systems, resulting in the need for unplanned upgrades or diversion of supply from other planned uses.
- Peak demand for liquid fuels would exceed the capacity of onsite fuel storage systems or planned resupply schedules.
- Long-term demand for liquid fuels would strain the capacity of regional or national supply systems.

Potential impacts on energy resources were assessed by comparing projections of utility resource requirements under each alternative against utility system capacities. While some NNSS facilities do not meter utility use, annual site-wide demands are known and were used to make projections for each of the alternatives considered in this SWEIS. Additional information on policies and programs that would beneficially modify energy use patterns (conservation, energy efficiency, renewable energy development, transportation/fleet management, and high-performance, sustainable buildings) are also provided in this subsection. Unless noted otherwise, these impact criteria and methods of analysis apply to all geographic locations and action alternatives within this SWEIS.

5.1.2.2.1 No Action Alternative

Under the No Action Alternative, activities at the NNSS would primarily continue at frequencies and levels consistent with those experienced since 1996. DOE/NNSA would continue to maintain and repair facilities and associated infrastructure as needed to maintain the present capabilities of DOE/NNSA facilities. The only significant new facility considered would be construction of a large solar power generation facility by an outside commercial entity. Specific activities and their potential effects are discussed in the following subsections.

Electrical Energy. Electrical service at the NNSS is supplied by two commercial power sources: NV Energy and the Valley Electric Association (DOE 2008f). Previous studies have suggested that the onsite distribution system can support a theoretical load of approximately 72 megawatts based on the thermal limits of the smallest conductor, but outside utilities could only furnish approximately 36 megawatts because of the NNSS system’s voltage constraints (DOE 2007c).
While recent estimates suggest that the maximum operating capacity is closer to 40 megawatts (NNSA/NSO 2010a), capacity at the NNSS is also limited by load demands on commercial power suppliers from other users outside the NNSS, not simply the condition of the NNSS system. Valley Electric Association’s line serves additional loads including Pahrump, Lathrop Wells, and Beatty. These outside utility loads have increased at a high rate over the past decade, and the spare capacity of the 138-kilovolt transmission system available for NNSS loads has remained static or effectively decreased, despite reductions in NNSS demand.

From 2003 through 2006, annual electrical energy usage at the NNSS ranged from 57,000 to 95,000 megawatt-hours, averaging 81,000 megawatt-hours (DOE 2008f), while the total electrical usage during fiscal year (FY) 2009 was approximately 84,600 megawatt-hours. Although peak power demand at the NNSS has reached as high as 42 megawatts while nuclear testing programs were active, recent power demand typically averages 20 megawatts, with a peak demand of 27 megawatts (NNSA/NSO 2010a).

Excluding construction and operation of a commercial solar power generation facility (described in subsequent paragraphs), average power demand would likely remain near 20 megawatts, with peak demand of 27 megawatts. However, power demands in any particular year can be affected by unplanned factors, including summer temperatures that would increase power needed for facility air conditioning.

For purposes of analysis, DOE/NNSA estimated that not more than a 10 percent increase in average and peak demand would occur under the No Action Alternative, resulting in average and peak power demands of 22 and 30 megawatts, respectively. Furthermore, a 10 percent increase over DOE/NNSA’s 2009 average electrical demand of 84,600 megawatt-hours would amount to approximately 93,000 megawatt-hours. During 2009, NV Energy and Valley Electric Association provided about 21,675,000 megawatt-hours, collectively. Under the No Action Alternative, DOE/NNSA’s use of electricity would represent approximately 0.43 percent of the regional electrical demand (NSOE 2010).

Considering the average and peak power demands (22 and 30 megawatts, respectively) and a total NNSS system capacity of 36 megawatts, the NNSS distribution system would be adequate (with 55 to 75 percent of capacity consumed) to support power needs under the No Action Alternative. However, if future demand from offsite users on the commercial power suppliers were to increase rapidly, then the spare capacity of the NNSS distribution could potentially be reduced, resulting in adverse impacts, including voltage fluctuations and blackouts. Such impacts would limit the NNSS’s ability to conduct mission-essential experiments while operating support facilities. This impact could be reduced or avoided by negotiating additional power purchases from commercial suppliers. In addition, the physical condition and reliability of the NNSS distribution system would deteriorate over time, although basic maintenance would continue under this alternative. If basic maintenance activities were insufficient to maintain system reliability, DOE/NNSA would pursue more-significant system upgrades (including replacement of some line sections, as described under the Expanded Operations Alternative) based on appropriate NEPA review and decisions.

DOE/NNSA may enter into an agreement with a commercial entity to construct a solar power generation facility within Area 25. Currently, there are no specific proposals from private applicants for construction of a commercial-scale solar power generation facility at the NNSS. To support an NNSS decision allowing commercial-level power production as a land use, DOE/NNSA has analyzed a notional design based on other proposed facilities in southern Nevada. Were a specific design to be proposed by a private applicant, additional project-level NEPA review would be required. Under the No Action Alternative, a proponent would construct a commercial solar power generation facility with a net generating capacity of 240 megawatts and would utilize a “dry” parabolic mirror technology.

This solar power generation facility would result in an additional power demand during the construction phase (estimated to last 35 months); some of this power demand would be met by using portable diesel-fuel-fired generators. This temporary power demand would likely be covered within the estimated
10 percent increase over existing levels assumed for this alternative. When this solar power generation facility is brought on line, it was assumed that it would supply a portion of its generating capacity to support NNSS needs, with the balance supplied to the outside commercial power grid.

The details of any power-sharing arrangements and the need for additional transmission lines to supply the commercial grid are not known at this time, but would be addressed in a project-specific NEPA review. The age and condition of the NNSS power system and the resulting voltage limitations would likely prevent expansion of the NNSS system’s power capacity much beyond 40 megawatts, unless significant upgrades were made to the system that are not proposed within this alternative. However, any power supplied to the NNSS from this solar power generation facility would likely offset the potential losses from other commercial providers noted above and avoid adverse impacts on the NNSS distribution system. In addition, use of power from a solar power generation facility would reduce the NNSS’s reliance on fossil-fuel-generated power, resulting in an indirect beneficial impact on air quality.

The existing regional electrical transmission system does not have sufficient capacity to accommodate an additional 1,000 megawatts of power. Development of the solar power generation facilities in Area 25 would require construction of additional transmission infrastructure in the region. Independent of and unrelated to the commercial solar power generation facilities considered in this NNSS SWEIS, NV Energy, a commercial electrical energy company, and Renewable Energy Transmission Company are planning separate, new large-capacity transmission line projects that would accommodate the additional electrical generation (see Chapter 6, Section 6.2.4.4, for additional information).

Liquid Fuels. Table 5–6 illustrates liquid fuel consumption at the NNSS for FY 2009, which DOE/NNSA estimates as representative of annual consumption rates under the No Action Alternative. The trend over the last several years has been a decline in petroleum-based fuel usage. The majority of the NNSS fleet currently operates on alternative fuels; E85 fuel is used for Alternative Fuel Vehicles (AFVs) and B-20 biodiesel is used for all diesel vehicles and off-road equipment. Biodiesel is used in all equipment except emergency generators and boilers, representing the maximum foreseeable usage level for the current equipment inventory. As of December 2008, the NNSS has 548 AFVs that are E85-capable, which equates to 94 percent of the NNSS vehicle fleet.

Table 5–6 Estimated Annual Liquid Fuel Usage Under the No Action Alternative

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2 Red Dye Fuel Oil for Heating</td>
<td>66,000 gallons</td>
</tr>
<tr>
<td>Unleaded Gasoline</td>
<td>427,000 gallons</td>
</tr>
<tr>
<td>Ethanol/E85</td>
<td>217,000 gallons</td>
</tr>
<tr>
<td>#2 Diesel</td>
<td>65,000 gallons</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>343,000 gallons</td>
</tr>
</tbody>
</table>

Source: NNSA/NSO 2010b.

Under the No Action Alternative, the NNSS would not experience significant increases in workforce, fleet vehicles, or the number or size of facilities (excluding the construction and operation of the commercial solar power generation facility). DOE/NNSA has not identified any activities that would result in long-term increases or large peak demands for liquid fuels under the No Action Alternative. Fuel consumption rates are expected to remain similar to the levels seen in FY 2009. Given the volume of existing storage capacity and existing commercial supply arrangements, DOE/NNSA does not foresee
difficulty in obtaining liquid fuels from regional suppliers to meet its needs. The NNSS’s annual fuel demands make up a very small proportion of total fuel use in the state for most liquid fuels (e.g., less than 0.05 percent of unleaded gasoline use) and are not expected to strain local and regional fuel supply networks (NSOE 2009). However, the NNSS is a major consumer of biodiesel in Nevada, making up approximately 60 percent of the statewide total demand of 575,000 gallons (NSOE 2009). Although not anticipated, if demand were to exceed regional supply, the NNSS could temporarily switch to petroleum-based diesel for most applications until biodiesel is available again.

Construction of a commercial solar power generation facility would result in large numbers of personal vehicles, construction equipment, and diesel generators operating on the NNSS for up to 35 months. However, these activities are not expected to use NNSS fuel supplies; fuel for this activity would be the responsibility of the commercial entity conducting the construction. Similarly, small quantities of fuel may be needed for the operation of the solar power generation facility (supporting heaters, emergency generators, etc.), but this demand would be met by the commercial operator of the facility.

Energy Conservation. Under all alternatives, DOE/NNSA would continue to identify and implement energy conservation measures and renewable energy projects in compliance with all applicable Executive Orders and DOE Orders and policies. These initiatives would serve to reduce consumption of electrical power and liquid fuels on a per-unit basis, suggesting that the estimates for total consumption under this alternative are conservative in nature, as well as potentially avoid adverse impacts related to energy capacity. These measures would also result in a greater proportion of energy use coming from renewable sources, reducing dependence on fossil fuels, and potentially resulting in indirect beneficial impacts on air quality and other environmental resources. The following are some specific examples of energy conservation measures:

- DOE/NNSA would improve energy efficiency and reduce greenhouse gas emissions through reduction of energy intensity by 3 percent annually and a total of 30 percent through the end of FY 2015, relative to the energy use baseline in FY 2003. Energy intensity is the energy consumption per gross square foot of building space, including industrial and laboratory facilities.
- DOE/NNSA would continue installation of advanced electric metering systems to the extent practicable at all NNSS buildings, as well as implementation of a centralized data collection, reporting, and management system.
- DOE/NNSA would maximize installation of onsite renewable energy projects at the NNSS where technically and economically feasible, with the goal of acquiring at least 7.5 percent of the NNSS’s annual electricity and thermal consumption from onsite renewable sources.
- DOE/NNSA would ensure that new construction and renovation projects include design, construction, maintenance, and operation practices in support of the high-performance building goals of Executive Order 13423.

5.1.2.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, the NNSS would experience a workforce increase of approximately 25 percent, support several new or expanded facilities, and see an overall increase in the frequency and scope of defense experiments and other activities. These changes have the potential to noticeably increase long-term demands for electrical power and liquid fuels, as well as produce demand peaks during major construction efforts or specific experiment events. However, DOE/NNSA is also proposing upgrades to the electrical distribution system, development of onsite renewable energy sources, consolidation or closure of unused facilities, and measures to improve energy conservation and efficiency that would collectively reduce or avoid adverse impacts on energy capacity or supply. Specific activities and their potential effects are discussed in the following subsections.

Electrical Energy. DOE/NNSA is proposing new or expanded facilities in locations including Areas 6, 12, 16, 17, and 23 (Mercury), as well as the Desert Rock and Pahute Mesa Airstrips. Section 5.1.2.1
provides a detailed description of facility sizes, configurations, and locations. All construction or renovation activities would result in temporary increases in electrical power demand; some of this temporary demand would be met by using portable generators rather than tie-ins to the NNSS electrical distribution system. As noted in Chapter 3 of this SWEIS, some facilities are still in the conceptual planning phase and would be analyzed in future NEPA documents when planning and design have evolved.

Operation of new facilities that would support new mission elements or capabilities would result in a clear increase in electrical power demand on the NNSS. However, these new facilities would likely be more energy-efficient than existing buildings, due to implementation of more energy-efficient components and practices. In cases where new facilities would be constructed to relocate or consolidate existing functions (e.g., consolidation of security functions in Area 23), long-term power demand associated with those functions would likely be lower than previous levels.

Proposals under the Expanded Operations Alternative could result in development of more than 400,000 square feet of building space (added to the approximate 2.45 million square feet currently managed) on the NNSS, or an approximate 16 percent increase. It is reasonably foreseeable that DOE/NNSA would also decommission any existing buildings that are no longer needed, as it has committed to an ongoing reduction of the total building footprint through its Facility and Infrastructure Assessment Process. Up to approximately 28 percent of the existing managed building square footage at the NNSS could be dispositioned under the Expanded Operations Alternative (NNSA/NSO 2010d, 2010e). However, the period between completion of a new construction project and initiation of decommissioning activities is unknown; when dispositioning occurs, it would further reduce the electrical energy demand.

To account for any uncertainties regarding changes in building square footage and associated power demands in any particular year, implementation of energy efficiency measures to new and existing buildings, and an anticipated 25 percent increase in NNSS workforce numbers, DOE/NNSA estimates that average power demand would increase by no more than 25 percent from that analyzed under the No Action Alternative in any year, while peak power demand (including demand associated with construction or renovation activities) would increase by no more than 35 percent. A 35 percent increase over DOE/NNSA’s 2009 average electrical demand of 84,600 megawatt-hours would amount to approximately 105,700 megawatt-hours. During 2009, NV Energy and Valley Electric Association provided about 21,675,000 megawatt-hours, collectively. Under the Expanded Operations Alternative, NNSS use of electricity would represent approximately 0.49 percent of the regional electrical demand (NSOE 2010).

The projected increases would result in an average power demand of approximately 28 megawatts, with a peak demand of approximately 41 megawatts. The capacity of the existing NNSS distribution system (estimated at approximately 36 megawatts) would be sufficient to meet average demand, but peak demand periods could exceed the capacity, potentially resulting in voltage fluctuations or blackouts. As noted under the No Action Alternative, any reduction in supply to the NNSS from commercial power suppliers would also reduce the effective supply to the NNSS, making these adverse effects more likely.

Under the Expanded Operations Alternative, DOE/NNSA would propose to upgrade the existing 138-kilovolt electrical distribution system to better provide for this projected demand, increase service reliability, and leave capacity to support any future growth on the NNSS. About 39 miles of the existing system would be replaced between Mercury Switching Center in Area 23 and Valley Substation in Area 2. The replacement transmission line would be constructed on steel towers on a right-of-way generally paralleling the existing system. Sufficient separation between the existing transmission line and the new line would be required to ensure electrical safety during construction of the new line and demolition of the old line.
Chapter 5

Environmental Consequences

The transmission line replacement project would occur in three distinct and separately operable stages: (1) Mercury Switching Center to Frenchman Flat Substation, with a loop tap at Mercury Distribution Substation (approximately 15 miles); (2) Frenchman Flat Substation to Tweezer Substation in Area 6 (approximately 9.5 miles); and (3) Tweezer Substation to Valley Substation in Area 2 (approximately 14 miles). DOE/NNSA would coordinate this upgrade, or distinct stages of it, with other proposed activities under this alternative to ensure that additional system capacity and reliability were in place prior to significant additional power demands coming on line.

The new transmission line would increase the capacity of the system from the current level of about 36 megawatts up to approximately 100 megawatts and improve the efficiency of the system (NNSA/NSO 2010c). However, to utilize any capacity above the current level of 36 megawatts, DOE/NNSA would need to purchase additional power from a supplier and could seek to negotiate additional power through an offsite commercial provider, such as NV Energy or Valley Electric Association, if the onsite solar power generation facility is not constructed. If additional power is available from these outside commercial providers, the NNSS’s distribution system would be adequate to meet all projected demands, and no adverse impacts are expected. However, it is not known whether these commercial providers would be able to accommodate NNSS’s additional power demands at that time.

Under the Expanded Operations Alternative, DOE/NNSA may allow the construction and operation of one or more solar power generation facilities similar to the facility described under the No Action Alternative, but with a net generating capacity of approximately 1,000 megawatts. If these facilities were constructed, DOE/NNSA would likely seek to purchase a portion of the facilities’ power, while the balance would be exported to the commercial power grid. This arrangement would allow NNSS’s electrical distribution system to meet all projected demands, and no adverse impacts are expected. Such a power-sharing agreement would also enable the NNSS to better meet its goals for use of renewable energy sources, as well as reduce the NNSS’s reliance on fossil-fuel-generated power, resulting in an indirect beneficial impact on air quality and other environmental resources.

In addition, under the Expanded Operations Alternative, DOE/NNSA would construct a 5-megawatt photovoltaic solar power generation facility near the Area 6 Construction Facilities. While this project would result in a temporary additional demand for electrical power during construction (covered within the increases estimated under this alternative), it would later provide an additional source of power for the NNSS distribution system and further DOE/NNSA’s progress toward reducing dependence on fossil-fuel-based electricity.

DOE/NNSA would also evaluate the feasibility of demonstrating a pilot-scale, enhanced geothermal power system (also referred to as a “Geothermal Demonstration Project”). The primary objective would be to demonstrate the viable recovery of a practical operating level energy (5 to 50 megawatts) from rock that is hot (greater than 180 degrees Celsius [°C]), but does not contain mobile water. The size of the pilot-scale geothermal power system would be unique to each site’s geothermal characteristics and based on the optimal balance of temperature, rock reservoir size, heat exchange rate, water pressure, and flow rate, among other factors. If this pilot-scale Geothermal Demonstration Project were found to be technically feasible, it would then serve as a testing facility for improvements applicable to similar systems elsewhere, as well as supply some additional electrical power to the NNSS. A decision on the best location for a geothermal power system would depend on a combination of the system’s power generation potential, environmental constraints, and economic considerations. Because there are no location-specific proposals for development of a geothermal power system on the NNSS at this time, additional NEPA review would be required before such work could be conducted.

Liquid Fuels. DOE/NNSA is proposing new or expanded facilities in locations including Areas 6, 12, 16, 17, and 23 (Mercury), as well as Desert Rock and Pahute Mesa Airstrips. Section 5.1.2.1 provides a detailed description of facility sizes, configurations, and locations. All construction or renovation activities would result in temporary increases in liquid fuel demand. In some cases, long-term increases
in total fuel usage may be required to operate additional buildings and equipment and meet the greater vehicle fuel needs associated with the increased frequency of certain experiments and training activities. However, the planned consolidation of certain functions (e.g., consolidation of security functions in Area 23) would reduce the need to travel between locations, thereby reducing associated vehicle requirements and fuel consumption. All new buildings are also expected to be more fuel-efficient on a square-foot basis due to the inclusion of “green” technologies in building design. As noted in Chapter 3 of this SWEIS, some other facilities are still in the conceptual planning phase and would be analyzed in future NEPA documents when planning and design have evolved further.

To account for changes in building square footage, the timing of construction projects, implementation of energy efficiency measures, and an anticipated 25 percent increase in NNSS workforce numbers, DOE/NNSA estimates that annual liquid fuel demand would increase by no more than 25 percent from that analyzed under the No Action Alternative in any year. While additional demand associated with petroleum-based fuels (heating oil, #2 diesel, unleaded gasoline) if they could not be configured for alternative fuels. Table 5–7 presents estimated annual liquid fuel demand under the Expanded Operations Alternative.

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2 Red Dye Fuel Oil for Heating</td>
<td>83,000 gallons</td>
</tr>
<tr>
<td>Unleaded Gasoline</td>
<td>534,000 gallons</td>
</tr>
<tr>
<td>Ethanol/E85</td>
<td>271,000 gallons</td>
</tr>
<tr>
<td>#2 Diesel</td>
<td>81,000 gallons</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>429,000 gallons</td>
</tr>
</tbody>
</table>

New facilities with boilers or liquid-fuel-fired heating units would include adjacent fuel storage tanks in their designs. DOE/NNSA would also retain the vehicle service stations and the Area 6 bulk storage tanks (kept filled to 80 percent capacity) described under the No Action Alternative. Given the volume of existing storage tanks and existing commercial supply arrangements, DOE/NNSA does not foresee difficulty in obtaining liquid fuels from regional suppliers to meet its needs. The NNSS’s projected annual fuel demands would make up a very small proportion of the current, total fuel use in the state for most liquid fuels (e.g., approximately 0.05 percent of unleaded gasoline use) and are not expected to strain local and regional fuel supply networks (NSOE 2009). However, the NNSS is a major consumer of biodiesel in Nevada, making up approximately 60 percent of the statewide total demand of 575,000 gallons (NSOE 2009); under this alternative, DOE/NNSA would increase consumption of biodiesel to about 75 percent. Although not anticipated, if demand were to exceed regional supply, the NNSS could temporarily switch to petroleum-based diesel for most applications until biodiesel is available again.

Construction of one or more commercial solar power generation facilities with a 1,000-megawatt combined capacity would result in large numbers of personal vehicles, construction equipment, and diesel generators operating on the NNSS for up to 42 months. However, these activities are not expected to use NNSS fuel supplies; fuel for this activity would be the responsibility of the commercial entity conducting the construction. Similarly, small quantities of fuel may be needed for operation of the commercial solar power generation facilities (supporting heaters, emergency generators, etc.), but this demand would be met by the commercial operator of the facility.

Construction and operation of the 5-megawatt photovoltaic solar power generation facility in Area 6 and the Geothermal Demonstration Project (no specific location proposed at this time) would also use small quantities of liquid fuel to supply emergency generators, heaters, and/or boilers. DOE/NNSA estimates
that the fuel demand from these activities would be captured within the 25 percent overall demand increase associated with this alternative.

Energy Conservation. DOE/NNSA would continue to identify and implement the energy conservation measures and renewable energy projects described under the No Action Alternative. These initiatives would serve to reduce consumption of electrical power and liquid fuels on a per-unit basis, suggesting that the estimates for total consumption under this alternative are conservative in nature and would potentially avoid adverse impacts related to energy capacity. These measures would also result in a greater proportion of energy use coming from renewable sources, reducing dependence on fossil fuels, and potentially resulting in indirect beneficial impacts on air quality and other environmental resources.

5.1.2.2.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, the NNSS would operate below current levels, and a number of facilities would be decommissioned, thereby reducing energy needs. Conservation and renewable energy goals would continue to be pursued, further reducing energy demand.

DOE/NNSA would continue to maintain, repair, and modify operating facilities and infrastructure, as needed and within funding limits, and would conduct small projects to maintain the present capabilities of DOE/NNSA NSO facilities (described under the No Action Alternative). Under the Reduced Operations Alternative, however, all activities would cease in the northwestern portion of the NNSS within Areas 18, 19, 20, 29, and 30, with the exception of maintenance and operation of the Echo Peak, Motorola, and Shoshone communications facilities; the Echo Peak, Castle Rock, and Stockade Wash Substations, including electrical transmission lines interconnecting these substations; and Well 8. DOE/NNSA would continue environmental restoration, environmental monitoring, site security operations, and military training and exercises within these areas. No infrastructure projects would be conducted in these northwestern areas beyond maintaining mission-essential facilities and critical electrical and communication systems. The Reduced Operations Alternative also includes a 100-megawatt commercial solar power generation facility in Area 25.

Additional information on energy use (electrical and liquid fuels) and energy conservation and efficiency is provided below.

Electrical Energy. Under the Reduced Operations Alternative, net NNSS power demand would be reduced as numerous activities across the NNSS were scaled back or eliminated. Based on a projected 10 percent decrease in staffing at the NNSS and the eventual closure of several facilities, DOE/NNSA estimated that average power demand would decrease by 10 percent (to 20 megawatts) compared to demand under the No Action Alternative, and peak demand would decrease by 10 percent (to 27 megawatts). A 10 percent decrease from DOE/NNSA’s 2009 average electrical demand of 85,600 megawatt-hours would reduce demand to approximately 76,140 megawatt-hours. During 2009, NV Energy and Valley Electric Association provided about 21,675,000 megawatt-hours, collectively. Under the Reduced Operations Alternative, use of electricity would represent approximately 0.35 percent of the regional electrical demand (NSOE 2010). These projected demand reductions, along with ongoing implementation of energy efficiency measures, would make the current distribution system capacity of 36 megawatts adequate for both average and peak power demands.

As noted under other alternatives, any reduction in power to the NNSS from commercial suppliers would reduce the effective power supply on the NNSS, which would make adverse effects (e.g., voltage fluctuations and temporary loss of service) possible, but still unlikely. In addition, the physical condition and reliability of the NNSS distribution system would deteriorate over time, although basic maintenance would continue under this alternative. If basic maintenance activities were insufficient to maintain system reliability, DOE/NNSA would pursue the more significant system upgrades (including replacement of some line sections) as described under the Expanded Operations Alternative, based on a future NEPA review and decision.
Under the Reduced Operations Alternative, DOE/NNSA may allow construction and operation of a solar power generation facility similar to that described under the No Action Alternative. However, the size of this facility would be reduced, resulting in a net generating capacity of approximately 100 megawatts. If this facility were constructed, DOE/NNSA would likely seek to purchase a portion of this facility’s power, and the balance would be exported to the commercial power grid. This arrangement would allow NNSS’s distribution system to meet all projected demands with more confidence, and no adverse impacts are expected. Such a power-sharing agreement would also enable the NNSS to better meet its goals for use of renewable energy sources by reducing the NNSS’s reliance on fossil fuel-generated power, resulting in an indirect beneficial impact on air quality and other environmental resources.

Liquid Fuels. Under the Reduced Operations Alternative, liquid fuel demand from all uses would decrease as activity and staffing levels were reduced. DOE/NNSA estimates that demand for all fuel types would decrease by approximately 10 percent from the levels seen in the No Action Alternative. Table 5–8 presents estimated annual fuel demand under the Reduced Operations Alternative.

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2 Red Dye Fuel Oil for Heating</td>
<td>59,000 gallons</td>
</tr>
<tr>
<td>Unleaded Gasoline</td>
<td>384,000 gallons</td>
</tr>
<tr>
<td>Ethanol/E85</td>
<td>195,000 gallons</td>
</tr>
<tr>
<td>#2 Diesel</td>
<td>59,000 gallons</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>309,000 gallons</td>
</tr>
</tbody>
</table>

Given the volume of existing storage tanks (described under the No Action Alternative) and existing commercial supply arrangements, DOE/NNSA does not foresee difficulty in obtaining liquid fuels from regional suppliers to meet its needs. The NNSS’s projected annual fuel demands would make up a very small proportion of current, total fuel use in the state for most liquid fuels (for example, less than 0.04 percent of unleaded gasoline use) and are not expected to strain local and regional fuel supply networks (NSOE 2009). However, the NNSS is a major consumer of biodiesel in Nevada, making up approximately 60 percent of the statewide total demand of 575,000 gallons (NSOE 2009); under this alternative, DOE/NNSA would decrease consumption of biodiesel to about 54 percent. Although not anticipated, if demand were to exceed regional supply, the NNSS could temporarily switch to petroleum-based diesel for most applications until biodiesel is available again.

Construction of a commercial 100-megawatt solar power generation facility would result in large numbers of personal vehicles, construction equipment, and diesel generators operating on the NNSS for up to 32 months. However, these activities are not expected to use NNSS fuel supplies; fuel for this activity would be the responsibility of the commercial entity conducting the construction. Similarly, small quantities of fuel may be needed for operation of the solar power generation facility (supporting heaters, emergency generators, etc.), but this demand would be met by the commercial operator of the facility.

Energy Conservation. DOE/NNSA would continue to identify and implement the energy conservation measures and renewable energy projects described under the No Action Alternative. These initiatives would reduce consumption of electrical power and liquid fuels on a per-unit basis, suggesting that the estimates for total consumption under this alternative are conservative in nature, and would potentially avoid adverse impacts related to energy capacity. These measures would also result in a greater proportion of energy use coming from renewable sources, reducing dependence on fossil fuels, and potentially resulting in indirect beneficial impacts on air quality and other environmental resources.
5.1.3 Transportation and Traffic

Section 5.1.3.1 evaluates both radiological and nonradiological impacts from shipment of radioactive waste to the NNSS, onsite shipment of radioactive waste, and shipment of other radioactive materials to and from the NNSS; only nonradiological impacts would result from shipment of nonradioactive materials. Radiological impacts are those associated with the effects of low levels of radiation emitted during incident-free transportation and those resulting from the accidental release of radioactive materials; radiological impacts are expressed as additional latent cancer fatalities (LCFs). Nonradiological impacts are independent of the nature of the cargo being transported and are expressed as traffic accident fatalities when there is no release of radioactive material. Note that all shipments must meet U.S. Department of Transportation (DOT) regulations, and the packaging of radioactive materials must meet U.S. Nuclear Regulatory Commission regulations, as discussed in Appendix E, Sections E.3.1 and E.3.2. NNSS shipments have never exceeded regulatory requirements for transportation radiation limits.

Section 5.1.3.2 discusses the traffic impacts that would result from changes in the current numbers of personnel trips and trucks transporting radioactive and nonradioactive materials due to the differing activity levels among alternatives. Traffic impacts are expressed as the percent change in the number of onsite and regional (i.e., offsite) daily vehicle trips and changes in roadway levels of service associated with transporting personnel, materials, and waste.

The following criteria are used to analyze the risks of potential transportation activities during incident-free operations and accidents:

- Radiation dose and risk to the public, including cumulative effects on the population and effects on maximally exposed individuals (MEIs)
- Radiation dose and risk to workers, including cumulative effects on the worker population and effects on MEIs
- Number of traffic fatalities resulting from traffic accidents (not related to the radioactive cargo)

These criteria are used to evaluate potential impacts on onsite and regional traffic conditions:

- Percent change in average daily traffic for onsite and regional traffic conditions
- Degree of change in the volume-to-capacity and resulting level of service for key roadways under regional traffic conditions

Increases in nonradioactive pollutants from traffic emissions are discussed in Section 5.1.8. Appendix E contains a more detailed description of the transportation analysis and results.
5.1.3.1 Transportation

Methodology and Assumptions. Shipping packages containing radioactive materials emit low levels of radiation; the amount of radiation depends on the kind and amount of transported materials. DOT regulations (49 CFR Part 173 Subpart I) require shipping packages containing radioactive materials to have sufficient radiation shielding to limit the radiation to 10 millirem per hour at a distance of 6.6 feet from the transporter. For incident-free transportation, the potential human health impacts of the radiation field surrounding the transportation packages were estimated for transportation workers and the general population along the route (off-traffic, or off-link), as well as for people sharing the route (in-traffic or on-link) and at rest areas and other stops along the route. The Radioactive Material Transportation Risk Assessment Code 6 (RADTRAN) computer program (SNL 2009b) was used to estimate the impacts on transportation workers, the public, and an MEI (e.g., a person stuck in traffic, a gas station attendant, an inspector).

Transportation accidents involving radioactive materials present both nonradiological and radiological risks to workers and the public. Nonradiological impacts of transportation accidents include traffic accident fatalities. Radioactive material would be released during transportation accidents only when the package carrying the material is subjected to forces that exceed the package design standard. Only a severe fire and/or a powerful collision, both events of extremely low probability, could damage a transportation package of the type used to transport radioactive material to the extent that radioactivity would be released to the environment with significant consequences.

The radiological impact of a specific accident is expressed in terms of probabilistic risk (i.e., dose-risk), which is defined as the accident probability (accident frequency) multiplied by the accident consequences (dose). The overall radiological risk estimate is obtained by summing the individual radiological risks from all reasonably conceivable accidents. Analysis of accident risks accounts for a spectrum of accident severities, ranging from high-probability accidents of low severity (e.g., fender benders) to hypothetical high-severity accidents that have a low probability of occurrence. In addition to calculating the radiological risks that would result from all reasonably conceivable accidents during transportation of radioactive materials, this SWEIS assesses the highest consequences of a maximum reasonably foreseeable accident with a radioactive release frequency greater than 1×10^{-7} (1 chance in 10 million) per year in an urban or suburban population area along the route. This latter analysis used the
Risks and Consequences of Radioactive Material Transport (RISKIND) computer program to estimate doses to individuals and populations (Yuan et al. 1995).

Incident-free radiological health impacts are expressed in terms of additional LCFs. Radiological health impacts from accidents are also expressed as additional LCFs. Nonradiological accident impacts are expressed as additional immediate (traffic accident) fatalities. LCFs associated with radiological exposure were estimated by multiplying the occupational (worker) and public dose by a dose conversion factor of 0.0006 LCFs per rem or person-rem of exposure (DOE 2003d). The health impacts associated with the shipment of radioactive wastes were calculated assuming that all wastes would be transported using either truck or rail transport. Health impacts associated with the shipment of special nuclear material (SNM) and nuclear weapons were calculated assuming these materials would be transported by DOE safeguards transporters.

In determining transportation risks, per-shipment risk factors were calculated for incident-free and accident conditions using the RADTRAN 6 computer program (SNL 2009b) in conjunction with the Transportation Routing Analysis Geographic Information System (TRAGIS) computer program (Johnson and Michelhaugh 2003) to choose transportation routes in accordance with DOT regulations. The TRAGIS program provides population density estimates for rural, suburban, and urban areas along the routes based on the 2000 U.S. census. The population density estimates were escalated to 2016 population density estimates using state-level 2000 and 2010 census data and assuming population growth between 2000 and 2010 would continue through 2016. The region of influence for this analysis is the affected population, including individuals living within 0.5 miles of each side of the road or rail line for incident-free operations and, for accident conditions, individuals living within 50 miles of the accident. The MEI was assumed to be a receptor located 330 feet directly downwind from the accident. Additional details on the analytical approach and on modeling and parameter selections are provided in Appendix E of this SWEIS.

Route-specific accident and fatality rates for commercial truck transports and rail shipments were used to determine the risk of traffic accident fatalities (Saricks and Tompkins 1999) after being adjusted for possible under-reporting (UMTRI 2003). Statistics specific to DOE safeguards transporters are used for safeguards transporters shipments (Phillips, Clauss, and Blower 1994). The methodology for obtaining and using accident and fatality rates is provided in Appendix E, Section E.6.2.

This NNSS SWEIS presents transportation analyses of two cases: a Constrained Case and an Unconstrained Case.

Maximally Exposed Individual (MEI) – A hypothetical individual whose location and habits result in the highest total radiological exposure (and thus dose) from a particular source for all relevant exposure routes (e.g., inhalation, ingestion, direct exposure).

Rem – A unit of radiation dose used to measure the biological effects of different types of radiation on humans. The dose in rem is estimated using a formula that accounts for the type of radiation, the total absorbed dose, and the tissues involved. One thousandth of a rem is a millirem. The average dose to an individual in the United States received primarily from natural background sources of radiation is about 310 millirem per year; the national average, including medical sources, is about 620 millirem per year.

Person-rem – A unit of collective radiation dose applied to a population or group of individuals. It is calculated as the sum of the estimated doses, in rem, received by each individual of the specified population. For example, if 1,000 people each received a dose of 1 millirem, the collective dose would be 1 person-rem (1,000 persons × 0.001 rem).

Latent cancer fatalities (LCFs) – Deaths from cancer resulting from, and occurring sometime after, exposure to ionizing radiation or other carcinogens. This site-wide environmental impact statement focuses on LCFs as the primary means of evaluating health risk from radiation exposure. The values reported for LCFs are the increased risk of a fatal cancer for an MEI or noninvolved worker or the increased risk of a single fatal cancer occurring in an identified population.
Constrained Case

For the Constrained Case, DOE/NNSA was assumed to maintain current operational practices by avoiding transporting waste and materials across the Colorado River near the Hoover Dam and on the interstate system within Las Vegas. It was further assumed that shipments approaching the NNSS from the south (via Interstate 40 [I-40]) would use U.S. Route 95 to Nevada State Route 164, to I-15, to Nevada State Route 160, to U.S. Route 95. Shipments approaching the NNSS from the north would use U.S. Routes 50, 6, and 95. Shipments from the TTR would use U.S. Routes 6 and 95. The Constrained Case is analyzed for all alternatives and addresses both radioactive waste and other radioactive material transports.

As appropriate, for each SWEIS alternative, transportation impacts were evaluated for transport of (1) LLW and MLLW to the NNSS for disposal and from the NNSS to a treatment facility and then returned; (2) transuranic (TRU) waste from the NNSS to Idaho National Laboratory (INL) for treatment and certification; (3) SNM to and from the NNSS; (4) nuclear weapons to and from the NNSS for exchange of limited life components; (5) nuclear weapons to the NNSS for dismantlement and subsequent transport of plutonium to Pantex, canned subassemblies to the Y-12 Plant, and milliwatt generators to Los Alamos National Laboratory; (6) sealed sources from San Antonio, Texas, to the NNSS; and (7) nonradioactive hazardous and sanitary waste and recyclables from the NNSS. The numbers of transports of LLW and MLLW to the NNSS were based on DOE/NNSA projections as estimated by waste generators (see Appendix E, Table E–3). The numbers of transports for other wastes and materials were based on programmatic needs as described in Appendix A.

For the Expanded Operations Alternative, LLW and MLLW volumes from waste generators were determined using data from the Waste Management Information System. These waste volumes were apportioned to containers and number of shipments using historical data regarding the types of containers typically received (note that containers may be used to transport waste to the NNSS that were not assumed as part of this analysis, as described in Appendix E, Table E–4). These volumes were apportioned to regions of the United States (see Appendix E, Figure E–2) based on the locations of the waste generators. The following regions were used for analyzing radioactive waste shipments: Northeast, South, Southeast, Upper Midwest, Southwest, Mountain West, West, and Northwest (see Appendix E, Figure E–2, for a depiction of the regions). The transportation analysis was based on the regional waste volume totals so that waste generators would not be limited to those obtained from the Waste Management Information System. The waste volume from each region was assumed to be received from a regional location that would provide a conservative estimate of the impacts from transporting from that region based on distance traveled and population density along the route. This approach was used because not all potential waste generators may be identified in the Waste Management Information System and to account for the amount of uncertainty in the magnitude of waste volume projections.

For the No Action Alternative and Reduced Operations Alternative, it was assumed that the total amount of LLW to be received over a 10-year period, 15,000,000 cubic feet, would be based on the average annual volumes received between FY 1997 and the end of FY 2010. The volume of MLLW analyzed under the No Action and Reduced Operations Alternatives is 900,000 cubic feet, which was based on the permitted volume of Cell 18 at the Area 5 Radioactive Waste Management Complex (RWMC) (the actual permitted volume is 899,996 cubic feet). This volume was apportioned to the waste generators shown in Appendix E, Table E–3, using the percentage of the total volume each waste generator contributed to the waste projections under the Expanded Operations Alternative.
DOE has completed NEPA documentation for other projects in the DOE Complex in which waste was projected to be transported to the NNSS; these documents have not yet been included in the Waste Management Information System. These waste streams are included under the Expanded Operations Alternative with their transportation impacts shown separately. These waste streams include conversion products from Portsmouth, Ohio, and Paducah, Kentucky (DOE 2004e, 2004d), decommissioning waste from the West Valley Demonstration Project (DOE 2010c), and uranium-233 downblending waste from Oak Ridge National Laboratory (DOE 2010b).

To assess incident-free and transportation accident impacts related to radioactive waste shipments, radioactive waste shipments were assumed to be conducted by truck or by a combination of rail and truck. Rail transport to the NNSS is not possible; therefore, rail cargo must be transferred to trucks at a transfer station. DOE/NNSA is not proposing to construct or procure construction of any new rail-to-truck transfer facilities to accommodate shipments of radioactive waste or materials under any of the alternatives considered in this SWEIS. For purposes of analysis only for the Constrained Case, two transfer station sites were assumed: Parker, Arizona, and West Wendover, Nevada. These stations are those outside of Las Vegas, but nearest to the NNSS, at which transfers have occurred in the past. The overall transportation impacts associated with using transfer stations at Parker and West Wendover would be comparable to other locations in the vicinity of the NNSS. For instance, use of a transfer station at Arden, south of Las Vegas, would yield comparable results because it is located along the truck route between Parker and the NNSS. For LLW and MLLW waste shipments, Appendix E, Figure E–3, depicts the analyzed truck and rail routes from each region of the United States while Appendix E, Figure E–4, depicts the analyzed truck routes from the transfer stations at Parker, Arizona, and West Wendover, Nevada, to the NNSS.

The NNSS would send TRU waste to INL for treatment and certification before shipping it to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Rail transport was not analyzed for TRU waste. The INL contractor would assume responsibility for treating, certifying, and transporting the TRU waste to WIPP.

Nuclear weapons and SNM would be transported to and from the NNSS by safeguards transporters. Types of SNM are identified in Appendix A, Section A.2.1.1. Truck routes between specific origination and destination sites were analyzed for the transportation of SNM. For nuclear weapons, routes from different regions of the United States were analyzed, and the route that yielded the highest impacts was used for the analysis.

Unconstrained Case. In the Unconstrained Case, both all truck and combined rail-truck transportation were analyzed to consider all routes within the bounds of the existing regulatory parameters and legal constraints, as well as to reflect major changes and upgrades made to the Las Vegas Valley highway infrastructure over the past 15 years.

(a) All truck: Impacts were analyzed for two route segments. The first segment is from the originating regional site to an entry point to Las Vegas (see Appendix E, Figure E–5). These entry points are Henderson (at the intersection of I-515 and U.S. Route 95), Apex (on I-15 north of Las Vegas), and Arden (on I-15 just south of the junction of I-15 and I-215). Only some of the offsite shipments were analyzed to each entry point, with the sum entering all three points being 100 percent of the shipments. This provides a more realistic analysis such that truck shipments would only enter the Las Vegas area from a direction that makes the most sense (for example, shipments from the West region would not go to Henderson, but would enter the Las Vegas area at Arden). The second segment consists of different routes from these entry points to the NNSS. It was assumed there would be no route limitations in the Las Vegas area; shipments could proceed through or around Las Vegas on several different possible routes, as depicted in **Figure 5–4**. Truck routes were analyzed in segments to make it easier to analyze multiple routes (different segments can be added together).
Figure 5–4 Transportation Routes Analyzed in Las Vegas for the Transport of Low-Level and Mixed Low-Level Radioactive Waste for the Unconstrained Case

- Rail-Truck: Rail-truck transportation impacts were also analyzed by route segment. The first segment is rail transport from each region of the United States to a transfer station location in the Las Vegas region. All of the rail shipments were assumed to be transported to five different transfer station locations, where they would be transferred to truck. As depicted in Figure 5–5, these five locations are West Wendover, Apex, and Arden, Nevada; and Parker and Kingman, Arizona. [Note: In practice, the location at which shipments would be received would be dependent on arrangements made by the shipper. The actual impacts would fall within the range of results determined in this analysis. In addition, as noted above, DOE/NNSA is not proposing to construct or procure construction of any new rail-to-truck transfer facilities to accommodate shipments of radioactive waste or materials under any of the alternatives considered in this SWEIS.] Appendix E, Figures E–7 and E–8, show the rail routes to each transfer station location. When analyzing rail-to-truck transportation, truck transport from an analyzed transfer station to a Las Vegas entry point (identified in (a) above) was evaluated as a segment, as depicted in Appendix E, Figure E–9. Note that the truck segment from the transfer station to the entry point is only applicable to West Wendover, Parker, and Kingman because the transfer stations at Apex and Arden are already located at an entry point to Las Vegas. Truck transport from West Wendover would proceed to the Apex entry point; truck transport from Parker would proceed to Henderson via U.S. Route 95; and truck transport from Kingman would proceed to Henderson via U.S. Route 93 over the bridge downstream of the Hoover Dam. The final segment is truck travel from a Las Vegas entry point to the NNSS as described in (a) above and depicted in Figure 5–4.
Figure 5–5 Transfer Station Locations and Analyzed Routes from These Locations to Las Vegas for the Unconstrained Case
In addition to analyzing the use of transfer stations in the Las Vegas region, truck-to-rail transfer station locations were analyzed for three different regions of the United States: Southwest region, Northeast region, and West region (see Appendix E, Figure E–2, for a depiction of the regions). This analysis was performed to provide representative impacts associated with transporting LLW/MLLW from generating sites in these regions to a regional transfer station. These regions were selected because there are known possible LLW and/or MLLW generating sites in these regions that do not have direct access to rail.

Comparison of Impacts. Table 5–9 provides the estimated number of waste truck shipments under each alternative from each region, by container type for LLW and MLLW. A shipment is defined as the amount of waste transported on a single truck or a single railcar. The number of rail shipments would be half of the number of truck shipments. The different types of containers shown in the table are described in Appendix E, Section E.4.2.

TRU waste would be generated at the NNSS under all alternatives. Projected TRU waste shipments would include waste in storage, TRU waste generated by the Joint Actinide Shock Physics Experimental Research Facility (JASPER) operations from 2011 through 2020, and waste from environmental restoration activities at the TTR and the Nevada Test and Training Range. Table 5–10 shows the number of shipments of TRU waste, radioisotopic thermoelectric generators, sealed sources, SNM, and nuclear weapons under each alternative.

Impacts are presented for the Constrained Case for the No Action, Reduced Operations, and Expanded Operations Alternatives for transport of all radioactive waste and materials. Tables 5–11 and 5–12 present the estimated impacts associated with the Constrained Case for each alternative for radioactive waste and radioactive materials, respectively. Section 5.1.3.1.2.2 presents the estimated impacts associated with the Unconstrained Case.
Table 5–9 Estimated Numbers of Truck Shipments of Low-Level and Mixed Low-Level Radioactive Waste Under Each Alternative Over a 10-Year Period *

<table>
<thead>
<tr>
<th>In-State/Out-of-State Source</th>
<th>Total Number of Shipments</th>
<th>Container Type</th>
<th>Type B Container</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Action and Reduced Operations Alternative</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total – Out-of-State Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>140</td>
<td>14</td>
<td>89</td>
</tr>
<tr>
<td>South</td>
<td>8,200</td>
<td>520 d</td>
<td>1,500</td>
</tr>
<tr>
<td>Southeast</td>
<td>120</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>Upper Midwest</td>
<td>9,700</td>
<td>490</td>
<td>2,500</td>
</tr>
<tr>
<td>Southwest</td>
<td>3,100</td>
<td>3,100</td>
<td>9</td>
</tr>
<tr>
<td>Mountain West</td>
<td>1,200</td>
<td>1</td>
<td>320</td>
</tr>
<tr>
<td>West</td>
<td>1,100</td>
<td>670</td>
<td>120</td>
</tr>
<tr>
<td>Northwest</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Other Out-of-State Shipments f</td>
<td>1,600</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total – In-State f</td>
<td>2,300</td>
<td>790</td>
<td>0</td>
</tr>
<tr>
<td>Total – All g</td>
<td>27,000</td>
<td>5,600</td>
<td>4,600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expanded Operations Alternative</th>
<th>Total – Out-of-State Waste</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast</td>
<td>290</td>
<td>31</td>
<td>180</td>
</tr>
<tr>
<td>South</td>
<td>19,000</td>
<td>2,800 d</td>
<td>3,100</td>
</tr>
<tr>
<td>Southeast</td>
<td>310</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Upper Midwest h</td>
<td>20,000</td>
<td>1,000</td>
<td>5,100</td>
</tr>
<tr>
<td>Southwest</td>
<td>7,800</td>
<td>7,800</td>
<td>20</td>
</tr>
<tr>
<td>Mountain West</td>
<td>3,100</td>
<td>1</td>
<td>1,200</td>
</tr>
<tr>
<td>West</td>
<td>3,000</td>
<td>2,200</td>
<td>250</td>
</tr>
<tr>
<td>Northwest</td>
<td>24</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Other Out-of-State Shipments i</td>
<td>26,000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total – In-State i</td>
<td>15,000</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Total – All j</td>
<td>95,000</td>
<td>15,000</td>
<td>10,000</td>
</tr>
</tbody>
</table>

N/A = not applicable.

a Number of rail shipments was assumed to be one-half of the number of truck shipments, except for the number of rail shipments for transporting depleted uranium conversion products (see footnote g).

b For purposes of analysis, it was assumed that bulk bags would be transported in International Organization for Standardization (Sealand) containers.

c A Type B container is used to transport remote-handled LLW or MLLW.

d Includes shipment of MLLW from the NNSS to the Oak Ridge, Tennessee, area for treatment, as well as return of the treated waste to the NNSS.

e Includes shipments analyzed in other NEPA documents, such as 1,026 truck shipments from Paducah, Kentucky, in the South region (DOE 2002e, 2004d) and 553 truck shipments from Portsmouth, Ohio, in the Upper Midwest region (DOE 2002e, 2004e). These shipments were assumed to consist of Sealand containers transporting depleted uranium conversion products.

f Includes radioactive waste generated by environmental restoration activities at the Nevada Test and Training Range and Tonopah Test Range (230 shipments of Sealand containers for the No Action and Reduced Operations Alternatives and 13,000 shipments of Sealand containers for the Expanded Operations Alternative).

g Total may not equal the sum of contributions due to rounding.

h In addition to shipments estimated from the DOE Waste Management Information System, these numbers include estimated shipments of waste from operation and decontamination and decommissioning of the U.S. Enrichment Corporation lead cascade fuel enrichment facility and operation of the U.S. Enrichment Corporation fuel enrichment full-scale facility.

i Includes shipments analyzed in other NEPA documents as follows: 12,243 truck shipments from the West Valley Demonstration Project in the Northeast region (DOE 2010c); 367 shipments of uranium-233 downblending waste from Oak Ridge National Laboratory in the South region (DOE 2010b); and uranium oxide conversion product consisting of 7,240 truck shipments from Paducah, Kentucky, in the South region (DOE 2004d) and 5,834 truck shipments from Portsmouth, Ohio, in the Upper Midwest region (DOE 2004e). For the uranium oxide conversion products, the number of truck shipments is based on depleted uranium hexafluoride cylinders being filled with uranium oxide conversion product, two cylinders per truck. The numbers of rail shipments required for shipment of uranium oxide conversion products are 5,963 from Paducah (DOE 2004d) and 3,216 from Portsmouth (DOE 2004e). This does not include shipments that would occur after 2020.

j The total values provided for each container type include 26,000 ‘Other Out-of-State Shipments.’ See footnote i for details.
Table 5–10 Estimated Numbers of Shipments of Transuranic Waste, Radioisotopic Thermoelectric Generators, Sealed Sources, and Special Nuclear Material Over a 10-Year Period *

<table>
<thead>
<tr>
<th>Origin or Activity</th>
<th>Number of Shipments No Action</th>
<th>Number of Shipments Expanded Operations</th>
<th>Number of Shipments Reduced Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transuranic Waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JASPER b</td>
<td>16</td>
<td>36</td>
<td>11</td>
</tr>
<tr>
<td>Environmental Restoration</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Radioisotopic Thermoelectric Generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norfolk, Virginia</td>
<td>3</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Sealed Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Antonio, Texas</td>
<td>120</td>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>Special Nuclear Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLNL (Global Security SNM)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>LLNL (HEU)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LANL (Uranium-233)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>INL (ZPPR)</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>INL (ZPPR) – plutonium material</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>ORNL (Uranium-233)</td>
<td>0</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>LLNL (target material for JASPER)</td>
<td>120</td>
<td>240</td>
<td>60</td>
</tr>
<tr>
<td>Nuclear Weapons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport to/from the NNSS</td>
<td>0</td>
<td>8,200 c</td>
<td>0</td>
</tr>
<tr>
<td>Weapon Component Disposition d</td>
<td>0</td>
<td>2,010</td>
<td>0</td>
</tr>
</tbody>
</table>

* Number of shipments are for one-way transport. The analysis accounts for any return trips or if material is forwarded to another site.

b Includes number of shipments related to transuranic waste in storage.

c Includes 100 shipments per year for transporting nuclear weapons to the NNSS for disassembly and 360 shipments per year of nuclear weapons to the NNSS to support component exchange, as well as return shipments of refurbished weapons.

d Includes 100 shipments per year of canned subassemblies to the Y-12 National Security Complex and plutonium to the Pantex Plant, as well as 1 shipment per year of milliwatt generators to LANL.

HEU = highly enriched uranium; INL = Idaho National Laboratory; JASPER = Joint Actinide Shock Physics Experimental Research Facility; LANL = Los Alamos National Laboratory; LLNL = Lawrence Livermore National Laboratory; NNSS = Nevada National Security Site; ORNL = Oak Ridge National Laboratory; SNM = special nuclear material; ZPPR = zero power plutonium reactor.
<table>
<thead>
<tr>
<th>Region</th>
<th>Transport Mode</th>
<th>Number of Shipments</th>
<th>One-Way Miles Traveled (million)</th>
<th>One-Way Miles Traveled (million)</th>
<th>Incident-Free Conditions</th>
<th>Accident Conditions</th>
<th>Roundtrip Nonradiological Risk b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crew Risk b</td>
<td>Population Risk b</td>
<td>Radiological Risk b</td>
</tr>
<tr>
<td>Northeast</td>
<td>Truck</td>
<td>140</td>
<td>0.7</td>
<td>0.4</td>
<td>8.5</td>
<td>5 x 10^-3</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>70</td>
<td>0.4</td>
<td>0.2</td>
<td>2.6</td>
<td>2 x 10^-3</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>220</td>
<td>0.4</td>
<td>0.3</td>
<td>3.5</td>
<td>2 x 10^-3</td>
<td>1.4</td>
</tr>
<tr>
<td>South</td>
<td>Truck</td>
<td>9,200</td>
<td>32.2</td>
<td>20</td>
<td>1,500</td>
<td>9 x 10^-3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>4,500</td>
<td>17.1</td>
<td>10.6</td>
<td>340</td>
<td>2 x 10^-3</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>13,700</td>
<td>22.1</td>
<td>13.7</td>
<td>560</td>
<td>3 x 10^-3</td>
<td>150</td>
</tr>
<tr>
<td>Southeast</td>
<td>Truck</td>
<td>120</td>
<td>0.5</td>
<td>0.3</td>
<td>6.8</td>
<td>4 x 10^-3</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>60</td>
<td>0.2</td>
<td>0.15</td>
<td>1.8</td>
<td>1 x 10^-3</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>180</td>
<td>0.3</td>
<td>0.19</td>
<td>2.7</td>
<td>2 x 10^-3</td>
<td>0.92</td>
</tr>
<tr>
<td>Upper Midwest</td>
<td>Truck</td>
<td>10,200</td>
<td>34.3</td>
<td>21.3</td>
<td>520</td>
<td>3 x 10^-3</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>5,100</td>
<td>16.7</td>
<td>10.4</td>
<td>120</td>
<td>7 x 10^-2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>15,300</td>
<td>22.2</td>
<td>13.8</td>
<td>210</td>
<td>1 x 10^-2</td>
<td>52</td>
</tr>
<tr>
<td>Southwest</td>
<td>Truck</td>
<td>3,100</td>
<td>4.4</td>
<td>2.7</td>
<td>65</td>
<td>4 x 10^-2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>1,600</td>
<td>2.7</td>
<td>1.7</td>
<td>22</td>
<td>1 x 10^-2</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>4,700</td>
<td>4.4</td>
<td>2.8</td>
<td>42</td>
<td>3 x 10^-3</td>
<td>15</td>
</tr>
<tr>
<td>Mountain West</td>
<td>Truck</td>
<td>1,200</td>
<td>1.6</td>
<td>1.0</td>
<td>28</td>
<td>2 x 10^-3</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>620</td>
<td>0.3</td>
<td>0.2</td>
<td>5.7</td>
<td>3 x 10^-3</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>1,900</td>
<td>1.3</td>
<td>0.8</td>
<td>22</td>
<td>1 x 10^-2</td>
<td>5.5</td>
</tr>
<tr>
<td>West</td>
<td>Truck</td>
<td>1,100</td>
<td>1.2</td>
<td>0.8</td>
<td>16</td>
<td>1 x 10^-2</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>530</td>
<td>0.5</td>
<td>0.3</td>
<td>5.2</td>
<td>3 x 10^-3</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>1,600</td>
<td>1.1</td>
<td>0.7</td>
<td>13</td>
<td>8 x 10^-3</td>
<td>4.7</td>
</tr>
<tr>
<td>Northwest</td>
<td>Truck</td>
<td>7</td>
<td>0.02</td>
<td>0.01</td>
<td>0.25</td>
<td>1 x 10^-3</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.08</td>
<td>5 x 10^-3</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.13</td>
<td>8 x 10^-3</td>
<td>0.04</td>
</tr>
<tr>
<td>Total – LLW/MLLW from out-of-state regions</td>
<td>Truck</td>
<td>25,100</td>
<td>74.8</td>
<td>46.48</td>
<td>2,100</td>
<td>1.3</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>12,500</td>
<td>38</td>
<td>23.6</td>
<td>500</td>
<td>3 x 10^-1</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>37,600</td>
<td>51.8</td>
<td>32.2</td>
<td>850</td>
<td>5 x 10^-1</td>
<td>230</td>
</tr>
<tr>
<td>Onsite</td>
<td>Truck</td>
<td>2,000</td>
<td>0.05</td>
<td>0.03</td>
<td>4.0</td>
<td>2 x 10^-3</td>
<td>1.5</td>
</tr>
<tr>
<td>ER Waste (TTR/Nevada Test and Training Range)</td>
<td>Truck</td>
<td>230</td>
<td>0.09</td>
<td>0.05</td>
<td>0.015</td>
<td>9 x 10^-3</td>
<td>0.0020</td>
</tr>
<tr>
<td>TRU waste c</td>
<td>Truck</td>
<td>22</td>
<td>0.03</td>
<td>0.02</td>
<td>1.1</td>
<td>6 x 10^-4</td>
<td>0.36</td>
</tr>
<tr>
<td>RTGs</td>
<td>Truck</td>
<td>3</td>
<td>0.01</td>
<td>0.01</td>
<td>0.37</td>
<td>2 x 10^-4</td>
<td>0.49</td>
</tr>
<tr>
<td>Total – radioactive waste transport</td>
<td>Truck</td>
<td>27,400</td>
<td>75.0</td>
<td>46.6</td>
<td>2,100</td>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Rail/Truck d</td>
<td>40,000</td>
<td>52.0</td>
<td>32.3</td>
<td>860</td>
<td>5 x 10^-1</td>
<td>230</td>
</tr>
<tr>
<td>Transport through Nevada c</td>
<td>Truck</td>
<td>25,100</td>
<td>8.2</td>
<td>5.1</td>
<td>210</td>
<td>1 x 10^-1</td>
<td>38</td>
</tr>
<tr>
<td>Region</td>
<td>Transport Mode</td>
<td>Number of Shipments</td>
<td>One-Way Kilometers Traveled (million)</td>
<td>One-Way Miles Traveled (million)</td>
<td>Incident-Free Conditions</td>
<td>Accident Conditions</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crew Risk</td>
<td>Dose (person-rem)</td>
<td>Population Risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk</td>
<td>(person-rem)</td>
<td>Risk</td>
</tr>
<tr>
<td>Northeast</td>
<td>Truck</td>
<td>300</td>
<td>1.4</td>
<td>0.9</td>
<td>18</td>
<td>1 x 10^4</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>Rail only a</td>
<td>150</td>
<td>0.7</td>
<td>0.5</td>
<td>5.3</td>
<td>3 x 10^3</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Rail/Train d</td>
<td>450</td>
<td>0.9</td>
<td>0.6</td>
<td>7.2</td>
<td>4 x 10^2</td>
<td>2.8</td>
</tr>
<tr>
<td>South</td>
<td>Truck</td>
<td>19,300</td>
<td>67.3</td>
<td>41.8</td>
<td>3,500</td>
<td>2</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Rail only b</td>
<td>9,600</td>
<td>36.2</td>
<td>22.5</td>
<td>700</td>
<td>4 x 10^1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Rail/Train d</td>
<td>28,900</td>
<td>46.7</td>
<td>29.0</td>
<td>1,200</td>
<td>7 x 10^3</td>
<td>310</td>
</tr>
<tr>
<td>Southeast</td>
<td>Truck</td>
<td>310</td>
<td>1.2</td>
<td>0.8</td>
<td>17</td>
<td>1 x 10^3</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>Rail only c</td>
<td>160</td>
<td>0.7</td>
<td>0.4</td>
<td>4.8</td>
<td>3 x 10^3</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Rail/Train d</td>
<td>470</td>
<td>0.8</td>
<td>0.5</td>
<td>7.2</td>
<td>4 x 10^3</td>
<td>2.5</td>
</tr>
<tr>
<td>Upper Midwest</td>
<td>Truck</td>
<td>20,100</td>
<td>67.6</td>
<td>42.0</td>
<td>1,000</td>
<td>6 x 10^1</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Rail only d</td>
<td>10,100</td>
<td>32.9</td>
<td>20.4</td>
<td>250</td>
<td>1 x 10^3</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Rail/Train d</td>
<td>30,200</td>
<td>43.8</td>
<td>27.2</td>
<td>410</td>
<td>2 x 10^4</td>
<td>100</td>
</tr>
<tr>
<td>Southwest</td>
<td>Truck</td>
<td>7,800</td>
<td>10.9</td>
<td>6.8</td>
<td>160</td>
<td>1 x 10^3</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Rail only e</td>
<td>3,900</td>
<td>6.9</td>
<td>4.3</td>
<td>56</td>
<td>3 x 10^2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Rail/Train d</td>
<td>11,700</td>
<td>11.1</td>
<td>6.9</td>
<td>110</td>
<td>6 x 10^2</td>
<td>37</td>
</tr>
<tr>
<td>Mountain West</td>
<td>Truck</td>
<td>3,100</td>
<td>4.0</td>
<td>2.5</td>
<td>64</td>
<td>4 x 10^2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Rail only f</td>
<td>1,600</td>
<td>0.8</td>
<td>0.5</td>
<td>14</td>
<td>8 x 10^3</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Rail/Train d</td>
<td>4,700</td>
<td>3.1</td>
<td>2.0</td>
<td>50</td>
<td>3 x 10^2</td>
<td>13</td>
</tr>
<tr>
<td>West</td>
<td>Truck</td>
<td>3,000</td>
<td>3.5</td>
<td>2.2</td>
<td>44</td>
<td>3 x 10^2</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Rail only g</td>
<td>1,500</td>
<td>1.5</td>
<td>0.9</td>
<td>15</td>
<td>9 x 10^3</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Rail/Train d</td>
<td>4,500</td>
<td>3.2</td>
<td>2.0</td>
<td>36</td>
<td>2 x 10^2</td>
<td>14</td>
</tr>
<tr>
<td>Northwest</td>
<td>Truck</td>
<td>24</td>
<td>0.06</td>
<td>0.04</td>
<td>0.7</td>
<td>4 x 10^4</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Rail only h</td>
<td>12</td>
<td>0.04</td>
<td>0.02</td>
<td>0.24</td>
<td>1 x 10^2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Rail/Train d</td>
<td>36</td>
<td>0.05</td>
<td>0.03</td>
<td>0.39</td>
<td>2 x 10^4</td>
<td>0.14</td>
</tr>
<tr>
<td>Total -LLW/MLLW from out-of-state regions</td>
<td>Truck</td>
<td>54,000</td>
<td>156</td>
<td>96.9</td>
<td>4,900</td>
<td>3</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>Rail only i</td>
<td>26,900</td>
<td>79.7</td>
<td>49.5</td>
<td>1,000</td>
<td>6 x 10^1</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>Rail/Train d</td>
<td>80,900</td>
<td>110</td>
<td>68.4</td>
<td>1,800</td>
<td>1</td>
<td>480</td>
</tr>
<tr>
<td>Onsite</td>
<td>Truck</td>
<td>2,300</td>
<td>0.06</td>
<td>0.04</td>
<td>4.2</td>
<td>2 x 10^4</td>
<td>1.5</td>
</tr>
<tr>
<td>ER Waste (TTR/Nevada Test and Training Range)</td>
<td>Truck</td>
<td>13,100</td>
<td>4.9</td>
<td>3.0</td>
<td>0.8</td>
<td>5 x 10^4</td>
<td>0.3</td>
</tr>
<tr>
<td>TRU waste j</td>
<td>Truck</td>
<td>42</td>
<td>0.05</td>
<td>0.03</td>
<td>2.1</td>
<td>1 x 10^3</td>
<td>0.7</td>
</tr>
<tr>
<td>RTGs</td>
<td>Truck</td>
<td>10</td>
<td>0.05</td>
<td>0.03</td>
<td>1.2</td>
<td>7 x 10^3</td>
<td>1.6</td>
</tr>
<tr>
<td>Paducah DUF6</td>
<td>Truck</td>
<td>7,200</td>
<td>20.4</td>
<td>12.7</td>
<td>120</td>
<td>7 x 10^2</td>
<td>80</td>
</tr>
<tr>
<td>DOE/EIS-359 k</td>
<td>Rail</td>
<td>2,900</td>
<td>9.9</td>
<td>6.2</td>
<td>370</td>
<td>2 x 10^2</td>
<td>14</td>
</tr>
<tr>
<td>Portsmouth DUF6</td>
<td>Truck</td>
<td>5,800</td>
<td>19.6</td>
<td>12.2</td>
<td>120</td>
<td>7 x 10^2</td>
<td>78</td>
</tr>
<tr>
<td>DOE/EIS-360 k</td>
<td>Rail</td>
<td>2,300</td>
<td>9.4</td>
<td>5.84</td>
<td>330</td>
<td>2 x 10^4</td>
<td>14</td>
</tr>
</tbody>
</table>
Environmental Consequences

Incident-Free Conditions

<table>
<thead>
<tr>
<th>Region</th>
<th>Transport Mode</th>
<th>Number of Shipments</th>
<th>One-Way Kilometers Traveled (million)</th>
<th>One-Way Miles Traveled (million)</th>
<th>Crew Dose (person-rem)</th>
<th>Risk</th>
<th>Population Dose (person-rem)</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Valley DOE/EIS-0226</td>
<td>Truck</td>
<td>12,000</td>
<td>48.0</td>
<td>29.9</td>
<td>230</td>
<td>1×10^2</td>
<td>64</td>
<td>4×10^3</td>
</tr>
<tr>
<td></td>
<td>Rail</td>
<td>6,100</td>
<td>26.5</td>
<td>16.5</td>
<td>9.3</td>
<td>6×10^4</td>
<td>14</td>
<td>8×10^3</td>
</tr>
<tr>
<td>ORNL (uranium-233) DOE/EA-1651</td>
<td>Truck</td>
<td>367</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>9.5</td>
<td>6×10^9</td>
</tr>
<tr>
<td>Total – radioactive waste</td>
<td>Truck</td>
<td>94,800</td>
<td>249</td>
<td>155</td>
<td>5,300</td>
<td>3.1</td>
<td>1,100</td>
<td>7×10^7</td>
</tr>
<tr>
<td>transport</td>
<td>Rail/Truck</td>
<td>108,000</td>
<td>160</td>
<td>100</td>
<td>2,500</td>
<td>1.5</td>
<td>530</td>
<td>3×10^6</td>
</tr>
<tr>
<td>Transport through Nevada</td>
<td>Truck</td>
<td>54,100</td>
<td>17.9</td>
<td>11.1</td>
<td>430</td>
<td>3×10^4</td>
<td>84</td>
<td>5×10^2</td>
</tr>
</tbody>
</table>

Accident Conditions

<table>
<thead>
<tr>
<th>Region</th>
<th>Crew Dose (person-rem)</th>
<th>Risk</th>
<th>Population Dose (person-rem)</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Valley DOE/EIS-0226</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORNL (uranium-233) DOE/EA-1651</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total – radioactive waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport through Nevada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reduced Operations Alternative

<table>
<thead>
<tr>
<th>Region</th>
<th>Transport Mode</th>
<th>Number of Shipments</th>
<th>One-Way Kilometers Traveled (million)</th>
<th>One-Way Miles Traveled (million)</th>
<th>Crew Dose (person-rem)</th>
<th>Risk</th>
<th>Population Dose (person-rem)</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRU waste</td>
<td>Truck</td>
<td>17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.8</td>
<td>5×10^2</td>
<td>0.3</td>
<td>2×10^4</td>
</tr>
<tr>
<td>RTGs</td>
<td>Truck</td>
<td>See No Action Alternative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER Waste (TTR/Nevada Test and Training Range)</td>
<td>Truck</td>
<td>See No Action Alternative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport through Nevada</td>
<td>Truck</td>
<td>See No Action Alternative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- LLW and MLLW were assumed to be transported in 55-gallon drums, B-25 boxes, B-12 boxes, and 20-foot International Organization for Standardization (Sealand) containers based on historical information regarding prevalence of use.
- Risk is expressed in terms of LCFs, except for nonradiological risk, where it refers to the number of traffic accident fatalities. Accident dose risk can be calculated by dividing the risk values by 0.0006 (DOE 2003d).
- These values reflect only the portion of the routes traveled by railcar.
- These values reflect the combined use of rail and truck after rail transporting radioactive waste to the NNSS vicinity.
- These values reflect the combined use of rail and truck after rail transporting radioactive waste to the NNSS vicinity.
- Transuranic waste is first transported to Idaho National Laboratory for characterization and then transported back to the NNSS with final disposal at WIPP.
- The cited risk values are representative of the portion of the routes used for transporting LLW and MLLW within Nevada to the NNSS, excluding shipments identified in other National Environmental Policy Act documentation. The stated risks for travel within Nevada are included in the risks for the regional routes shown in the table. The values for the Reduced Operations Alternative are similar to those for the No Action Alternative.
- The risks from transporting Paducah, Kentucky, and Portsmouth DUF₆ conversion wastes and the West Valley Demonstration Project wastes to the NNSS are cited directly from their respective site EISs (DOE 2004d, 2004e, 2010c), proportionally adjusted for a 10-year period. The rail transport risk values for these analyses consider direct transport to the NNSS; therefore, the risks do not include truck transport from a transfer station. If rail-truck transport were used for these shipments, the incident-free risk would be lower, but the accident risk would be slightly higher, given the results of transporting LLW and MLLW. Transportation risks from transporting wastes associated with these waste streams generated beyond this 10-year period are included in the cumulative impacts (see Chapter 6 of this NNSS SWEIS).
- DOE 2010b.

Note: To convert kilometers to miles, multiply by 0.62137. Total may not equal the sum of the contributions due to rounding. Also due to rounding, the cited risk values are different from multiplication of dose by a dose risk factor of 0.0006 LCFs per person-rem.
Table 5–12 Risks of Transporting Radioactive Materials Under Each Alternative – Constrained Case

<table>
<thead>
<tr>
<th>Material</th>
<th>No Action Alternative</th>
<th>Expanded Operations Alternative</th>
<th>Reduced Operations Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Shipments</td>
<td>One-Way Kilometers Traveled (million)</td>
<td>One-Way Miles Traveled (million)</td>
</tr>
<tr>
<td>Special Nuclear Material</td>
<td>120</td>
<td>0.1</td>
<td>0.13</td>
</tr>
<tr>
<td>Special Nuclear Material – in Nevada</td>
<td>120</td>
<td>0.04</td>
<td>0.028</td>
</tr>
<tr>
<td>Sealed Sources</td>
<td>120</td>
<td>0.3</td>
<td>17</td>
</tr>
<tr>
<td>Sealed Sources – in Nevada</td>
<td>120</td>
<td>0.04</td>
<td>2.2</td>
</tr>
<tr>
<td>Special Nuclear Material</td>
<td>290</td>
<td>0.4</td>
<td>0.17</td>
</tr>
<tr>
<td>Special Nuclear Material – in Nevada</td>
<td>290</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Weapon Component Disposition</td>
<td>2,000</td>
<td>3.5</td>
<td>10</td>
</tr>
<tr>
<td>Weapon Component Disposition – in Nevada</td>
<td>2,000</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Weapon Transport</td>
<td>8,200</td>
<td>38.2</td>
<td>210</td>
</tr>
<tr>
<td>Weapon Transport – in Nevada</td>
<td>8,200</td>
<td>2.5</td>
<td>16</td>
</tr>
<tr>
<td>Sealed Sources</td>
<td>240</td>
<td>0.5</td>
<td>33</td>
</tr>
<tr>
<td>Sealed Sources – in Nevada</td>
<td>240</td>
<td>0.07</td>
<td>4.4</td>
</tr>
<tr>
<td>Special Nuclear Material</td>
<td>60</td>
<td>0.07</td>
<td>0.083</td>
</tr>
<tr>
<td>Special Nuclear Material – in Nevada</td>
<td>60</td>
<td>0.02</td>
<td>0.015</td>
</tr>
<tr>
<td>Sealed Sources</td>
<td>See No Action Alternative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealed Sources – in Nevada</td>
<td>See No Action Alternative</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

rem = roentgen equivalent man.

Risk is expressed in terms of latent cancer fatalities, except for the nonradiological risk, where it refers to the number of traffic accident fatalities. Accident dose risk can be calculated by dividing the risk values by 0.0006 (DOE 2003d).
Table 5–13 provides the estimated dose and risk to an individual and population from a maximum foreseeable truck or rail transportation accident with the highest consequences under each alternative. The highest consequences for the maximum foreseeable accident would be from accidents involving a severe collision with a truck or railcar carrying LLW or MLLW in a 20-foot International Organization for Standardization (ISO) container in conjunction with a long-lasting fire. The calculated population doses shown are based on the maximum population density.

Table 5–13 Estimated Dose to the Population and to Maximally Exposed Individuals Under Most Severe Accident Conditions

<table>
<thead>
<tr>
<th>Alternative/ Transport Mode b</th>
<th>Waste Material in the Accident With the Highest Consequences</th>
<th>Likelihood of the Accident (per year)</th>
<th>Population c</th>
<th>MEI d</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action and Reduced Operations</td>
<td>Truck LLW/MLLW in 20-foot ISO container</td>
<td>3.2 × 10⁻⁷</td>
<td>180</td>
<td>0.1</td>
</tr>
<tr>
<td>Expanded Operations</td>
<td>Truck LLW/MLLW in 20-foot ISO container</td>
<td>6.1 × 10⁻⁷</td>
<td>180</td>
<td>0.1</td>
</tr>
<tr>
<td>Transport within Nevada e</td>
<td>LLW/MLLW in 20-foot ISO container</td>
<td>3.7 × 10⁻⁶</td>
<td>27</td>
<td>0.02</td>
</tr>
</tbody>
</table>

ISO = International Organization for Standardization; LCF = latent cancer fatality; LLW = low-level radioactive waste; MEI = maximally exposed individual; MLLW = mixed low-level radioactive waste; rem = roentgen equivalent man.

a The likelihood of accidents is based on the annual estimated number of transports from each region to the NNSS. The cited likelihood of accidents is the highest calculated value among all transports. Note that the likelihood of rail accidents is less than 10⁻⁷ per year; therefore, rail accident impacts are not shown.

b The maximum probability for a rail accident is less than 1 in 10 million per year; therefore, no consequences are presented for rail transportation in this table.

c Population extends at a uniform density to a radius of 50 miles. The weather condition was assumed to be Pasquill Stability Class D with a wind speed of 8.8 miles per hour. Unless otherwise noted, the population doses and risks are presented for an urban area on the transportation route.

d The MEI was assumed to be 330 feet downwind from the accident and exposed to the entire plume of the radioactive release. The weather condition was assumed to be Pasquill Stability Class F, with a wind speed of 2.2 miles per hour.

e Population dose and risk are for a suburban area along the route. The probability of a maximum foreseeable accident in an urban area along the transportation route is less than 10⁻⁷ per year. The cited likelihood of an accident is for the Expanded Operations Alternative. The likelihood of accidents under the No Action and Reduced Operations Alternatives is 1.2 × 10⁻⁶ per year.

5.1.3.1.1 No Action Alternative (Constrained Case)

Under the No Action Alternative, approximately 27,400 truck shipments of LLW and MLLW over a 10-year period would be transported to disposal facilities at the NNSS, 25,100 of which would come from outside Nevada. Approximately 20 shipments of TRU waste would be made to INL; after treatment, this waste would be transported to WIPP. About 240 shipments associated with radioisotopic thermoelectric generators and sealed sources would be made.

Impacts of Incident-Free Transportation. Under this alternative, the impacts of transporting LLW and MLLW by truck would be about double the impacts of rail-truck transport (rail-truck transport is the use of rail to move waste and materials to a transfer station in the Nevada region where it is transferred to trucks to complete the trip to the NNSS), as discussed below. Transportation of LLW or MLLW from outside of Nevada would be the primary contributor to the total radiological and nonradiological impacts of transportation activities. The following sections discuss the impacts of incident-free transportation on transportation crewmembers, intermodal workers, and the public.

- Crew – The transport of LLW and MLLW by truck from out of state would incur about 2,100 person-rem of exposure, resulting in approximately 1 (1.3) LCF to a crewmember, assuming no administrative controls were implemented. The contributions from transporting TRU waste
and radioisotopic thermoelectric generators are minimal (about 1.5 person-rem). If rail-truck transport were used, the cumulative dose to rail and truck crewmembers during the transportation of waste under this alternative would be about 860 person-rem (500 person-rem to rail crew and 360 person-rem to truck crew), resulting in 1 (0.5) additional LCF.

Transport of sealed sources and SNM would contribute only a very small additional increment to the total crew exposures (about 20 person-rem, resulting in less than 1 [0.01] LCF) compared to transport of LLW and MLLW because there would be fewer shipments.

Impacts on individual crewmembers would be managed through the implementation of administrative controls to minimize radiation exposure. A transportation worker would be restricted to an exposure level of 100 millirem per year unless that individual were a trained radiation worker subject to administrative procedures that would limit his or her annual dose to 2 rem (DOE 1999e). The potential risk of a trained radiation worker developing an LCF from the maximum annual exposure is 0.0012. Therefore, an individual transportation worker is not expected to develop a lifetime LCF from radiation exposure during these activities.

- **Transfer station workers** – Workers at transfer stations would be exposed to external radiation fields surrounding the waste shipping containers. The dose estimates per unit handling (person-rem per container) for transferring LLW or MLLW containers from railcars to trucks were based on the estimates provided in the *NTS Intermodal Study* (DOE 1999d). For waste containers with an exposure rate of 1 millirem per hour at 3.3 feet, the worker dose per transfer was estimated to be 3.4×10^{-4} person-rem. The number of container transfers under the No Action Alternative would be 25,100, leading to a total transfer station worker population dose of about 8.5 person-rem, or a risk of less than 1 (0.005) LCF.

- **Public** – The cumulative dose to the general population during transportation of LLW and MLLW by truck from out of state would be about 400 person-rem, resulting in less than 1 (0.2) additional LCF. If rail-truck transport were used, the cumulative dose to the general population would be about 230 person-rem (160 person-rem to the population along the rail route and 70 person-rem to the population along the truck route), resulting in less than 1 (0.1) additional LCF. The contributions from transporting TRU waste and radioisotopic thermoelectric generators are minimal (about 1 person-rem). Rail-truck transport would lead to lower doses to the general population because (1) the number of rail shipments would be about half of the shipments using all trucks, and (2) truck transports would occur primarily in areas of low population density and over shorter distances.

Transport of sealed sources, SNM, and nuclear weapons would contribute only a very small additional amount of population dose (about 5 person-rem, resulting in less than 1 [0.003] LCF) compared to transport of LLW and MLLW from out of state.

Impacts of Transportation Accidents. As described previously, two sets of radiological transportation accident impacts were analyzed: (1) impacts of maximum reasonably foreseeable accidents (accidents with radioactive release probabilities greater than 1×10^{-7} [1 chance in 10 million] per year) and (2) impacts of all conceivable accidents (total transportation accidents).

For waste shipped under any of the alternatives, the maximum reasonably foreseeable offsite truck or rail transportation accident with the highest consequences would be a severe collision involving a truck or railcar carrying LLW or MLLW in a 20-foot ISO container (Sealand container) in conjunction with a long-lasting fire. The calculated population doses are based on the maximum population density.

The probabilities of a truck or railcar accident involving this type of waste shipment are slightly different. Transportation accident probabilities were calculated for all route segments (rural, suburban, urban), and maximum consequences were determined for those route segments with a likelihood of release frequency exceeding 1 in 10 million per year. The maximum reasonably foreseeable probability of a truck accident
involving this waste type would be 3.2×10^{-7} per year in an urban area, while the maximum probability for a rail accident would be 8.4×10^{-8} per year in an urban area. Because the maximum probability for a rail accident is less than 1 in 10 million per year, no consequences are presented for rail in Table 5–13. The consequences of the truck transport accident in terms of population dose would be about 180 person-rem. Such exposures could result in less than 1 (0.1) additional LCF among the exposed population. The maximum dose from a truck accident to an MEI located 330 feet from the accident and exposed to the accident plume for 2 hours would be about 0.034 rem, with a risk of 0.00002 LCFs.

Under the No Action Alternative, estimates of the total transportation accident risks for all projected accidents are as follows: a radiological dose risk\(^1\) to the general population of 0.33 person-rem if all trucks are used to transport all radioactive waste and materials, and 0.13 person-rem if a combination of rail and truck are used. This would result in less than 1 LCF (0.0002 LCFs for all trucks and 0.00008 LCFs for a combination of rail and truck). The accident dose risk to the general population if a combination of rail and truck is used is therefore about half of the dose risk associated with using only trucks. Nonradiological accident risks for transporting LLW and MLLW would range from 2 to 6 fatalities to the general population for all truck transport and a combination of rail and truck transport, respectively. Nonradiological risks for all radioactive shipments other than LLW and MLLW would be less than 1 (0.01) fatality.

Accidents at transfer stations have also been considered. Railcars or trucks carrying LLW or MLLW while on the property of a transfer station would have the potential for some of the same accidents that could occur outside of transfer stations. The low speeds at which they would be traveling would result in impacts much less severe than those possible while traveling at higher speeds outside the transfer station. However, transfer station activities introduce an additional accident scenario associated with the transfer of containers between railcars and trucks. Shipments and transfer of LLW or MLLW would not present unique nonradiological risks to workers at a transfer station as containers are moved between trucks and railcars. Transfer facilities routinely receive materials shipped in large containers (for example, ISO containers) and have established procedures for safely transferring them between transport vehicles. In the course of transferring containers, there is the possibility of a mechanical or human error that could result in a dropped container. This presents a physical hazard to workers involved in the transfer, but use of safe working practices should prevent workers from being in locations where they could be hit by a falling container.

There would be a small possibility of an environmental release of radioactive material resulting from a dropped container. In order to cause a release to the environment, the drop would have to cause a breach of the outer container, as well as a failure of the packaging within the container (for example, 55-gallon drums or soft-sided containers). Assuming that such a release did occur, however, the released material would result only in localized contamination; the drop of a container would not have sufficient energy to eject material and cause widespread contamination. There would be a potential for a dose to workers in the immediate vicinity of such an accident, but the magnitude of the dose could vary widely depending on the size of the breach, proximity of workers, and air currents. No impact on a noninvolved worker or a member of the public is expected due to the expected small release amount and distance to these receptors. A more severe accident with enough energy to spread radioactive material beyond the immediate vicinity (e.g., a drop and breach followed by a fire) could result in impacts beyond the immediate vicinity of the accident; impacts would be comparable to or less than those calculated above for the maximum reasonably foreseeable truck accident.

Impacts of Nonradioactive Waste Transport. The impacts of transporting sanitary waste, hazardous waste, and other wastes and recyclables generated at NNSS facilities to onsite or offsite disposal or reuse facilities were also evaluated (including impacts from construction and operation of a commercial solar

\(^{1}\) The term “dose risk” is used because the value includes both the likelihood of the accident and the consequence of that accident. The likelihood arises from the accident rate and the probability of container failure along with the potential for the quantities being released and becoming airborne.
power generation facility), with results shown in Appendix E, Table E–19. The estimated transportation impacts under this alternative would be 2 (1.5) traffic accidents and less than 1 (0.06) traffic accident fatality in 2.0 million two-way miles traveled.

Impacts within the State of Nevada. For both truck and rail-truck transport, crewmembers transporting radioactive materials and waste in Nevada would receive a cumulative dose of about 210 person-rem, resulting in less than 1 (0.1) LCF; this dose would be managed and minimized using administrative controls, as discussed in the previous paragraphs. The public in Nevada would receive a cumulative population dose of about 38 person-rem, resulting in less than 1 (0.02) LCF.

Estimates of the total transportation accident risks that would occur in Nevada under this alternative for all projected accidents involving radioactive materials and waste shipments, regardless of waste type, are as follows: a maximum radiological dose risk to the general population of 0.007 person-rem over the life of expected shipments, resulting in less than 1 (0.000004) LCF, and a maximum nonradiological accident risk of less than 1 (0.2) fatality in the general population over 5.0 million one-way miles traveled.

5.1.3.1.2 Expanded Operations Alternative

5.1.3.1.2.1 Constrained Case

Under the Expanded Operations Alternative, a total of about 94,800 truck shipments of LLW and MLLW would be made to disposal facilities at the NNSS, about 79,300 of which would come from offsite locations. About 42 shipments of TRU waste would be made to INL for treatment; after treatment, this waste would be transported to WIPP. There would be 290 shipments of SNM, 8,200 shipments of nuclear weapons to and from the NNSS for either component replacement or disassembly, and about 2,000 shipments of disassembled parts from weapon dismantlement. There would also be 240 shipments of sealed sources.

Impacts of Incident-Free Transportation

Under this alternative, the radiological impacts of transporting LLW and MLLW by truck would be greater than the impacts of rail-truck transport. Transportation of LLW and MLLW from offsite locations would be the primary contributor to the total radiological and nonradiological impacts of transportation activities. Impacts on crewmembers, transfer station workers, and the public are discussed below.

- Crew – Transport of LLW and MLLW by truck would incur about 5,300 person-rem of exposure, resulting in approximately 3 (3.1) additional LCFs to crewmembers, assuming no administrative controls were implemented. The contributions from transporting TRU waste and radioisotopic thermoelectric generators are minimal (about 3.3 person-rem). If rail-truck transport were used, the cumulative dose to crewmembers during the transportation of waste under this alternative would be about 2,500 person-rem, resulting in about 2 (1.5) additional LCFs.

The transportation of sealed sources, SNM, and nuclear weapons would contribute only a very small additional amount to total crew exposures (about 250 person-rem, resulting in less than 1 [0.2] LCF) compared to the transport of LLW and MLLW because there would be fewer shipments.

- Transfer station worker – Workers at transfer facilities would be exposed to external radiation fields surrounding the waste shipping containers. As stated under the No Action Alternative, a dose rate of 3.4×10^4 person-rem per container transfer from railcar to truck was used. The number of container transfers under the Expanded Operations Alternative would be about 54,000, leading to a total transfer station worker dose of about 18 person-rem.

- Public – The cumulative dose to the general population during transportation of LLW and MLLW by truck would be about 1,100 person-rem, resulting in about 1 (0.7) additional LCF. If rail-truck transport were used, the cumulative dose to the general population would be about 530 person-rem (about 370 person-rem to the population along the rail route and 160 person-rem to the population
Chapter 5
Environmental Consequences

along the truck route), resulting in less than 1 (0.3) additional LCF. The contributions from transporting TRU waste and radioisotopic thermoelectric generators are minimal (about 2.4 person-rem). Rail-truck transport would lead to lower doses to the general population because (1) such shipments would be fewer and (2) truck transports would occur primarily in areas of low population density and over shorter distances. Transportation of SNM, sealed sources, and nuclear weapons would contribute about an additional 260 person-rem to the dose to the general population, resulting in less than 1 (0.2) LCF.

Impacts of Transportation Accidents. As described previously, the maximum reasonably foreseeable offsite truck or rail transportation accident with the highest consequences would be a severe collision involving a truck or railcar carrying LLW or MLLW in a 20-foot ISO container in conjunction with a long-lasting fire. The calculated population doses are based on the maximum population density. These waste shipments are expected to occur over the 10-year period. The impacts in terms of dose and risks to the public and individuals are the same as those provided under the No Action Alternative in Section 5.1.3.1.1, although with a greater foreseeable probability of 6.1×10^{-7} per year in an urban area (about twice the probability as compared to the No Action Alternative).

Under the Expanded Operations Alternative, estimates of the total transportation accident risks for all projected accidents are as follows: a radiological dose risk to the general population of 17 person-rem if all trucks are used to transport LLW and MLLW and 8 person-rem if a combination of rail and truck are used. This would result in less than 1 LCF (0.01 LCFs for all trucks and 0.005 LCFs for a combination of rail and truck). The dose risk to the general population for transporting wastes and materials other than LLW and MLLW would be about 0.035 person-rem, resulting in less than 1 (0.00002) LCF if all trucks are used. Nonradiological accident risks for transporting LLW and MLLW would range from 7 to 16 fatalities to the general population for all truck transport and a combination of rail and truck transport, respectively. Nonradiological risks for all radioactive wastes and materials other than LLW and MLLW would cause less than 1 (0.2) fatality.

Impacts of Nonradioactive Waste Transport. The impacts of transporting sanitary waste, hazardous waste, and other wastes and recyclables generated at NNSS facilities to onsite or offsite disposal or reuse facilities were also evaluated (including impacts from concentration and operation of one or more commercial solar power generation facilities), with results shown in Appendix E, Table E–19. The estimated transportation impacts under this alternative would be 3 (2.8) traffic accidents and less than 1 (0.11) traffic accident fatality in 3.8 million two-way miles traveled.

Impacts within the State of Nevada. Transport of all radioactive materials and waste through Nevada would incur less than one-tenth of the total incident-free radiological impacts. For both truck and rail-truck transport, crewmembers transporting wastes and radioactive materials in Nevada would receive a cumulative dose of about 450 person-rem, resulting in less than 1 (0.3) LCF; this dose would be managed using administrative controls, as discussed in the previous paragraphs. The public in Nevada would receive a cumulative population dose of about 100 person-rem, resulting in less than 1 (0.06) LCF.

Under the Expanded Operations Alternative, estimates of the total transportation accident risks that would occur in Nevada for all projected accidents involving radioactive materials and waste shipments, regardless of waste type, would be a maximum radiological dose risk to the general population of 0.013 person-rem over the life of expected shipments, resulting in less than 1 (0.000008) LCF for rail-truck transport, and a maximum nonradiological accident risk of about 1 (0.5) fatality to the general population for rail-truck transport over 12 million one-way miles traveled.

5.1.3.1.2.2 Unconstrained Case

The Unconstrained Case addresses the transportation of offsite LLW/MLLW from regions of the United States to the NNSS by (a) all truck, and (b) a combination of rail-truck, as described in Section 5.1.3.1. Appendix E provides more-detailed data regarding the analysis of the Unconstrained Case. While DOE/NNSA is not making any decisions for specific waste transportation routes through this NEPA
process, DOE/NNSA sought to understand the differences in potential environmental effects between different routing options, communicate those differences to the public, and seek stakeholder comments on the range of transportation routes. Subsequently, DOE/NNSA determined that it would retain the current highway routing restrictions for shipments of LLW/MLLW in the greater Las Vegas metropolitan area and, therefore, there would be no need to revise the waste acceptance criteria in this regard (DOE 2012).

All Truck: Table 5–14 summarizes the range of impacts for transporting offsite LLW/MLLW to the NNSS and compares these impacts to the comparable impacts from the Constrained Case (from Table 5–11). The range of impacts reflects multiple routes that could be taken from the Las Vegas entry point to the NNSS. A range is only shown where there is a measurable difference due to using different routes. Based on Table 5–14, if routes are unconstrained, the incident-free risks and accident-related radiological and nonradiological risks would be about the same as those for the Constrained Case.

<table>
<thead>
<tr>
<th>From Regions Through Entry Points Below to the NNSS</th>
<th>Number of Shipments</th>
<th>Incident-Free</th>
<th>Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td>23,500</td>
<td>960 – 970</td>
<td>0.6</td>
</tr>
<tr>
<td>Arden</td>
<td>3,040</td>
<td>38 – 39</td>
<td>0.2 – 0.3</td>
</tr>
<tr>
<td>Henderson</td>
<td>27,400</td>
<td>3,000 – 3,100</td>
<td>2</td>
</tr>
<tr>
<td>Total (unconstrained)</td>
<td>54,000</td>
<td>4,000 – 4,100</td>
<td>2 – 3</td>
</tr>
<tr>
<td>Total (constrained)</td>
<td>54,000</td>
<td>4,900</td>
<td>3</td>
</tr>
</tbody>
</table>

LCF = latent cancer fatality; NNSS = Nevada National Security Site; rem = roentgen equivalent man.

* Ranges are shown only where there are differences in results among the routes, assuming three significant figures for shipments, two significant figures for dose, and one significant figure for risk.

* There would be two possible routes from Apex, Nevada, three possible routes from Arden, Nevada, and four possible routes from Henderson, Nevada, to the NNSS, as analyzed in this NNSS SWEIS.

* Results are from Table 5–11. The results do not reflect shipments of LLW/MLLW analyzed in other NEPA documents.

Note: Totals may not sum due to rounding.

Rail-Truck: Rail transport of offsite LLW/MLLW to five possible transfer station locations in the Las Vegas region were analyzed: Apex, Arden, and West Wendover in Nevada; and Kingman and Parker in Arizona. This analysis assumed all rail shipments would go to each of these transfer stations. Table 5–15 summarizes the range of impacts for transporting offsite LLW/MLLW to each of these transfer stations, trucking the waste from each transfer station to Las Vegas, and subsequently traveling through Las Vegas to the NNSS using different routes, as shown in Figure 5–4. Based on the results in Table 5–15, the incident-free dose to the rail and truck crews would be highest if a transfer station were located at West Wendover because of the longer distance traveled by truck, as compared to other transfer station locations. The risk to the crews, however, would be about the same (1 LCF) for all locations analyzed. While the incident-free population dose and risk can vary somewhat, these differences are small. There would be small differences in radiological accident risks among the different transfer station alternatives. The risk for traffic fatalities would range from 12 to 14, with the use of a transfer station at Parker incurring the highest risk.
Table 5–15 Range of Risks for Unconstrained Rail-Truck Transport from U.S. Regions to the Nevada National Security Site a

<table>
<thead>
<tr>
<th>From Regions to Transfer Stations Below to the NNSS</th>
<th>Number of Shipments</th>
<th>Incident-Free</th>
<th>Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Crew</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dose (person-rem)</td>
<td>Risk (LCF)</td>
</tr>
<tr>
<td>Apex</td>
<td>81,000</td>
<td>1,300</td>
<td>0.8</td>
</tr>
<tr>
<td>Arden</td>
<td>81,000</td>
<td>1,300</td>
<td>0.8</td>
</tr>
<tr>
<td>Kingman b</td>
<td>81,000</td>
<td>1,400 – 1,500</td>
<td>0.8 – 0.9</td>
</tr>
<tr>
<td>Parker c</td>
<td>81,000</td>
<td>1,700 – 1,800</td>
<td>1</td>
</tr>
<tr>
<td>West Wendover d</td>
<td>81,000</td>
<td>1,900</td>
<td>1</td>
</tr>
<tr>
<td>Constrained Case e</td>
<td>81,000</td>
<td>1,800</td>
<td>1</td>
</tr>
</tbody>
</table>

LCF = latent cancer fatality; NNSS = Nevada National Security Site; rem = roentgen equivalent man.
 a Ranges are shown only where there are differences in results among the routes, assuming three significant figures for shipments, two significant figures for dose, and one significant figure for risk.
 b Truck transports from Kingman, Arizona, would use U.S. Route 93 (across the bridge downstream of the Hoover Dam) and enter the Las Vegas area through Henderson, Nevada, from which there would be four possible routes to the NNSS.
 c Truck transports from Parker, Arizona, would use U.S. Route 95 and enter the Las Vegas area through Henderson, from which there would be four possible routes to the NNSS.
 d Truck transports from West Wendover, Nevada, would enter the Las Vegas area through Apex, Nevada, from which there would be two possible routes to the NNSS.
 e Results are from Table 5–11 and represent the combined use of a transfer station at Parker and one at West Wendover. The results do not reflect shipments of LLW/MLLW analyzed in other NEPA documents.
 Note: Totals may not sum due to rounding.

Regional Transfer Stations: It is possible that a waste generator may want to transport LLW/MLLW to the NNSS for disposal by rail, but does not have onsite access to rail. In this case, the waste generator would transport waste by truck to a rail-truck transfer station in the generator’s region. At least one known waste generator without direct rail access within the Southwest, Northeast, and West regions exists. There would be transportation impacts associated with transport of wastes from these waste generators to a regional transfer station. Because of the uncertainty in whether currently known or unknown waste generators would use a regional transfer station, impacts were estimated for the Southwest, Northeast, and West regions in such a way that would be generally representative of use of a regional transfer station located within a given distance of a generator. Table 5–16 shows these impacts, assuming a number of shipments that are forecasted to be received from a known generator. Note that these impacts can be proportionally adjusted for other numbers of shipments.

Table 5–16 Transport to Regional Transfer Stations – Impacts

<table>
<thead>
<tr>
<th>Region</th>
<th>One-way Distance a (km/miles)</th>
<th>Number of Shipments</th>
<th>One-way Travel (km/million miles)</th>
<th>Incident Free b</th>
<th>Accident b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crew</td>
<td>Population</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk (LCF)</td>
<td>Risk (LCF)</td>
</tr>
<tr>
<td>Southwest</td>
<td>155/96</td>
<td>7750</td>
<td>1.20/0.75</td>
<td>15</td>
<td>6.7</td>
</tr>
<tr>
<td>Northeast</td>
<td>54/34</td>
<td>25</td>
<td>0.0014/0.0008</td>
<td>0.014</td>
<td>0.0071</td>
</tr>
<tr>
<td>West</td>
<td>104/65</td>
<td>360</td>
<td>0.037/0.023</td>
<td>0.66</td>
<td>0.28</td>
</tr>
</tbody>
</table>

km = kilometers; LCF = latent cancer fatality; rem = roentgen equivalent man.
 a It was assumed that the one-way distance for each region encompasses a reasonable distance from a waste generator to a regional transfer station.
 b The incident-free and accident impacts were calculated using rural, suburban, and urban population densities considered to be representative of the region.
5.1.3.1.3 Reduced Operations Alternative (Constrained Case)

Under the Reduced Operations Alternative, the same number of shipments of LLW and MLLW, and radioisotopic thermoelectric generators would occur as that projected under the No Action Alternative. There would be a reduction in the number of shipments of TRU waste (17 shipments under the Reduced Operations Alternative versus 20 under the No Action Alternative) and SNM (60 shipments under the Reduced Operations Alternative versus 120 under the No Action Alternative). Because the total number of shipments for all waste and materials under these two alternatives is essentially the same, the potential radiological and nonradiological impacts under the Reduced Operations Alternative would be equivalent to the risks under the No Action Alternative.

The impacts of transporting sanitary waste, hazardous waste, and other wastes and recyclables generated at NNSS facilities to onsite or remote disposal or reuse facilities would be slightly less than those under the No Action Alternative, with results shown in Appendix E, Table E–19. The potential impacts under this alternative would be 1 (1.4) traffic accident and less than 1 (0.05) traffic accident fatality in 1.8 million two-way miles traveled.

5.1.3.2 Traffic

5.1.3.2.1 Methodology and Assumptions

Onsite traffic. Onsite traffic impacts at the NNSS were analyzed by evaluating changes in the traffic volume of privately owned vehicles, trucks transporting radioactive waste and nonradioactive waste, and miscellaneous service vehicles. The estimated changes in daily onsite traffic volumes are presented in Table 5–17. It was assumed that rates of bus usage by employees under all alternatives would be similar to current conditions; that is, 50 percent of personnel would commute to and from the NNSS using the bus service (see Chapter 4, Section 4.1.3.1). The majority of the truck trips were assumed to transport wastes, based on waste projections. Daily truck shipments of radioactive wastes and materials were estimated based on projections presented in Section 5.1.3.1.

Table 5–17 Incremental Change in Onsite Daily Vehicle Trips on Mercury Highway at the Nevada National Security Site

<table>
<thead>
<tr>
<th>Segment of Mercury Highway</th>
<th>No Action</th>
<th>Expanded Operations</th>
<th>Reduced Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POVs</td>
<td>Trucks</td>
<td>POVs</td>
</tr>
<tr>
<td>Between U.S. Route 95 and Mercury</td>
<td>+0</td>
<td>+20</td>
<td>+670</td>
</tr>
<tr>
<td>Between Mercury and Tippipah Highway</td>
<td>+0</td>
<td>+20</td>
<td>+410</td>
</tr>
<tr>
<td>North of Tippipah Highway</td>
<td>+0</td>
<td>+10</td>
<td>+270</td>
</tr>
</tbody>
</table>

POVs = privately owned vehicles.

Note: These estimates do not include traffic volumes associated with the construction and operation of any solar power generation facilities because this traffic would access facilities from a gate located on Lathrop Wells Road and would not likely contribute to traffic volumes on Mercury Highway.

The only available onsite traffic data come from a 1999 traffic study of Mercury Highway (PBS&J 1999); therefore, the onsite traffic impacts in this section are discussed in terms of impacts on Mercury Highway. The study recorded daily traffic volumes on three segments of Mercury Highway. Because Mercury Highway is the main roadway at the NNSS, it was assumed that impacts on this highway represent an upper bound to potential traffic impacts that could occur on other key roadways at the NNSS.

For this analysis, the percent change in the number of daily vehicle trips associated with personnel vehicles and truck transport of miscellaneous wastes and materials reflects the degree of impact on baseline traffic conditions at the NNSS. A “trip” is defined as a one-way vehicle movement from an origin to a destination. Current traffic conditions on Mercury Highway were estimated based on the 1999 onsite traffic study, as discussed in Chapter 4, Section 4.1.3.1. Approximately 90 percent of vehicles currently accessing the NNSS on a daily basis are privately owned vehicles used by commuting workers.
The remaining 10 percent of vehicles are trucks (PBS&J 1999). The number of trips made per day and per peak morning and evening hours were estimated for each alternative and compared with current traffic volumes. To evaluate potential impacts on other principal roadways within the NNSS, the total daily vehicle trips projected to occur on Mercury Highway under each alternative were compared with the capacities of these roadways (main roadways throughout the NNSS were estimated to have capacities exceeding 2,000 vehicles per hour for both directions combined).

Regional traffic. The impacts analysis of regional (i.e., offsite) traffic was based on a determination of the number of personnel and truck trips that would occur under each alternative. Offsite traffic impacts in the region were assessed by estimating the changes in the numbers of daily vehicle trips made under each alternative and applying the changes to baseline traffic volumes on key roadways (for comparison to future baseline conditions, see Chapter 4, Table 4–11, for projected traffic volumes to the year 2020). The estimated changes in daily traffic volumes that were used for the regional traffic analysis are the same as those listed for “Between U.S. Route 95 and Mercury” in Table 5–17, as they reflect the incremental increase in daily traffic volumes that could occur off site. In addition, under the No Action, Expanded Operations, and Reduced Operations Alternatives, vehicles associated with one or more solar power generation facilities were added to these estimates (1,000; 1,500; and 800 daily vehicle trips were respectively added to represent peak construction traffic for conservative estimates). Current traffic volumes, or “average daily traffic,” for 2008 were obtained from the Nevada Department of Transportation (NDOT 2008a, 2008b) (see Chapter 4, Table 4–9, for the 2008 average daily traffic volumes).

The region of influence (ROI) for the regional traffic analysis includes the principal roadways leading to the NNSS and offsite project locations, with emphasis on the areas surrounding each site; the ROI is limited to Nye and Clark Counties. The geographic distribution of additional vehicle trips is based on the location of main entry points for each of the locations (the NNSS, NLVF, RSL, and TTR) and travel patterns. To determine the travel patterns of future personnel, it was assumed that residential choices for new personnel would correspond to the ratio of current personnel (NSTec 2009d). The geographic distribution of vehicle trips from trucks transporting radioactive waste was based on routes described in Chapter 4, Section 4.1.3.2. Routes for miscellaneous trucks (such as vendors) were assumed to originate and end in the Las Vegas metropolitan area.

To account for increases in traffic from population growth, baseline traffic volumes were projected to the year 2020, assuming an annual increase in traffic volumes of 5 percent for Nye County and Clark County (NV State Demographer’s Office 2008). To better reflect operating conditions of the roadways, volume-to-capacity ratios and levels of service on key roadways were determined for the peak hour (see Chapter 4, Table 4–10, for the level of service designations for associated ratio values).

5.1.3.2.2 Summary of Impacts (Nevada National Security Site)

Onsite traffic. Onsite potential impacts from increased daily vehicle trips would include increased traffic congestion and delays, increased need for road maintenance and improvements, and increased risks regarding road safety. Table 5–17 summarizes the incremental changes in daily vehicle trips projected under each alternative that would result from trips made by privately owned vehicles and trucks along the three analyzed segments of Mercury Highway. Table 5–18 presents the total daily traffic volumes projected under each alternative along the three analyzed segments of Mercury Highway.
| Traffic Volume Component | Segment of Mercury Highway | | | |
|-------------------------|---------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Between U.S. Route 95 and Mercury Highway | Between Mercury Highway and Tippipah Highway | North of Tippipah Highway |
| Baseline Conditions | 1,748 | 1,151 | 764 |
| Average Daily Traffic | 1,748 | 1,151 | 764 |
| A.M. Peak Hour | 349 | 172 | 75 |
| P.M. Peak Hour | 349 | 172 | 75 |
| No Action Alternative | 1,768 | 1,171 | 774 |
| Average Daily Traffic | 1,768 | 1,171 | 774 |
| A.M. Peak Hour | 354 | 176 | 78 |
| P.M. Peak Hour | 354 | 176 | 78 |
| Expanded Operations Alternative | 2,548 | 1,701 | 1,134 |
| Average Daily Traffic | 2,548 | 1,701 | 1,134 |
| A.M. Peak Hour | 511 | 255 | 113 |
| P.M. Peak Hour | 511 | 255 | 113 |
| Reduced Operations Alternative | 1,598 | 1,061 | 699 |
| Average Daily Traffic | 1,598 | 1,061 | 699 |
| A.M. Peak Hour | 319 | 159 | 70 |
| P.M. Peak Hour | 319 | 159 | 70 |

Regional traffic. For regional traffic impacts, increases in traffic volumes could potentially result in traffic congestion and delays, degradation of operating capacities on roadways, degradation of road surfaces and increased frequency in road maintenance, and increased traffic accidents. For each of the alternatives, Tables 5–19 and 5–20, located at the end of this section, summarize the projected average daily traffic volumes for 2020, the percent of traffic volume change expected to occur, the volume-to-capacity ratios, and the levels of service for key roadways in Nye and Clark Counties, respectively.

Under future baseline conditions (i.e., traffic conditions in the year 2020 without the NNSS activities proposed under the alternatives), it is predicted that the majority of roadways analyzed would remain similar to current levels of service (see Chapter 4, Table 4–11). As noted in Tables 5–19 and 5–20, the contribution of additional vehicle volumes associated with NNSS activities is considered relatively low (under the No Action and Reduced Operations Alternatives) to moderately high (under the Expanded Operations Alternative) when compared to projected traffic volumes in the region. Only Mercury Highway, which provides direct access to the NNSS from U.S. Route 95, is predicted to experience a degradation of level of service—from level A to B under the Expanded Operation Alternative—as a result of new NNSS activities. Potential impacts on the regional traffic system resulting from construction and operation of renewable energy projects and other development in the area are discussed in Chapter 6, Section 6.3.3.

5.1.3.2.3 No Action Alternative

Onsite traffic. The total daily vehicle trips projected for Mercury Highway under the No Action Alternative would increase by approximately 2 percent from current conditions. The additional traffic volumes on Mercury Highway would be attributable to trucks transporting wastes and materials; minimal incremental traffic increases are expected from privately owned vehicles because the only personnel increase would occur from the proposed solar power generation facility in Area 25, which is not expected to use Mercury Highway at the NNSS. Based on the traffic volumes during peak hours, it is expected that Mercury Highway would operate at a level of service of A. It was assumed that peak traffic volumes on key onsite roadways throughout the NNSS would not exceed the levels projected for Mercury Highway;
therefore, no capacity issues are expected on other key roadways, except possibly for those serving the commercial solar power generation facility in Area 25.

The projected traffic volumes presented in Tables 5–19 and 5–20 do not include potential increases in traffic volumes from construction and operation of the solar power generation facility because personnel and trucks associated with the facility would access the facility from a gate located on Lathrop Wells Road and would not likely contribute to traffic volumes on Mercury Highway. Approximately 500 and 1,000 workers were estimated to be required for construction of this facility during average and peak construction conditions, respectively. Assuming that 50 percent of the construction workers would carpool to the site, approximately 250 (average) and 500 (peak) additional vehicle trips could occur during the peak commute hours (or a total of 500 and 1,000 additional vehicle trips could occur on a daily basis during average and peak construction activities, respectively) on roads leading up to the project site in Area 25. The addition of these vehicles and associated construction trucks on a daily basis (estimated to occur over a 35-month period) would increase the rate of pavement deterioration and degrade levels of service and could require increased road maintenance and upgrades for roads in the project area.

Regional traffic. U.S. Route 95, State Route 160, and State Route 372 would experience the greatest percent increases in daily traffic volumes because these roadways serve an area that is considered characteristically rural and generally experiences relatively low daily traffic volumes. The volume-to-capacity ratios would remain similar for all roadways analyzed, and levels of service are predicted to be the same as those under future baseline traffic volumes (see Chapter 4, Table 4–11). The similarity of traffic conditions under the No Action Alternative and future baseline conditions reflect the minor contribution of NNSS-related activities to overall traffic volumes in the region. The increase in daily trips under this alternative would have minor impacts on traffic congestion in the ROI. Coordination with public safety and maintenance agencies would aid in planning for and mitigating delays resulting from the anticipated increase in traffic volumes.

5.1.3.2.4 Expanded Operations Alternative

Onsite traffic. The total daily vehicle trips projected for the three segments of Mercury Highway analyzed under the Expanded Operations Alternative would increase by approximately 50 percent above current traffic levels, mainly due to the 25 percent increase in NNSS personnel and traffic from construction-related vehicles. Based on the traffic volumes during peak hours, it is expected that Mercury Highway would operate at a level of service of B or better and other key roadways would not have any capacity issues. Drivers accessing the main entry gate would experience longer delays during the peak morning and evening traffic hours, and increased traffic congestion would occur throughout Mercury due to the increase in privately owned vehicles. Drivers on Mercury Highway could experience longer delays or reduced travel speeds due to the high increase in daily truck traffic. Because the incremental increase in onsite traffic volumes would be moderately high, the number of repairs and required maintenance on NNSS roadways would increase at a greater rate than currently experienced.

The projected traffic volumes presented in Tables 5–19 and 5–20 do not include potential increases in traffic volumes from the construction of one or more solar power generation facilities. Personnel and trucks associated with the solar power generation facilities would access the facility from a gate located on Lathrop Wells Road. Approximately 750 and 1,500 workers were estimated to be required for construction of this facility during average and peak construction conditions, respectively. Assuming that 50 percent of the workers would carpool to the site, approximately 375 (average) and 750 (peak) additional vehicle trips could occur during the peak commute hours (or a total of 750 and 1,500 additional vehicle trips could occur on a daily basis during average and peak construction activities, respectively) on roads leading up to the project site in Area 25. The addition of these vehicles and associated construction trucks on a daily basis (estimated to occur over a 42-month period) would increase the rate of pavement deterioration, degrade levels of service, and could require increased road maintenance and upgrades for roads in the project area.
Regional traffic. Roadways in Nye and Clark Counties would generally experience higher increases in traffic volumes. When compared to the No Action Alternative, Mercury Highway and segments of Nevada State Route 372, State Route 160, U.S. Route 95, and State Route 164 would experience moderately high percent increases in daily traffic; however, the operating capacities would remain similar to those under future baseline traffic volumes (see Chapter 4, Table 4–11). Only Mercury Highway would experience a substantially high increase in traffic (an approximately 80 percent increase) and degrade in level of service (from a Level A to a Level B). As most of the increases in daily traffic volumes during the peak hours would be attributable to workers commuting to the NNSS, any detectable changes in traffic volumes would primarily occur during the main commuting hours and at the entry gates of the NNSS (the main entrance gate for regular NNSS employees and Gate 510 for those associated with the construction and operation of the commercial solar power generation facilities in Area 25). Coordination with public safety and maintenance agencies would aid in planning for and mitigating delays resulting from the anticipated increase in traffic volumes.

Table 5–19 includes traffic volumes from the truck transport of radioactive waste and materials under the Unconstrained Case (as discussed in Section 5.1.3.1). Under the Constrained Case, it was assumed that DOE/NNSA would maintain its current operational practice of avoiding transporting waste and materials on the interstate system within Las Vegas. Table 5–20 denotes which study locations would not experience these additional truck volumes under the Constrained Case.

5.1.3.2.5 Reduced Operations Alternative

Onsite traffic. The total daily vehicle trips projected for Mercury Highway under the Reduced Operations Alternative would decrease by approximately 10 percent from current conditions mainly because the number of NNSS workers is expected to decrease by 10 percent. Compared with current conditions, the number of daily trips from privately owned vehicles would decline. Impacts under this alternative would be similar or slightly reduced compared to those under the No Action Alternative; key roadways, including Mercury Highway, would operate well below maximum capacities.

The projected traffic volumes presented in Tables 5–19 and 5–20 do not include potential increases in traffic volumes from the construction and operation of the solar power generation facility because personnel and trucks associated with the facility would enter from a gate located on Lathrop Wells Road and would not likely contribute to traffic volumes on Mercury Highway. Approximately 400 and 800 workers were estimated to be required for construction of this facility during average and peak construction conditions, respectively. Assuming that 50 percent of the workers would carpool to the site, approximately 200 (average) and 400 (peak) additional vehicle trips could occur during the peak commute hours (or a total of 400 and 800 additional vehicle trips could occur on a daily basis during average and peak construction activities, respectively) on roads leading up to the project site in Area 25. The addition of these vehicles and associated construction trucks on a daily basis (estimated to occur over a 32-month period) would increase the rate of pavement deterioration, degrade levels of service, and could require increased road maintenance and upgrades for roads in the project area.

Regional traffic. Under the Reduced Operations Alternative, traffic volumes would increase slightly during peak hours on almost all of the roadways analyzed because the number of personnel at the NNSS would be reduced and most of the additional traffic volumes would be attributable to vehicles associated with the construction and operation of the commercial solar power generation facility. Impacts on regional traffic under this alternative would therefore be slightly less or similar to those described under the No Action Alternative; volume-to-capacity ratios and levels of service would remain unchanged from future baseline conditions (see Chapter 4, Table 4–11).
<table>
<thead>
<tr>
<th>Route</th>
<th>Location</th>
<th>No Action Alternative</th>
<th>Expanded Operations Alternative</th>
<th>Reduced Operations Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AADT in 2020</td>
<td>Percent Change</td>
<td>V/C</td>
</tr>
<tr>
<td>U.S. Route 6</td>
<td>0.3 miles east of Nevada State Route 375 (Warm Springs Road)</td>
<td>364</td>
<td>2</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>200 feet west of Nevada State Route 375 (Warm Springs Road)</td>
<td>495</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.2 miles east of Nevada State Route 376 (Tonopah-Austin Road)</td>
<td>1,020</td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.2 miles west of Nevada State Route 376</td>
<td>1,851</td>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>Nevada State Route 373</td>
<td>0.5 miles south of U.S. Route 95</td>
<td>1,511</td>
<td>2</td>
<td>0.09</td>
</tr>
<tr>
<td>Nevada State Route 372</td>
<td>0.8 miles west of Nevada State Route 160</td>
<td>19,748</td>
<td>1</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>0.1 miles east of Nevada–California state line</td>
<td>1,537</td>
<td>15</td>
<td>0.10</td>
</tr>
<tr>
<td>U.S. Route 95</td>
<td>In Tonopah, 100 feet south of Bryan Avenue</td>
<td>11,275</td>
<td>0</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>500 feet north of Cemetery Road, north of Tonopah</td>
<td>6,877</td>
<td>1</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>0.2 miles south of U.S. Route 6 in Tonopah</td>
<td>8,820</td>
<td>0</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>9 miles south of Scotty’s Junction (State Route 267)</td>
<td>3,774</td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>1 mile north of Beatty (State Route 374)</td>
<td>4,101</td>
<td>1</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>0.2 miles west of Amargosa Valley (State Route 373)</td>
<td>4,264</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>1.5 miles east of Amargosa (State Route 373)</td>
<td>4,753</td>
<td>1</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>4 miles west of Mercury Interchange</td>
<td>4,951</td>
<td>5</td>
<td>0.29</td>
</tr>
<tr>
<td>Mercury Highway</td>
<td>0.2 miles north of Mercury Interchange on U.S. Route 95</td>
<td>1,116</td>
<td>1</td>
<td>0.07</td>
</tr>
<tr>
<td>Route</td>
<td>Location</td>
<td>No Action Alternative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AADT in 2020</td>
<td>Percent Change<sup>b</sup></td>
<td>V/C</td>
</tr>
<tr>
<td>Nevada State Route 160</td>
<td>0.1 miles south of U.S. Route 95</td>
<td>1,864</td>
<td>14</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>7.7 miles north of Nevada State Route 372</td>
<td>2,842</td>
<td>9</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>0.1 miles north of Nevada State Route 372 (near Pahrump)</td>
<td>37,700</td>
<td>1</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>200 feet south of Nevada State Route 372 (near Pahrump)</td>
<td>34,442</td>
<td>1</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>0.3 miles north of the Clark–Nye County Line</td>
<td>14,732</td>
<td>2</td>
<td>0.43</td>
</tr>
</tbody>
</table>

AADT = annual average daily traffic; LOS = level of service; V/C = volume-to-capacity ratio.

Note: See Chapter 4, Table 4–11, for future (i.e., 2020, without new NNSS activities) baseline traffic volumes, volume-to-capacity ratios, and levels of service.

^a Source: NDOT 2008a, Nye County.

^b Percent change in annual average daily traffic under future conditions (i.e., in the year 2020) due to the change in the number of vehicle trips predicted under an alternative.
Table 5–20 Traffic Volumes and Level of Service Impacts on Key Roads in Clark County During Peak Hour Conditions

<table>
<thead>
<tr>
<th>Route</th>
<th>Location</th>
<th>No Action Alternative</th>
<th>Expanded Operations Alternative</th>
<th>Reduced Operations Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AADT in 2020</td>
<td>Percent Change</td>
<td>V/C</td>
</tr>
<tr>
<td>Nevada State Route 160</td>
<td>12 miles west of Interstate 15</td>
<td>11,190</td>
<td>3</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>4 miles west of Interstate 15</td>
<td>29,870</td>
<td>1</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>200 feet west of Interstate 15</td>
<td>48,685</td>
<td>1</td>
<td>0.48</td>
</tr>
<tr>
<td>Nevada State Route 160</td>
<td>West of Indian Springs</td>
<td>5,542</td>
<td>15</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>4 miles east of Indian Springs</td>
<td>9,305</td>
<td>8</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>0.5 miles south of Snow Mountain Interchange (in northwest Las Vegas)</td>
<td>13,068</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>U.S. Route 95</td>
<td>0.4 miles north of Ann Road Interchange (in northwest Las Vegas)</td>
<td>113,593</td>
<td>1</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>0.5 miles west of Interstate 15 (between Rancho Drive and Martin Luther King Boulevard)</td>
<td>285,614</td>
<td>0</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td>0.5 miles east of Interstate 15 (between Las Vegas Boulevard and Main Street)</td>
<td>237,233</td>
<td>0</td>
<td>2.33</td>
</tr>
<tr>
<td></td>
<td>Between Russell Road and Sunset Road (in southwest Las Vegas)</td>
<td>149,448</td>
<td>0</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>0.8 miles north of State Route 163 (west of Bullhead City)</td>
<td>10,895</td>
<td>0</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>1 mile south of Nevada State Route 163 (Nevada–California state line)</td>
<td>4,310</td>
<td>0</td>
<td>0.17</td>
</tr>
</tbody>
</table>

* Percent Change in volume and capacity indices represent the percent change from the No Action Alternative.

* LOS = Level of Service.

* Figures in italics indicate the No Action Alternative value.
<table>
<thead>
<tr>
<th>Route</th>
<th>Location</th>
<th>No Action Alternative</th>
<th>Expanded Operations Alternative</th>
<th>Reduced Operations Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AADT in 2020</td>
<td>Percent Change</td>
<td>V/C</td>
<td>LOS</td>
</tr>
<tr>
<td>Interstate 215</td>
<td>Between Green Valley Parkway and Valle Verde Drive (in southwest Las Vegas)</td>
<td>191,109</td>
<td>0</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>Between Decatur Boulevard and Interstate 15 (in central south Las Vegas)</td>
<td>203,204</td>
<td>0</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>0.2 miles north of State Route 159 (in central west Las Vegas)</td>
<td>62,093</td>
<td>0</td>
<td>1.22</td>
</tr>
<tr>
<td>Losee Road</td>
<td>0.3 miles south of Cheyenne Avenue (north of NLVF)</td>
<td>20,159</td>
<td>0</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>0.2 miles south of Carey Avenue (south of NLVF)</td>
<td>22,847</td>
<td>0</td>
<td>0.59</td>
</tr>
<tr>
<td>Las Vegas Boulevard</td>
<td>0.3 miles south of Nellis Boulevard (west of RSL)</td>
<td>17,529</td>
<td>0</td>
<td>0.45</td>
</tr>
<tr>
<td>Nellis Boulevard</td>
<td>300 feet north of Cheyenne Avenue (west of RSL)</td>
<td>36,286</td>
<td>0</td>
<td>0.62</td>
</tr>
<tr>
<td>Nevada State Route 164</td>
<td>1.1 miles west of U.S. Route 95 (west of Searchlight)</td>
<td>937</td>
<td>2</td>
<td>0.04</td>
</tr>
<tr>
<td>Route</td>
<td>Location</td>
<td>No Action Alternative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AADT in 2020</td>
<td>Percent Change</td>
<td>V/C</td>
</tr>
<tr>
<td>Interstate 15</td>
<td>At the Nevada–California state line</td>
<td>51,078</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>5 miles north of Interstate 215 (in south central Las Vegas) c</td>
<td>353,748</td>
<td>0</td>
<td>3.47</td>
</tr>
<tr>
<td></td>
<td>1 mile north of Interstate 515 (in central Las Vegas) c</td>
<td>197,894</td>
<td>0</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>5 miles north of Interstate 515 (near central Las Vegas) c</td>
<td>96,983</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>5.5 miles north of Interstate 515 (in north central Las Vegas) k</td>
<td>45,914</td>
<td>0</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>North of West Mesquite Interchange (Nevada–Utah state line)</td>
<td>25,534</td>
<td>0</td>
<td>0.50</td>
</tr>
</tbody>
</table>

AADT = annual average daily traffic; LOS = level of service; NLVF = North Las Vegas Facility; RSL = Remote Sensing Laboratory; V/C = volume-to-capacity ratio.

Note: See Chapter 4, Table 4–11, for future (i.e., 2020 without new NNSS activities) baseline traffic volumes, volume-to-capacity ratios, and levels of service.

a Source: NDOT 2008b, Clark County.
b Percent change in annual average daily traffic under future conditions (i.e., in the year 2020) due to the change in the number of vehicle trips predicted under an alternative.

c Under the Constrained Case for the Expanded Operations Alternative, trucks transporting radioactive waste and material would not pass through this location. Therefore, the daily traffic volumes shown for this alternative could be reduced by up to 30 trips.
5.1.4 Socioeconomics

This section addresses potential impacts on the region’s socioeconomic conditions. The discussion focuses on the region’s economic activity, population, and housing, public finances, and public services. DOE/NNSA assessed the potential for impacts, both beneficial and adverse, based on whether the proposed activities would directly or indirectly result in any of the following:

- Alterations in the projected rates of population growth
- Effects on the housing market
- Effects on local businesses and the economy
- Displacement of existing jobs
- Effects on local employment or the workforce

5.1.4.1 No Action Alternative

5.1.4.1.1 Economic Activity, Population, and Housing

Under the No Action Alternative, a 240-megawatt solar power generation facility would be constructed. Operation of this solar power generation facility would be the sole source of new permanent employment at the NNSS, adding 150 full-time equivalent (FTE) positions to the current employment level of 1,699 (see Table 5–21 and Table 5–22).

Table 5–21 Onsite Employment

<table>
<thead>
<tr>
<th>Alternative</th>
<th>NNSS Only</th>
<th>Including Solar Power Generation Facility Employees</th>
<th>NLVF</th>
<th>RSL</th>
<th>TTR</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>1,699</td>
<td>1,442</td>
<td>132</td>
<td>106</td>
<td></td>
<td>3,379</td>
</tr>
<tr>
<td>Expanded Operations</td>
<td>2,124</td>
<td>1,803</td>
<td>132</td>
<td>43</td>
<td></td>
<td>4,102</td>
</tr>
<tr>
<td>Reduced Operations</td>
<td>1,529</td>
<td>1,298</td>
<td>132</td>
<td>39</td>
<td></td>
<td>2,998</td>
</tr>
</tbody>
</table>

NLVF = North Las Vegas Facility; NNSS = Nevada National Security Site; RSL = Remote Sensing Laboratory; TTR = Tonopah Test Range.

- Current employment number plus 25 percent.
- Current employment number minus 10 percent.
- Number from the Complex Transformation Supplemental Programmatic Environmental Impact Statement minus 10 percent.

Table 5–22 Construction Employment

<table>
<thead>
<tr>
<th>Alternative</th>
<th>NNSS a</th>
<th>NLVF</th>
<th>RSL</th>
<th>TTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>For commercial solar facility, average of 500 FTE positions over 35 months, peak of 1,000 FTE positions.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Expanded Operations</td>
<td>For commercial solar facilities, average of 750 FTE positions over 42 months, peak of 1,500 FTE positions. 250 additional FTE positions from other projects.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reduced Operations</td>
<td>For commercial solar facility, average of 400 FTE positions over 32 months, peak of 800 FTE positions.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FTE = full-time equivalent; NLVF = North Las Vegas Facility; NNSS = Nevada National Security Site; RSL = Remote Sensing Laboratory; TTR = Tonopah Test Range.

- NNSA Plant Construction Numbers based on Amargosa Farm Road Solar Energy Project.

Approximately 10 percent of the 150 FTE positions, or 15 individuals, are expected to relocate as a result of the No Action Alternative. It was assumed that 77 percent would live in Clark County (12 workers) and 23 percent in Nye County (3 workers), consistent with current workforce demographics (NSTec 2009d). Projected rates of population growth would not be altered as a result of the No Action Alternative. Sufficient housing exists in the area (208,275 and 3,202 housing vacancies in Clark and Nye Counties, respectively) to support an increase in population of 15 people. This would result in a
0.01 percent reduction in housing vacancy rates in Clark County and a 0.1 percent reduction in Nye County.

The remaining 135 individuals filling the new jobs are expected to be already living in Clark and Nye counties. Of the 135 individuals, it was assumed that 77 percent would live in Clark County (104 workers) and 23 percent in Nye County (31 workers), consistent with current workforce demographics (NSTec 2009d). This would decrease unemployment in Clark County by 0.07 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). It also would decrease unemployment in Nye County by about 0.99 percent (a total of 3,133 Nye County residents were unemployed as of August 2010).

Daily spending by these new employees would positively affect the immediate area of the NNSS. Purchases made would typically include gasoline, automobile servicing, food and beverages, laundry services, and other retail items. Therefore, a minor beneficial impact on economic activity would occur under the No Action Alternative due to the increase in employment.

The Regional Input-Output Modeling System II (RIMS II) developed for the U.S. Department of Commerce, Bureau of Economic Analysis, was used to evaluate the indirect economic impact on employment of constructing the solar power generation facility. RIMS II provides two types of multipliers, final-demand and direct-effect, for estimating the impacts of changes on employment. An estimate of the change in the total number of jobs in a region’s economy was calculated by multiplying the initial change in jobs by a direct-effect employment multiplier. By adding 150 FTE positions to support the solar power generation facility, the analysis showed that approximately 394 secondary jobs would be created. The combined effect of direct and indirect employment would result in a decrease in unemployment in Clark County of about 0.3 percent and about 3.9 percent in Nye County.

Approximately 500 FTE positions over 35 months, with a peak of 1,000 FTE positions, would be filled for construction of the solar power generation facility. Given the high unemployment rates in Clark and Nye Counties (14.7 and 17.2 percent, respectively, as of August 2010), it was assumed that the majority of construction workers hired for construction of the solar power generation facility would currently be living in the area. Between January 2009 and January 2010, 29,800 construction jobs were lost in the State of Nevada (LVRJ 2010). Because relocation of construction workers is unlikely, an increase in population and a decrease in housing availability are not anticipated; only negligible impacts on population and housing are anticipated during construction.

The addition of construction jobs would have a direct economic impact on employment in the region. As construction firms are hired to support the solar power generation facility, regional economic activity (purchases of building materials, construction supplies, and equipment, as well as spending by the construction workers) would also increase. Therefore, construction would have a minor beneficial impact on employment and the local economy.

As described previously, RIMS II was used to calculate the indirect economic impact of the project on employment. An estimate of the change in the total number of jobs in a region’s economy was calculated by multiplying the initial change in jobs by a direct-effect employment multiplier. By adding 500 to 1,000 FTE positions, the analysis showed that approximately 930 to 1,860 secondary jobs would be created as a result of construction of the solar power generation facility (DOC 2010). This would reduce the unemployment rate in the region and temporarily benefit the economy and employment in the region.

Public finance. Increased sales transactions for the purchase of materials and supplies for construction of the solar power generation facility would generate some additional revenues for local governments. These impacts would be minor, but beneficial. In addition, revenues for Clark and Nye Counties would increase due to increases in personal income and total employment, which could lead to increased spending.
5.1.4.1.2 Public Services

Public education. For the 2009 to 2010 school year, the Clark County School District student–teacher ratio was 21:1. The student–teacher ratio for the Nye County School District was 18.6:1. Under the No Action Alternative, a total of 28 children could relocate to the area based on a state average of 1.89 children per family (USCB 2000). This represents an increase of 22 children in the Clark County School District (77 percent of the children would reside in Clark County, consistent with current NNSS workforce demographics [NSTec 2009d]) and an increase of 6 children in the Nye County School District (23 percent of the children would reside in Nye County). It is unlikely that all students relocating to the area would be the same age and living in the same neighborhood. However, based on an increase of 22 children to the Clark County School District, one additional teacher may be required in Clark County to maintain the 21:1 student-teacher ratio. No new teachers would be required in Nye County as a result of the No Action Alternative.

Police protection. Under the No Action Alternative, the number of daytime occupants on the NNSS would increase, which could result in more calls for police services. Civilian law enforcement at the NNSS is provided under a contract with the Nye County Sheriff’s Department. To maintain the existing level of service, the NNSS would need to increase the number of civilian law enforcement officers under contract due to the increase of 150 permanent employees. Because the increase in number of employees that would relocate to Clark and Nye Counties is only 15 total, there would be no effect on levels of service at the Las Vegas Metropolitan Police Department, the North Las Vegas Police Department, or the Nye County Sheriff’s Department. In addition, law enforcement is not provided by the Las Vegas Metropolitan Police Department or the North Las Vegas Police Department.

Fire protection. Construction and operation of the solar power generation facility would increase building density on the NNSS, which could result in additional calls for fire protection. NNSS Fire and Rescue operates out of two fire stations: one in Mercury and a newly constructed station in Area 6 that provides rapid response to emergencies in the forward areas of the NNSS. This impact is expected to be minor and would not affect levels of service at the Clark County Fire Department, the Las Vegas Fire Department, or the Nye County volunteer fire departments.

Health care. It was assumed that the majority of the 150 employees hired to operate the solar power generation facility would be currently living within the ROI. Therefore, the current person-to-hospital-bed ratio within the ROI would remain the same. Construction and operation of the solar power generation facility under the No Action Alternative would not displace any health care facilities or conflict with local and regional plans for health care or emergency services. Therefore, construction and operation of the solar power generation facility would not increase the need for hospital personnel.

5.1.4.2 Expanded Operations Alternative

5.1.4.2.1 Economic Activity, Population, and Housing

Under the Expanded Operations Alternative, it was assumed that operation of commercial solar power facilities, as well as other permanent positions created at the NNSS, would increase employment from 1,699 to 2,324, which would be an increase of 625 jobs (see Table 5–21).

Approximately 10 percent, or 63 individuals, are expected to relocate as a result of the Expanded Operations Alternative. It was assumed that 77 percent would live in Clark County (49 workers) and 23 percent in Nye County (14 workers), consistent with current workforce demographics (NSTec 2009). Projected rates of population growth would not be altered as a result of the Expanded Operations Alternative. Sufficient housing exists in the area (208,275 and 3,202 housing vacancies in Clark and Nye Counties, respectively) to support an increase in population of 63 people. This would result in a 0.02 percent reduction in housing vacancy rates in Clark County and a 0.4 percent reduction in Nye County.
The remaining 563 individuals filling the jobs are expected to be already living in the region. Of these 563 jobs, it was assumed that 77 percent (a total of 434) would live in Clark County and 23 percent (a total of 130) in Nye County, consistent with current workforce demographics (NSTec 2009d).

The 434 jobs added in Clark County would decrease unemployment by 0.31 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). In Nye County, the 130 new jobs would decrease unemployment by about 4.2 percent (a total of 3,133 Nye County residents were unemployed as of August 2010). These additional jobs would represent a minor beneficial impact on employment in Clark County and a moderately beneficial impact on Nye County.

As described under the No Action Alternative, RIMS II was used to calculate the indirect economic impact of the project on employment. By adding 625 direct jobs under the Expanded Operations Alternative, approximately 920 indirect jobs would be created in the ROI. The combined effect of direct and indirect employment would result in a decrease in unemployment in Clark County of about 0.8 percent and about 11.0 percent in Nye County.

Daily spending by new employees would positively affect the immediate area of the NNSS. Purchases made would typically include gasoline, automobile servicing, food and beverages, laundry, and other retail items. Therefore, a minor beneficial impact on economic activity would occur under the Expanded Operations Alternative due to the increase in employment.

Approximately 750 FTE positions over 42 months, with a peak of 1,500 FTE positions, would need to be filled for construction of one or more solar power generation facilities. Other construction projects at the NNSS would require approximately 250 FTE positions over the next 10 years. Given the high unemployment rates in Clark and Nye Counties (14.72 and 17.2 percent, respectively, as of August 2010), it was estimated that the majority of the construction workers would come from within the region. This would temporarily reduce the unemployment rate in the region and would have a short-term beneficial impact on the economy and employment in the region.

RIMS II was used to calculate the indirect economic impact on employment resulting from solar power generation facility construction and other construction projects at the NNSS. An estimate of the change in the total number of jobs in a region’s economy was calculated by multiplying the initial change in jobs by a direct-effect employment multiplier. By adding 750 to 1,500 FTE positions, approximately 1,400 to 2,790 jobs would be created as a result of solar power generation facility construction. The other construction projects would add 250 FTE positions, which would create approximately 466 jobs in the ROI. This would have a moderately beneficial impact on the economy and employment in the region during the period of construction.

As described under the No Action Alternative, regional economic activity would increase as construction firms are hired to support the solar power generation facilities due to the purchase of building materials and construction supplies and equipment, as well as spending by the construction workers. Therefore, construction would have a minor beneficial impact on employment and the economy under the Expanded Operations Alternative due to the increase in employment.

Public finance. As described under the No Action Alternative, increased sales transactions from purchases of materials and supplies for construction of the solar power generation facilities would generate additional revenues for local governments. These impacts would be minor but beneficial. In addition, property taxes collected as a result of the relocation of 49 households in Clark County and 14 in Nye County would increase revenue for local governments.
5.1.4.2.2 Public Services

Public education. As described under the No Action Alternative, for the 2009 to 2010 school year, the Clark County School District student–teacher ratio was 21:1. The student–teacher ratio for the Nye County School District was 18.6:1. Under the Expanded Operations Alternative, a total of 119 children could relocate to the area based on an average of 1.89 children per family (USCB 2008b). This represents an increase of 92 children in the Clark County School District (77 percent of the children would reside in Clark County) and an increase of 27 children in the Nye County School District (23 percent of the children would reside in Nye County). Four additional teachers would be needed in Clark County to maintain the current student–teacher ratio. One new teacher would be required in Nye County under the Expanded Operations Alternative.

Police protection. Under the Expanded Operations Alternative, the number of daytime occupants on the NNSS would increase by 625 employees, which could result in more calls for police services. To maintain the existing level of service, the NNSS would need to increase the number of civilian law enforcement officers under contract due to the increase of 625 permanent employees. As described under the No Action Alternative, this impact on police and public safety is expected to be negligible. It would not affect levels of service at the Las Vegas Metropolitan Police Department, the North Las Vegas Police Department, or the Nye County Sheriff’s Department because law enforcement is handled under a separate contract.

Fire protection. Activities under the Expanded Operations Alternative could result in additional calls for fire protection. NNSS Fire and Rescue operates out of two fire stations: one in Mercury and a newly constructed station in Area 6, which provides rapid response to emergencies in the forward areas of the NNSS. This impact is expected to be minor and would not impact levels of service at the Clark County Fire Department, the Las Vegas Fire Department, or the Nye County volunteer fire departments.

Health care. The addition of 625 employees would have only a minor impact on area hospitals and hospital personnel. An eight-bed dispensary in Mercury serves as a clinic for the NNSS. The activities associated with the Expanded Operations Alternative are not anticipated to increase the need for hospital care or personnel within the ROI. However, due to the increase in the number of employees at the NNSS, the clinic in Mercury may need to expand its number of beds.

5.1.4.3 Reduced Operations Alternative

5.1.4.3.1 Economic Activity, Population, and Housing

Under the Reduced Operations Alternative, it was assumed that total employment at the NNSS would decrease from the current level of 1,699 to 1,654, with employment from the operation of the solar power generation facility offsetting most losses associated with a reduction in activity associated with other NNSS programs. This decrease would be equal to about 45 jobs lost: 35 in Clark County and 10 in Nye County. In Clark County, this would increase unemployment by about 0.02 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). In Nye County, the increase in unemployment would be about 0.32 percent (a total of 3,133 Nye County residents were unemployed as of August 2010). Daily spending in the immediate area of the NNSS would decrease correspondingly, which would have a minor adverse impact on economic activity. Housing vacancies would increase and demand for public services would decrease due to the reduction in the permanent workforce.
Approximately 400 FTE positions over 32 months, with a peak of 800 positions, would need to be filled for construction of the commercial solar power generation facility. As described under the No Action Alternative, RIMS II was used to calculate the indirect economic impact of the project on employment. An estimate of the change in the total number of jobs in a region’s economy was calculated by multiplying the initial change in jobs by a direct-effect employment multiplier. By adding 400 to 800 FTE positions, approximately 745 to 1,490 jobs would be created as a result of the solar power generation facility construction (DOC 2010), which would have a moderately beneficial impact on the economy and employment in the region.

As described under the No Action Alternative, regional economic activity would increase as construction firms are hired by the commercial sponsor of the solar power generation facility due to purchases of building materials and construction supplies and equipment, as well as spending by construction workers. Therefore, construction would have a minor beneficial impact on employment and the economy under the Reduced Operations Alternative due to the increase in employment.

Public finance. As described under the No Action Alternative, increased sales transactions from purchases of materials and supplies for construction of the solar power generation facility would generate some additional revenues for local governments under the Reduced Operations Alternative. These impacts would be minor, but beneficial.

5.1.4.3.2 Public Services

Public education. For the 2009 to 2010 school year, the Clark County School District student–teacher ratio was 21:1. The student–teacher ratio for the Nye County School District was 18.6:1. Under the Reduced Operations Alternative, no individuals are expected to relocate to these counties; therefore, no new students would enroll in Clark County or Nye County schools and no new teachers would be required as a result of the Reduced Operations Alternative.

Police protection. Under the Reduced Operations Alternative, the number of daytime occupants on the NNSS would decrease, which could result in fewer calls for police services, which would be a minor beneficial impact on police protection resources.

Fire protection. Construction and operation of the solar power generation facility would result in increased building density on the NNSS, which could result in additional calls for fire protection. NNSS Fire and Rescue operates out of two fire stations, one in Mercury and a newly constructed station in Area 6, which provides rapid response to emergencies in the forward areas of the NNSS. This impact is expected to be minor and would not impact levels of service at the Clark County Fire Department, the Las Vegas Fire Department, or the Nye County volunteer fire departments.

Health care. Under the Reduced Operations Alternative, a small staff reduction of 45 people is anticipated, but would not result in any impact on health care in the region. Existing levels of services would be maintained.
Socioeconomics—American Indian Perspective

Indian people prefer to live in their traditional homelands. One primary reason for this is because Indian people have special ties to our traditional lands and a unique relationship with each other. When Indian people receive employment near our reservations, we can remain on the reservations while commuting to work. This pattern of employment tends to have positive benefits for both the Indian community and tribal enterprises like housing. The reservation Indian community has the participation of the individual and his (her) financial contribution. The individual payment for housing is tied to income level, so the more a person earns with the job, the more they pay to the tribal housing office, and thus making tribally sponsored housing more economically sustainable and attractive for tribal governments.

When employment opportunities decline on reservations, however, Indian families must often move away from our reservations to seek employment elsewhere. As Indian people move away, Indian culture is threatened because the number of families living on reservations declines. Tribal members who choose to relocate from their reservations impact reservation economies, school, housing, and emergency services. Both schools and economies are impacted because federal funding available to tribes is based on population statistics.

With local employment opportunities such as those offered by the Nevada National Security Site (NNSS) for eligible tribal representatives, prices of tribal housing rise because they are based on income. If a positive balance between increased income and increased cost of living in tribal reservations is achieved, then both individual members and the tribe benefit from employment opportunities.

Tribal housing programs become jeopardized if vacancies occur in rental properties and dwellings remain unoccupied. If vacancies occur, tribal revenues and federal funding are adversely impacted and making it more difficult to expand housing programs in future years.

Additionally, vacant units require more maintenance. If tribal members are unavailable to occupy a tribal housing unit, then tribes make units available to non-Indians, and this, too, potentially impacts Indian culture. The increased presence of non-Indians on a reservation or in an Indian community reduces the privacy needed for the conduct of certain ceremonies and traditional practices. When non-Indian children are in constant interaction with Indian children, it creates a situation that potentially disrupts the perpetuation of cultural learning opportunities that occur in everyday life.

When Indian people move away from our reservations several dilemmas occur. Typically, Indian people experience a feeling of isolation from their tribe, culture, and family. When an Indian person relocates to an off-reservation area, the individual finds that there are fewer people of their tribe and culture around them. As a result, Indian people must decide on the appropriateness of practicing traditional ceremonies in the presence of non-Indian people. Indian people are continually torn between the decision to stay in the city or return to the reservation to participate in traditional ceremonies and interact with other tribal members. This dilemma occurs on a regular basis and potentially impacts the livelihood and cultural well-being of off-reservation employees and their families. When off-reservation individuals choose to return to our homelands to participate in traditional ceremonies or renew familial ties, they risk losing their jobs or being subjected to disciplinary actions against their children who attend public schools due to excessive absenteeism.

Under federal and tribal law, American Indian children can be educated in tribally-controlled and federally-certified schools located on Indian reservations (also known as Indian Trust Land). Federal funds are available through the Indian Education Act for the education of Indian children. Compensation from the federal government is provided to any school district that has entered into a cooperative agreement with federally-recognized tribes, whether it be public, private, or an Indian-controlled school.

Small rural Indian reservations must have a sufficient number of people to generate an emergency response capability. The need for emergency services will decline as people move away from the reservation. Tribal members employed in these emergency service occupations may move away because of their marketable skills. Tribal revenues for administration, school, housing, and emergency services will be reduced accordingly, due to a decline in population size.

Indian reservations within the region of influence are located in remote areas with limited access by standard and substandard roads. Should an emergency situation occur resulting from NNSS-related activities, including the transportation of hazardous and radioactive waste, it could result in the closure of the main or only transportation artery to our land. If a major (only) road into a reservation closes, numerous adverse social and economic impacts could occur. For example, Indian students who have to travel an unusually high number of miles to or from school could realize delays. Delays also could occur for regular deliveries of necessary supplies for inventories needed by tribal enterprises and personal use. Emergency medical services en route to or from the reservation, and purchases by patrons of tribal enterprises could be dramatically impeded. Potential investors interested in expanding tribal enterprises, as well as on-going considerations by tribal governments for future tribal enterprises, may significantly diminish because of the real and perceived risks from the transportation of hazardous and radioactive waste associated with NNSS-related activities.

See Appendix C for more details.
Chapter 5
Environmental Consequences

5.1.5 Geology and Soils
This section addresses the impacts on geology and soils under the No Action, Expanded Operations, and Reduced Operations Alternatives. Under each alternative, the impact discussion is broken down into the missions and associated programs. The physical setting under review in this section includes the topography, physiography, economic mineral resources, unique geologic features, soils, and local geologic hazards.

Impact Assessment Criteria. Activities under an alternative would have an adverse impact on the geology or soils if they result in any of the following effects:

- Substantial soil erosion or loss of topsoil
- Direct conversion of prime and unique farmland to nonagricultural uses
- Loss of availability of a known mineral resource that would be of value to the region and/or the residents of the state
- Increased instability of a geologic unit or soil due to project activities, potentially leading to an onsite or offsite landslide, subsidence, or collapse
- Exposure of people or structures to substantial adverse effects from seismic activity
- Contamination of soil or mineral resources

Maps, past studies, and regional models were used to determine the impacts from the alternatives on the physical setting based on the criteria described above. Activities that would occur in already established facilities, tunnels, or laboratories generally would not have an impact on the geologic resources. Mitigation measures used to minimize adverse impacts on the physical setting are presented in Chapter 7.

5.1.5.1 No Action Alternative
Chapter 3 describes the activities that would occur under the No Action Alternative. Many of the activities are similar to those described in the ROD for the 1996 NTS EIS (and subsequent amendments) and other completed NEPA documents. The NNSS was withdrawn from public access and entry. This withdrawn status prevents exploration for economic minerals at the NNSS. The existence of past mines prior to the land withdrawal suggests that metallic and other economic minerals are present at the NNSS. However, the activities outlined under the No Action Alternative are not expected to affect the presence of economic mineral deposits, which would allow their extraction in the future. The unavailability of the minerals and other economic materials from the NNSS has had little effect on Nevada’s mining, manufacturing, and construction industries and would probably have little effect on those industries in the future.

Open borrow pits at the NNSS may continue to be used to supply the NNSS with fill for construction or operations purposes. No new borrow pits would be opened under the No Action Alternative. Removing alluvial materials for fill would not substantially reduce the aggregate resources in the region. The NNSS has a low potential for oil and gas resources, so there would be no impact on the regional energy mineral resources.

The Natural Resources Conservation Service has not characterized soils at the NNSS, and the presence of prime farmland is not known. As agriculture production in Nevada requires irrigation, the best potential for prime farmland soils would be located in the deepest sections of Yucca Flat, Frenchman Flat, and Plutonium Valley (see Chapter 4, Section 4.1.5.3). However, as there are no plans for irrigating the valley floors, the presence of prime farmland soils at the NNSS is extremely unlikely. Therefore, the actions under all of the alternatives would not have an impact on regional prime farmland soil availability.

The following discussion presents the potential for impacts from the programs and activities proposed under the No Action Alternative that could affect geologic or soil resources.
5.1.5.1.1 National Security/Defense Mission

Stockpile Stewardship and Management Program. Under the No Action Alternative, DOE/NNSA would maintain the capability to conduct underground nuclear weapons testing. As maintenance of the facilities and utilities would occur at already disturbed outdoor or enclosed locations, maintaining this capability and the nuclear weapons stockpile would not impact geologic or soil resources.

There would be no impact on the physical setting from conducting dynamic experiments at the U1a Complex, or in unused vertical emplacement holes or other locations within the Nuclear Test and Nuclear and High Explosives Test Zones. These experiments would occur within areas previously excavated for facility construction or past tests. Some alluvial materials may need to be excavated if the U1a Complex needs additional experiment alcoves. However, the excavated material could be used for construction or as fill at the NNSS, which would reduce the overall need for alluvial materials from other borrow pits.

Conducting conventional high-explosives experiments would impact soils and geology. Activities would consist of up to 20 conventional high-explosives experiments per year at BEEF and up to 10 per year at other locations at the NNSS. Open-air high-explosives experiments at BEEF would occur on a constructed firing table in locations previously disturbed through construction and past tests, which would preclude impacts on the soil and alluvial geologic deposits. However, surface soils would be disturbed if an open-air detonation were to occur at previously undisturbed locations. This would increase the potential for soil erosion by wind and water at the experiment location. Depending on the type of experiments and composition of the high-explosive material that would be used, soils could be contaminated with chemicals, heavy metals, hydrocarbons, or small amounts of radiological isotopes. Additional impacts would be seen through the alteration of natural drainage paths, which would result in a potential for preferential erosion of alluvial deposits and increased sediment deposition in the valleys. However, the potential experiment locations (Areas 1, 2, 3, 4, 12, and 16) have been previously disturbed, so the surface disturbance would be minor. If soils were significantly contaminated by explosives experiments, they would be identified as a corrective action site and would be remediated as necessary.

There would be no impact on the physical setting from DOE/NNSA’s conduct of shock physics experiments under the No Action Alternative. The experiments would occur within existing facilities at JASPER in Area 27 and the U1a Complex in Area 1. Any additional construction required at the U1a Complex to accommodate the Large-Bore Powder Gun would occur in areas that were previously disturbed by surface construction and would likely use alluvial materials previously excavated from the complex.

The physical setting would not be impacted by conducting criticality experiments, training, and other activities or pulsed-power and plasma physics and fusion experiments because these tests would occur within current facilities. Stockpile management activities at the NNSS would also occur within existing facilities and would not require additional surface or subsurface disturbance.

Some localized impacts on the surface soil structure would occur in off-road locations from DOE/NNSA and the U.S. Department of Defense (DoD) conducting training activities for the Office of Secure Transportation in off-road locations. Driving vehicles through undisturbed soils and vegetation would disturb the soil structures and increase soil erosion by wind.

DOE/NNSA would perform up to five drillback operations during the next 10 years. Each operation would disturb approximately 5 acres for the construction laydown area, borehole, and temporary storage of excavated material. The drillback sites would be located adjacent to an existing UGTA, so the surface disturbance would be minimal compared to the original test area.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Most of the activities under these programs would be located at existing disturbed areas and developed facilities at the NNSS and, therefore, would not impact the physical setting. Support for the following activities would
not impact the physical setting: consequence management through the Federal Radiological Monitoring and Assessment Center, Accident Response Group, and Radiological Assistance Program, as well as weapons of mass destruction emergency responder training. The disposition of improvised nuclear and radiological dispersion devices would also occur within existing facilities and would not result in land disturbance.

Some nonproliferation- and counterterrorism-related activities would use existing facilities at the NNSS, so they would not impact the physical setting. An Arms Control Treaty Verification Test Bed would use existing capabilities, such as the Nonproliferation Test and Evaluation Complex (NPTEC), BEEF, various tunnels, laboratories, and training facilities, to support design and certification of treaty verification technology, training of inspectors, and development of arms control confidence-building measures. An existing building at Mercury would be retrofitted for uses not supplied by the other facilities. No impacts on the physical setting would occur because the activities would occur at existing structures at the NNSS.

Nonproliferation programs would use several areas and facilities at the NNSS as a base of operations for collaboration and experiments. Unique facilities at the NNSS, including NPTEC, previously contaminated surface locations, and tunnels, would be used to support training and exercises. Although some exercises would likely cause minor soil disturbance, it would be in areas already disturbed by historical testing. Nuclear forensics activities would occur in previously disturbed areas and existing facilities and would not impact soils or geologic media.

The NNSS would also be used for a counterterrorism training program with various U.S. agencies and possibly international participants. This program would be conducted at BEEF, NPTEC, and other locations at the NNSS. Some high explosives would be used as part of the training, so the impacts would be similar to those described for the high-explosion experiments under the Stockpile Stewardship and Management Program. There would be a potential for increased soil erosion and surface instability where training occurs in the rugged terrain and previously undisturbed areas of the NNSS.

Work for Others Program. Several projects are included in the Work for Others Program. Some of the activities would use existing facilities and would not impact the physical setting. Others may require construction or experiments that would introduce additional surface disturbances at the NNSS.

No impacts would occur from DOE/NNSA hosting activities for treaty verification, including research and development, because the activities would occur within the existing facilities.

Conventional weapons effect tests (including live drop and static high-explosive detonations) using up to 30,000-pound-class weapon systems with up to 20,000 pounds of TNT [2,4,6-trinitrotoluene]-equivalent explosives would be performed within the Nuclear and High Explosives Test Zone. Other types of explosives experiments would occur in various locations at the NNSS, as described in Chapter 3, Section 3.1.1.3. Surface soils would be disturbed if an open-air explosive experiment were to occur at a previously undisturbed location. This would increase the potential for soil erosion by wind and water at the testing location. Surface drainage may be altered, which would increase the potential for erosion from increased gullyng. Many locations in Areas 1, 2, 3, 4, 12, and 16 have been disturbed by past tests, so the surface disturbance would not be unique to these areas.

Other activities, such as development and demonstration of capabilities and technologies against deeply buried hardened targets, would be based primarily in the U16b Tunnel of Area 16, but could also be conducted at other existing locations at the NNSS. Elsewhere, up to 20 controlled chemical and biological simulant release experiments would be conducted annually to test sensors and train first responders. The location of these experiments has not been determined. The release of simulants would not affect the physical setting.

Joint counterterrorism training between DoD, DHS, and other Federal agencies would occur in the remote areas of the NNSS. Small arms live-fire and small explosions would be used as part of the training; however, the impacts would be similar to those described for the high-explosion experiments under the
Stockpile Stewardship and Management Program. There would be a potential for increased soil erosion and surface instability where training occurs in the rugged terrain and previously undisturbed areas of the NNSS. Other training would include overland navigation techniques, which would introduce more soil disturbance to locations that may not be previously disturbed. This would generate minor soil impacts by increasing the potential for erosion and introducing some surface instability to the area.

The criticality experiments for NASA and the miscellaneous Work for Others Program activities would not introduce impacts because they would use existing facilities.

5.1.5.1.2 Environmental Management Mission

Waste Management Program. DOE/NNSA operates facilities at the NNSS to manage radioactive waste generated both within Nevada and out of state by DOE/NNSA and other authorized generators. The Area 5 RWMC evaluates, processes, stores, and disposes LLW and MLLW. The facility uses excavated trenches, pits, and boreholes in an approximately 740-acre area.

On December 1, 2010, the Nevada Division of Environmental Protection (NDEP) issued a permit to the DOE/NNSA NSO for a new MLLW Disposal Unit at the Area 5 RWMC. The new MLLW Disposal Unit consists of a single lined cell (Cell 18) with a capacity of about 900,000 cubic feet (actual permitted disposal volume is 899,996 cubic feet). Construction of Cell 18 is complete and it began accepting MLLW for disposal in January 2011.

Under the No Action Alternative, less than 50 percent of the approximately 740-acre Area 5 RWMC would be used for LLW and MLLW disposal cells over the next 10 years. Once filled, disposal cells would be operationally capped, pending final closure. Preshipment storage of TRU waste, mixed TRU waste, MLLW, and hazardous wastes at the NNSS would not generate impacts on soils because the wastes would be stored on existing storage pads.

The Area 3 Radioactive Waste Management Site (RWMS) was constructed by excavating underground nuclear test subsidence craters that met specific design criteria and would be closed with an engineered cap. The Area 3 RWMS is not active, although it would be reactivated, if necessary, and its existing craters would be used for disposal of onsite LLW or nonhazardous solid waste.

Open-air detonation of old or unusable explosives would continue at the Explosives Ordnance Disposal Unit in Area 11 and would not result in additional soil disturbance.

The hydrocarbon-contaminated waste disposal sites (Area 6 Hydrocarbon Solid Waste and U10c Solid Waste Disposal sites) would continue to operate under their respective permits issued by NDEP and would not create any additional impacts on geologic resources or soils.

Environmental Restoration Program. The Soils Project under the Environmental Restoration Program would continue to investigate, characterize, and close contaminated soil sites previously identified in the corrective action units. Under the Environmental Restoration Program, each contaminated site is prioritized and evaluated to determine the appropriate corrective action. Depending on the nature and extent of the contamination, either a streamlined or complex corrective action process would be used. Some soil sites may be closed in place with appropriate controls; others may be closed with other actions, such as stabilization and/or excavation of contaminated soil and disposal (FFACO 2008). Closure of these sites is conducted under the Federal Facility Agreement and Consent Order (FFACO) with approval by NDEP. If the appropriate corrective action includes contaminated soil removal, there would be a temporary increase in erosion from the disturbance of the soil. This would increase the potential that soil could be moved by wind and water processes.

Under the Soils Project outlined in the *1996 NTS EIS* (DOE 1996c), approximately 3,257 acres of plutonium-contaminated soils would be dispositioned at the NNSS, the TTR, and the Nevada Test and Training Range (formerly the Nellis Air Force Range Complex) (DOE 1996d). As of 2009, several corrective action sites in Frenchman Flat, Oak Spring, Yucca Flat, and Buckboard Mesa were declared
closed by a corrective action document (FFACO 2009). DOE/NNSA anticipates that all identified Soils Project sites would be closed under the Environmental Restoration Program by the end of 2022.

Drilling additional monitoring wells under the UGTA Project would result in localized erosion around the drilling locations. Similar impacts would result from the decontamination and demolition of industrial sites, remediation of Defense Threat Reduction Agency (DTRA) sites, and the Borehole Management Program.

Because petroleum fuels, lubricants, and a variety of chemicals are used and stored at the NNSS, there is a chance that an accidental spill could contaminate the soil surface. If an accidental release of hydrocarbons were to occur, the soils contaminated with hydrocarbons would be removed and disposed in permitted and approved landfills. With spill prevention and mitigation measures in place, the potential for soil contamination would be reduced.

5.1.5.1.3 Nondefense Mission

General Site Support and Infrastructure Program. Under the No Action Alternative, infrastructure-associated activities would be primarily limited to projects that maintain the present facility capabilities, such as repairs and replacements. There would be no increasing of the capabilities or extending the ranges of the existing infrastructure. Although repairs may require some surface disturbance around the existing facilities, it would be limited to areas that were previously disturbed, and would not significantly increase surface erosion around at the NNSS.

Conservation and Renewable Energy Program. Under the No Action Alternative, implementing efficiency and conservation for energy and water, continuing transportation and fleet management, and upgrading the facilities at the NNSS to high-performance, sustainable buildings under the NNSS Conservation and Renewable Energy Program would result in no impacts on the local geology or soils.

A 240-megawatt commercial solar power generation facility would be constructed in Area 25 under the No Action Alternative. Construction of the commercial solar power generation facility and associated transmission lines could disturb up to 2,650 acres. Most of the soils in Area 25 have not been modified through construction or other uses, so construction of the solar power generation facility would affect topsoil and increase the potential for erosion in Jackass Flats.

Other Research and Development Programs. DOE/NNSA would continue to host environmental research projects at the NNSS, but would not actively promote the National Environmental Research Park Program. Each research project would be reviewed by DOE/NNSA on a case-by-case basis. Although minor amounts of soil may be disturbed during the data-gathering or research procedures, the effects would be temporary.

5.1.5.2 Expanded Operations Alternative

The potential impacts of implementing the Expanded Operations Alternative would largely be similar to those discussed above under the No Action Alternative. However, some additional facilities and activities are proposed, and some activities would be expanded or increased, which could magnify the impacts of the No Action Alternative. The sections below present the alternative activities that have different impacts from those described in Section 5.1.5.1.

5.1.5.2.1 National Security/Defense Mission

Stockpile Stewardship and Management Program. There would be no additional impacts from DOE/NNSA’s maintenance of the potential to conduct underground nuclear weapons testing under the Expanded Operations Alternative. Several activities under the Stockpile Stewardship and Management Program would remain the same as those under the No Action Alternative, including disposition of damaged U.S. nuclear weapons, criticality experiments, and drillback operations. The potential impacts would be the same as those described under the No Action Alternative.
Under the Expanded Operations Alternative, the number of dynamic experiments would increase to 20 per year, all within the Nuclear Test and Nuclear and High Explosives Test Zones at the NNSS. The increase would not impact the physical setting because the experiments would occur within existing facilities. At BEEF, up to 100 conventional explosives experiments would occur every year. A new firing table and ancillary facilities would also be constructed to support the additional experimental needs. These features would be constructed within the existing developed BEEF facility area. Therefore, the potential for erosion would likely be minor. DOE/NNSA would increase the size and number of high explosives at the Nuclear and High Explosives Test Zone. The impacts are described further in the Work for Others Program section below.

DOE/NNSA would establish up to three areas dedicated to conducting explosive experiments with depleted uranium in Areas 2, 4, 12, or 16. Up to 20 experiments would be performed each year using a cumulative maximum of 4,000 pounds of depleted uranium and 12,000 pounds (TNT-equivalent) of high explosives. These detonations would impact soils in the area because the explosions would remove the topsoil and increase the potential for erosion by wind. The use of depleted uranium in the experiments would increase the radioactivity in the soils at the experiment locations. These experiments would be located in research areas that have previously hosted extensive underground and atmospheric testing. Some of the experiment sites would likely be located on areas (e.g., Yucca Flat, Rainier Mesa, and Shoshone Mountain) that had undergone previous underground nuclear testing. After the experiments and cleanup, radiation monitoring would determine whether a site would need to be included in the Soils Project of the Environmental Restoration Program.

There would be no impact on the physical setting from DOE/NNSA’s increasing the number of shock physics experiments under the Expanded Operations Alternative. The experiments would occur within existing facilities, and opening the facilities to academic and other research would not require constructing new buildings. There would be no impacts on the physical setting from increasing the number of pulsed-power experiments at the Atlas Facility. There would be no impact from the staging of SNM under the stockpile management activities because it also would occur within existing facilities on NNSS property.

No impact on the physical setting would occur by expanding the use of the NNSS Dense Plasma Focus machine. There is no indication that moving the machine to another building in Area 6 would require the construction of additional facilities, so moving the equipment to a new location would not disturb soils or affect unique geologic resources. The old building in Area 11 would be placed on standby.

Under the Expanded Operations Alternative, DOE/NNSA would construct new support facilities near Eleana Ridge in Area 17 to support the Office of Secure Transportation training programs. The new facilities, consisting of buildings and training areas, would occupy approximately 10,000 acres, including about 25 miles of internal roads and firebreaks around the active training areas. A 4.5-mile utility corridor for electrical lines and a water pipeline would be built to support the new facility. As a result, there would be temporary impacts on soils from construction surface disturbance. Additionally, facilities would be expanded in the Area 12 Camp, Area 6 Control Point, or in Mercury (Area 23), which would temporarily increase the soil erosion around the construction site.

Soils would be disturbed from grading the facilities’ location, developing roads, and excavating the pipeline trench, as well as from construction equipment moving across the desert surface. Soils disturbed during construction would have a potential for increased erosion from wind and water, and some soils would be permanently disturbed underneath the new structures and roads. The utility corridor would be restored by replacing topsoil and encouraging native vegetation growth. Some of the roads would not be paved; the existing soil structure would be compacted for stability. The facilities would be sited and designed to minimize the geotechnical hazards (e.g., shrink-swell soils, slope instability) that could affect the new structures.
Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Under the Expanded Operations Alternative, there would be no changes compared with the No Action Alternative for the following projects and activities under the Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs: consequence management support for the Federal Radiological Monitoring and Assessment Center, the Accident Response Group, and the Radiological Assistance Program; weapons of mass destruction emergency responder training; assistance for the Emergency Communications Network; and improvised nuclear device dispositioning and forensics.

Some of the nonproliferation- and counterterrorism-related activities would remain similar to those under the No Action Alternative; however, new facilities would be constructed to support program requirements. These new facilities, described below, are still conceptual in nature, so additional NEPA review may be required once locations and plans are finalized. The Arms Control Treaty Verification Test Bed project would need both indoor and outdoor laboratory and test areas, which would require a total of 100 acres of land. The facilities would be sited at various locations within the NNSS. Approximately 0.23 acres would be needed to construct a new facility for data fusion analysis and visualization. This facility would be located near the other Arms Control Treaty Verification facilities. Construction of the new facilities would increase the potential for erosion of the soils and permanently disturb about 100 acres of soils. This would result in minor impacts on soils.

A new facility would be constructed to contain a nonproliferation test bed, which would simulate clandestine chemical and radiological releases. The impacts on the soils would be similar to the impacts of the Arms Control Treaty Verification facilities, i.e., about 100 acres of land disturbance.

In addition to conducting counterterrorism training at existing facilities, an Urban Warfare Complex would be constructed at the NNSS. This complex would include full-scale, modular replicas of the types of urban areas where terrorists and insurgents typically seek refuge. The Urban Warfare Complex would be constructed on about 100 acres in a remote area on the NNSS. The impacts on the soils would be similar to the Arms Control Treaty Verification facilities. Further NEPA review would be required once more information about the proposed facilities and locations becomes available.

Work for Others Program. The treaty verification activities under the Work for Others Program would be the same as those described under the No Action Alternative; as a result, they would have no impact on the physical setting. The Nonproliferation Projects and Counterproliferation Research and Development would add additional sensor technologies and active interrogation programs to detect nuclear material. The impacts would be the same as those described under the No Action Alternative.

New facilities would be constructed to support counterterrorism activities. Approximately 75 acres of land would be disturbed to build test beds (roads, intersections, small towns, etc.) and support facilities for research and development of improved explosive device sensors. Additional DHS counterterrorism operations support facilities would disturb 25 acres of land. As a result, there would be minor, temporary impacts on soils from construction activities. Further NEPA review would be required after more information about the proposed facilities and locations becomes available.

DOE/NNSA would support NASA nuclear rocket motor development by allowing the use of an existing borehole for tests of a prototype nuclear rocket motor. As an existing borehole would be used, impacts would be limited to surface disturbance around the test site. Although it is not likely that NASA would test an actual nuclear rocket motor, spiked xenon may be used for proof-of-concept tests. As a result, soils would be contaminated with short-lived xenon isotopes with half-lives of a few hours to days.

Several new facilities would be constructed to support the increased use of aerial platforms at the NNSS. Approximately 4.6 acres would be disturbed at Desert Rock Airport for support hangars and other buildings. Another 4.6 acres would be disturbed at the Area 6 Aerial Operations Facility, and minor improvements would be made to the Pahute Mesa Airstrip. Other aerial platform facilities at other locations at the NNSS would disturb up to a total of 0.11 acres. In addition, 100 acres of previously undisturbed land in Area 6 would be needed for expansion of the RNCTEC facility for DHS.
Construction would disturb soils and increase the potential for erosion, especially in previously disturbed locations.

Radioactive tracer experiments would be conducted under the Expanded Operations Alternative. Underground releases of radioactive noble gases with noncritical detonations would temporarily contaminate the subsurface with radiological isotopes. However, these isotopes have short half-lives, typically 5 to 36 days. Up to 12 experiments involving open-air releases would be conducted each year. There would be temporary impacts on soils from contamination by these short-half-life radioisotopes.

New research and development test beds supporting national security initiatives would be constructed on 200 acres of previously undisturbed land throughout the NNSS. The test beds would be used by several agencies and for a variety of uses. Construction would disturb soils and increase the potential for their erosion, especially in previously disturbed locations. This would cause a minor impact on the soils, as surface disturbance would increase the potential for erosion.

5.1.5.2.2 Environmental Management Mission

Waste Management Program. Under the Expanded Operations Alternative, the greatest impact on geologic media and soils would result from the increased volumes of LLW and MLLW that would be disposed at the Area 5 RWMC (and potentially the Area 3 RWMS). New disposal cell construction for the increased volumes of LLW and MLLW, combined with previously constructed cells, would use essentially all of the available land within the Area 5 RWMC. To handle the increased volumes and increased shipment rates of LLW and/or MLLW, a waste off-loading and a container staging area would be built at the Area 5 RWMC. Construction of the new waste off-loading and a container staging area would increase surface disturbance and increase soil erosion; it would be located within the approximately 740-acre area of the Area 5 RWMC. The Area 3 RWMS would be reopened, which may result in additional surface disturbance.

DOE/NNSA would construct a new sanitary waste landfill in Area 23. Fifteen acres of land would be required for construction and operation of the new landfill. A construction and demolition debris landfill would be constructed in Area 25, which would require 20 acres of surface disturbance. These landfills would not impact the subsurface geology, although the surface disturbance would increase the potential for soil erosion around the construction site. Once the landfills are operational, soil erosion would be negligible.

Environmental Restoration Program. Under the Expanded Operations Alternative, the Environmental Restoration Program would continue, in compliance with the FFACO. Therefore, the impacts would be the same as those described under the No Action Alternative. The UGTA, Soils, and Industrial Sites Projects; remediation of DTRA sites; and Borehole Management Program would also continue.

5.1.5.2.3 Nondefense Mission

General Site Support and Infrastructure Program. The Expanded Operations Alternative would implement the same small projects to maintain the present capabilities at the NNSS; as a result, these projects would have similar impacts on soils as those described under the No Action Alternative. In addition to these maintenance activities, new infrastructure enhancements, which could affect soils by disturbing the topsoil during construction and demolition activities, would be implemented. Outdated facilities in Area 23 would be replaced with a new security building. Construction of this security building would disturb up to an acre of soils, which would increase the potential for erosion. The outdated structures would be demolished or used for other purposes. Other projects would include replacing about 35 miles of the existing 138-kilovolt electrical transmission system, increasing the number of cell towers at the NNSS, and constructing/demolishing buildings in Mercury. Each of these projects would disturb topsoil and increase the potential for erosion during construction and demolition. In remote locations with fewer structures and more previously undisturbed land, such as the cell-tower locations, the potential for erosion and soil disturbance would be higher.
Conservation and Renewable Energy Program. DOE/NNSA would implement energy efficiency conservation and water measures, continue transportation and fleet management efforts, and upgrade the facilities at the NNSS under the NNSS Conservation and Renewable Energy Program. These activities would not affect the local geology or soils.

Under the Expanded Operations Alternative, DOE/NNSA would build a 5-megawatt photovoltaic solar power generation facility near the Area 6 Construction Facilities. Based on a similar project on Nellis Air Force Base, construction and operation of this solar power generation facility would disturb 50 acres of land (USAF 2006c). DOE/NNSA would also permit one or more commercial solar power generation facilities with a generating capacity of up to 1,000 megawatts in Area 25. These commercial solar power facilities would disturb approximately 10,300 acres of land. Additional construction would be needed to update and add electrical transmission capacity off the NNSS. As there are no specific designs or private-sector proponents for the commercial solar power generation facilities, additional NEPA review would be required prior to its construction.

A geothermal laboratory could be developed on NNSS property. Exploratory studies at the NNSS would evaluate the feasibility of implementing such a project. The location of the facility would vary depending on the geothermal potential, zone use restrictions, environmental and economic considerations, and other factors. If an appropriate location on the NNSS were identified, the facility would be used to test an enhanced Geothermal Demonstration Project. Approximately 30 to 50 acres of land would be disturbed during construction of the facility. An excavated, lined sump to hold drilling water would be built adjacent to the main structures. Drilling the geothermal wells would remove some of the bedrock within the construction disturbance area. However, the drilling would not impact geologic features unique to the area. Operating the facility would not impact the geology or soils. The data gained during construction and operation of the Geothermal Demonstration Project may be considered a beneficial impact. A separate, but related facility, a Geothermal Research Center, would not affect the soils because it would be built in a previously disturbed area at Mercury.

Other Research and Development Programs. Additional research projects would be performed at the NNSS as part of the National Environmental Research Park Program. Each research project would be reviewed by DOE/NNSA on a case-by-case basis. Although minor amounts of soil may be disturbed during the data gathering or research procedures, the effects would be temporary.

5.1.5.3 Reduced Operations Alternative

The Reduced Operations Alternative includes all of the activities actually conducted at the NNSS since 1996. For most of the programs, the activity levels and frequencies would be limited to those ongoing since 1996. The Reduced Operations Alternative would also curtail all activities other than environmental restoration, environmental monitoring, site security operations, military training and exercises, and maintenance of Well 8 and critical communications and electrical transmission systems in Areas 18, 19, 20, 29, and 30 in the northwestern NNSS.

Soils would experience a general beneficial impact from the cessation of all activities except for Environmental Restoration Program activities, environmental monitoring, and other site maintenance activities. Maintenance of old roads would be discontinued, allowing previously disturbed soils to reform their structure. There would be no impacts on economic minerals or energy resources, although public access would continue to be restricted at the NNSS. The following discussion presents the programs and activities that would have different impacts than those under the No Action Alternative.

5.1.5.3.1 National Security/Defense Mission

DOE/NNSA would continue its readiness to conduct an underground nuclear test, so the impacts would be similar to those described under the No Action Alternative. There would be no change compared with the No Action Alternative for the following activities: shock physics experiments, disposition of damaged
nuclear weapons, criticality experiments, training support for the Office of Secure Transportation, staging of SNM, and readiness-related training and exercises using various kinds of nuclear weapon simulators.

The conventional high-explosives experiments at BEEF and other locations in the Nuclear and High Explosives Test Zone, including hydrodynamic and explosively driven pulsed-power experiments that directly support the Stockpile Stewardship and Management Program, would continue; however, all other high-explosives experiments would be curtailed. The high-explosives experiments at BEEF would have similar impacts on the soils to those under the No Action Alternative; however, the effects would be less because there would be fewer experiments overall. The other experiments would not affect the physical setting because they would be located in already existing facilities.

No impacts would result from conducting up to 10 dynamic experiments at the NNSS. Dynamic experiments would not be conducted in the Limited Use Zone on the NNSS.

There would be minor impacts on the soils from the conventional high-explosives experiments under the Reduced Operations Alternative. Up to 10 experiments per year would be conducted to directly support the Stockpile Stewardship and Management Program, less than the number under the No Action Alternative. The experiment locations would primarily be at BEEF. Minor soil impacts would result from decommissioning and dispositioning the Atlas Facility. Construction equipment used to dismantle the facility would disturb soils directly around the facility. This would increase the potential for erosion; however, the cleared facility location would allow the soils to redevelop.

There would be no impact on the physical setting from DOE/NNSA’s conduct of shock physics experiments under the Reduced Operations Alternative. No more than 12 shock physics experiments would occur within existing facilities at JASPER, and 10 would be conducted at the Large-Bore Powder Gun at the U1a Complex.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. There would be no change in programmatic activities compared with the No Action Alternative, so the impacts would be the same.

Work for Others Program. Under the Work for Others Program, DOE/NNSA would still host the projects of other Federal agencies, state and local governments, and nongovernmental organizations; however, certain activities, primarily those requiring high-explosives testing or involvement, would not be conducted. No Work for Others Program activities, except military training and exercises, would be conducted in Areas 18, 19, 20, 29, and 30. This would reduce impacts on soils and geologic media at the NNSS, compared to those under the No Action Alternative.

5.1.5.3.2 Environmental Management Mission

The Waste Management and Environmental Restoration Programs under the Reduced Operations Alternative would function the same as under the No Action Alternative. Therefore, the impacts would be the same as those described in the Environmental Management Mission section in Section 5.1.5.1.

5.1.5.3.3 Nondefense Mission

General Site Support and Infrastructure Program. Under the Reduced Operations Alternative, fewer repair and replacement activities would occur at the NNSS. Only critical infrastructure within Areas 18, 19, 20, 29 and 30 would be maintained. Roads within these areas would only be maintained to provide access necessary to maintain the noted infrastructure (maintenance and operation of the Echo Peak, Motorola, and Shoshone communications facilities; the Echo Peak, Castle Rock, and Stockade Wash Substations, including electrical transmission lines interconnecting these substations; and Well 8). Because of fewer enhancements and maintenance activities, the soils would be affected to a lesser degree than under the No Action Alternative.

Conservation and Renewable Energy Program. DOE/NNSA would permit the construction of a 100-megawatt commercial solar power generation facility in Area 25, disturbing approximately
1,200 acres of soils. Construction would temporarily increase the potential for erosion of the topsoil, and additional NEPA review would be required after site selection occurs.

Other Research and Development Programs. DOE/NNSA would continue to host environmental research projects at the NNSS, but would not actively promote the National Environmental Research Park Program. Each research project would be reviewed by DOE/NNSA on a case-by-case basis. Although minor amounts of soil may be disturbed during the data-gathering or research procedures, the effects would be temporary.

Geology and Soils

During the evaluation of the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (1996 NTS EIS), the Consolidated Group of Tribes and Organizations (CGTO) noted repeated nuclear testing activities had resulted in severe disturbances to the geology and soils, or minerals, in large portions of the Nevada National Security Site (NNSS). This seemingly irreparable damage has made certain areas unfit for human use and inaccessible to American Indians who have relied on the earth and rocks for medicine and religious purposes. Sedan Crater, for example, continues to be a dead site; the spirits of the site and resources on it were destroyed in 1962 and the loss can still be felt by members of the CGTO.

The CGTO visited the NNSS in February 2010 and believes the geology and soils are in even poorer condition than they were during the 1996 NTS EIS due to the continued drought. Drought conditions, ground disturbing site activities, and damage to the soil from previous underground nuclear testing are significantly enhancing erosion. Negative impacts to these resources are long-lasting.

Activities that alter geologic structure also alter hydrologic systems. Such actions result in changes to important geologic and soil features that directly connect the tribes to their homelands in specific, spiritual ways. These changes require spiritual and cultural intervention necessary for restoring balance.

According to tribal elders, “Bombs have melted the soil. It turned to glass... Severe disturbances are still out there. Everything is still suffering from it... All Tribes are in agreement that they want to be here to do what they can to help stop this terrible pressure put on the earth and to sing the songs to help the site and to say prayers. The land has its own songs and when you sing the songs to the land, it'll sing back to you. These songs must be sung to help heal the earth and to restore harmony and balance.”

See Appendix C for more details.

5.1.6 Hydrology

5.1.6.1 Surface-Water Hydrology

Impacts on surface hydrology were assessed by reviewing the proposed activities described in Chapter 3 to determine whether they have the potential to directly or indirectly affect surface-water resources. Impacts are based on qualitative assessments of the range of potential activities that may occur under the three missions for the three alternatives. Activities under an alternative would have an adverse impact on surface-water resources if they result in any the following effects:

- Alteration of natural drainage pathways (pools, channels, or the ground surface)
- Contamination of surface waters with chemical and/or biological agents
- Sedimentation to surface waters
- Conflict with the provisions of approved water discharge permits
- Alteration of 100-year or 500-year floodplains or other flood hazard areas in a manner that would endanger lives and property

It is important to note that, as described in Chapter 4, Section 4.1.6.1, springs are the only perennial sources of surface water at the NNSS; therefore, the only perennial surface waters occur as pools at some large springs. Springs are located outside of locations used for testing and training events and are generally upgradient. In addition, onsite springs are fed by locally derived or “perched” groundwater (Hansen et al. 1997; Moore 1961) (i.e., groundwater in a saturated zone of material separated from other groundwater bodies by a relatively impervious zone) that is not hydrologically connected to any of the...
aquifers that may be affected by underground nuclear tests (Bechtel Nevada 1998a; DOE/NV 1999); therefore, no potential impacts are anticipated to occur to perennial surface waters at the NNSS under any of the alternatives.

As described in Chapter 4, Section 4.1.6.1, ephemeral flows in surface-water features on the NNSS occur rarely, with no flow occurring in some years. During infrequent heavy precipitation events, runoff is typically of short duration; however, large peak discharge rates can result. Flooding events on site have the potential to affect offsite locations downslope. The primary hydrographic basin on site with the potential to affect offsite areas is the Fortymile Canyon; a storm event in 1995 resulted in the temporary closing of U.S. Route 95 due to flooding in Fortymile Wash. Ephemeral features in the Rock Valley and Mercury Valley basins also have the potential to flow off site.

Overall, sites containing nonradiological or both radiological and nonradiological contamination total approximately 2,580 acres of land, or about 0.3 percent of the total area of the NNSS. Currently, a total of 14 sites contain nonradiological soil contamination within the Fortymile Canyon Hydrographic Basin and 7 contain both radiological and nonradiological contamination. The majority (10) of the nonradiological sites consist of landfill locations that either are known to contain contamination or could possibly contain it. The four non-landfill sites are all located in the Jackass Flats subdivision of Fortymile Canyon and contain total petroleum hydrocarbons (TPH), tetrachloroethene (TCE), or hydraulic oil. The two TPH and TCE sites contain subsurface contamination below the ground surface, while the hydraulic oil contamination is within underground tunnels. The radiological sites, which are also contaminated by lead, include five locations in Area 18 (Buckboard Mesa subdivision of Fortymile Canyon), where nuclear weapons tests occurred; one in Area 30 (Buckboard Mesa subdivision of Fortymile Canyon), where Project Buggy (a Plowshare Program experiment) was conducted; and one in Area 25 (Jackass Flats subdivision of Fortymile Canyon), where nuclear reactor research was conducted for the space program.

None of these sites is particularly close to Fortymile Wash, the primary pathway for which surface water may exit the NNSS. The closest is the radiologically contaminated site in Area 30, which is approximately 1 mile from Fortymile Wash. Topopah Wash lies to the east of Fortymile Wash in the Jackass Flats subdivision of Fortymile Canyon and has the potential for flow off site, though flow rates and frequencies are typically considerably lower. Eight sites are located in the general vicinity of Topopah Wash or its tributaries, one of which is the radiologically contaminated site in Area 25.

There are five sites containing nonradiological contamination in the Mercury Valley Hydrographic Basin. Two of these contain TPH contamination below the ground surface; two are landfill locations that are either known to contain contamination or could possibly contain it; and one is an area with subsurface contamination by TPH, benzo(a)pyrene, dibenz(a,h)anthracene, and TCE. Each of these sites is in the general area of ephemeral features that flow off site to the south. There are no radiologically contaminated sites in the Mercury Valley Hydrographic Basin and no contaminated sites within the Rock Valley Hydrographic Basin.

Each of the aforementioned contaminated sites has been closed with restrictions on its use. When a contaminated site is closed in place, a risk-based assessment is conducted to determine the potential for spread of contamination from the site. The level of contamination that remains, the stability of each site, and location of each site preclude the potential for release of contaminants at levels that would pose a risk. Most of the sites contain subsurface contamination, which does not have the potential to be spread via surface water. In addition, precipitation events generating flows large enough to make onsite ephemeral water flow off site are rare occurrences. Thus, there is a negligible potential for existing onsite contamination to be transported off site via surface water or through flood events. The following sections address the potential for surface-water transport of contaminants under the three alternatives.

Overall, impacts would be minimized through use of the mitigation measures described in Chapter 7. For example, impacts related to surface disturbances (e.g., sedimentation to ephemeral waters) would be
mitigated on a site-specific basis depending on several factors (e.g., soil characteristics); erosion and sediment controls would include a variety of measures, such as use of filter or silt berms or fences and timely revegetation of exposed surfaces. Where practicable, DOE/NNSA would use areas disturbed by past activities to minimize erosion.

5.1.6.1.1 No Action Alternative

The following sections describe impacts associated with the various activities that may potentially occur under the three missions. With respect to the aforementioned impact criteria, no activities are expected to conflict with the provisions of approved water discharge permits or cause alteration to 100- or 500-year floodplains or other flood hazard areas in a manner that would endanger lives and property.

The following activities are not expected to alter natural drainage pathways: dynamic experiments, drillback operations, and training activities for the Office of Secure Transportation under the Stockpile Stewardship and Management Program; counterterrorism activities under the Work for Others Program; UGTA, Soils, and Industrial Sites Projects activities, remediation of the DTRA sites, and Borehole Management under the Environmental Restoration Program; and activities under the General Site Support and Infrastructure Program.

The following activities are not expected to contaminate surface waters with radioactive materials, chemicals, and/or biological simulants: dynamic experiments, drillback operations, and training activities for the Office of Secure Transportation under the Stockpile Stewardship and Management Program; counterterrorism activities under the Work for Others Program; LLW, MLLW, and sanitary solid waste management activities under the Waste Management Program; Industrial Sites Project and Borehole Management Program activities under the Environmental Restoration Program; and activities under the General Site Support and Infrastructure Program.

The following activities are not expected to deposit sediment in surface waters: dynamic experiments and conventional high-explosives experiments under the Stockpile Stewardship and Management Program; nonproliferation projects and counterproliferation research and development under the Work for Others Program; LLW and MLLW management activities and explosives waste treatment under the Waste Management Program; remediation of DTRA sites and Borehole Management Program activities under the Environmental Restoration Program; and activities under the General Site Support and Infrastructure Program.

5.1.6.1.1.1 National Security/Defense Mission

Stockpile Stewardship and Management Program – Dynamic Experiments. Up to 10 dynamic experiments would be conducted per year at locations within the Nuclear Test and Nuclear and High Explosives Test Zones. Experiments using SNM coupled with conventional explosives would be conducted underground and/or in confinement vessels and would not cause surface disturbances that could alter natural drainage pathways or contaminate ephemeral waters.

Stockpile Stewardship and Management Program – Conventional High-Explosives Experiments. Up to 20 conventional high-explosives experiments per year would be conducted at BEEF, and up to 10 per year would be conducted at other locations within the Nuclear and High Explosives Test Zone. Experiments at BEEF would be conducted on the firing table and are not expected to cause surface contamination or significant changes in natural drainage pathways. Detonations would be contained within the firing table, which generally consists of a 66-foot by 66-foot gravel area 6 to 8 feet deep, though it can be extended or deepened if an experiment warrants it. Materials dispersed during experiments would consist of solid debris that is recovered following the experiment or contained within the gravel, which would be periodically removed and replaced. For experiments at other locations within the Nuclear and High Explosives Test Zone, some minor alteration of natural drainage pathways for storm-generated sheetflow and flows in ephemeral waters (if located in close proximity to the experiment
location) could occur due to surface disturbances resulting from detonations. In addition, experiments conducted at or above the ground surface could cause surface contamination and, ultimately, some contamination of ephemeral waters. Any potential surface contamination would be located within hydrographic basins that drain internally within the NNSS and would not affect offsite areas during rare flooding events.

Stockpile Stewardship and Management Program – Drillback Operations. Up to five drillback operations may take place during the 10-year planning period. Drillback operations would occur within the area of a former underground nuclear test event and would require approximately 5 acres of land. Earth-disturbing activities during site preparation and drilling (e.g., vehicle and equipment movements) could result in a small degree of sedimentation in nearby ephemeral waters.

Stockpile Stewardship and Management Program – Training for Office of Secure Transportation. Training for the Office of Secure Transportation would occur on existing roads and nearby off-road areas on the NNSS. Should off-road training activities occur in areas near ephemeral waters, particularly those involving vehicle maneuvers, a small degree of sedimentation may occur in those waters from nearby land surface disturbances.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs – Nonproliferation and Counterterrorism-Related Activities. Under the No Action Alternative, a Nonproliferation and Counterterrorism Training Program would be established. Experiments and training events using explosives may cause surface disturbances that could alter natural drainage pathways in terms of storm-generated sheetflow and flows in ephemeral waters. Overall, no permanent change in surface-water quality is expected because springs are located outside of experiment and training areas and are generally upgradient. Ephemeral flows could experience decreases in water quality from the introduction of chemical contaminants; however, these impacts would be localized to the experiment or training area and would occur only when local surface-water features contain water (e.g., after a storm event). Any potential surface contamination would be located within hydrographic basins that drain internally within the NNSS and would not affect offsite areas during rare flooding events. Should off-road training activities, particularly those involving vehicle maneuvers, occur in areas near ephemeral waters, a small degree of sedimentation may occur in those waters from nearby land surface disturbances.

Work for Others Program – Nonproliferation Projects and Counterproliferation Research and Development. Under this program, DOE/NNSA would support other agencies on nonproliferation projects and counterproliferation research and development. These projects would include high-explosives detonations, which may cause surface disturbances that could alter natural drainage pathways in terms of storm-generated sheetflow and flows in ephemeral waters. Overall, no permanent change in surface-water quality is expected because springs are located outside of experiment areas and are generally upgradient. Ephemeral flows could experience decreases in water quality from the introduction of chemical contaminants; however, these impacts would be localized to the experiment area and would occur only when local surface-water features contain water (e.g., after a storm event). Any potential surface contamination would be located within hydrographic basins that drain internally within the NNSS and would not affect offsite areas during rare flooding events.

Up to 20 controlled chemical and biological simulant releases would occur per year. These releases would have no impact on natural water bodies. Chemicals would not be released to any surface-water bodies. Biological simulants could be released into Cambrec Ditch, an existing manmade ditch; however, most liquid releases would be to lined sewage lagoons or ponds. No releases to natural springs or ephemeral waters would occur (DOE 2004c).

Work for Others Program – Counterterrorism. Under this program, DOE/NNSA would support other agencies on counterterrorism projects. These could include training for engaging and neutralizing adversaries. Off-road activities (e.g., training exercises, ordnance development, and vehicle testing) could
cause a small degree of sedimentation to ephemeral waters located near training areas from nearby land surface disturbances.

5.1.6.1.2 Environmental Management Mission

Waste Management Program – Low-Level Radioactive Waste and Mixed Low-Level Radioactive Waste Management. Waste management operations would continue to include LLW and MLLW management, including the development of new disposal cells at the Area 5 RWMC and, potentially, a new MLLW facility. Chapter 4, Section 4.1.6.1, describes potential flood hazards on the NNSS. Flood protection is an important issue when siting waste management facilities; thus, consideration of flood potential would be necessary when siting and designing new disposal cells in the Area 5 RWMC (estimated to occur at a rate of two to three new cells per year) or a new MLLW storage facility. There is a 100-year flood hazard area along the southwest corner of the Area 5 RWMC associated with Barren Wash (Schmeltzer et al. 1993) that would be avoided. Continued operation of the Area 5 RWMC would continue to alter natural drainage pathways due to engineered berms designed to prevent run-on to the site, though this would not significantly alter the overall drainage of the area. Should the Area 3 RWMS become operational in the future, it would likely have a minimal beneficial impact on local drainage patterns because craters developed during past underground nuclear tests would continue to be used to dispose materials. Continued filling of craters and their engineered closure would restore the natural topography and drainage patterns in the affected portions of Area 3.

Waste Management Program – Explosives Waste Treatment. DOE/NNSA would treat old and/or unusable explosives by open-air detonation at the Explosives Ordnance Disposal Unit in Area 11. Open-air detonations could cause surface contamination through deposition of explosive residues and, ultimately, some contamination of ephemeral waters. Any potential surface contamination would be located within hydrographic basins that drain internally within the NNSS and would not affect offsite areas during rare flooding events.

Waste Management Program – Manage Sanitary Solid Waste. DOE/NNSA would continue to operate existing waste disposal sites, with no additional land disturbance expected and therefore no impact on drainage pathways.

Environmental Restoration Program – Underground Test Area Project. This project would monitor groundwater quality and evaluate closure strategies in areas of groundwater contamination. The UGTA Project would produce water from characterization and monitoring wells, which could only be discharged to the surface if the water complies with the requirements of the NDEP-approved UGTA Fluid Management Plan (DOE 2009k). The water would be monitored and sediment erosion would be reduced through the use of onsite sumps and designated infiltration areas as needed, thereby eliminating most impacts on natural drainage pathways or downgradient springs and surface impoundments. Accidental discharges of water contaminated with radionuclides or other hazardous substances could occur, potentially contaminating the surface. This is considered unlikely, however, because the standard practice is to contain discharged water from near-field wells in lined sumps. Continued strict adherence to the UGTA Fluid Management Plan requirements would ensure no surface contamination would affect offsite areas during rare flooding events.

Environmental Restoration Program – Soils Project. This project would continue to investigate soil sites to determine whether contamination exists and to perform corrective actions as needed. Land-disturbing activities associated with these corrective actions (e.g., vehicular and equipment movements) could cause some minor sedimentation to ephemeral waters. During corrective action activities, excavated or exposed contaminated materials could potentially be transported to downgradient land surfaces during storm events that generate runoff. Appropriate site-specific dust and drainage controls would be implemented for each corrective action (e.g., establishing temporary diversion berms), which would minimize the potential for impacts to occur; however, it is possible that moderate impacts on the water quality of ephemeral surface waters could occur if contaminants were transported to such
features. As described in Appendix A, Section A.1.2.2, the Soils Project employs surface-water contaminant transport studies while investigating soils sites and plans accordingly. Thus, any movement of contaminated soils could possibly affect ephemeral surface waters locally; however, drainage control measures would be employed that would ensure no offsite impacts would occur during rare flooding events.

Environmental Restoration Program – Industrial Sites Project. This project would continue to identify, characterize, and remediate industrial sites. Following the remediation of industrial sites, the facilities would be demolished with foundations normally left in place. Land-disturbing activities associated with demolition (e.g., vehicular and equipment movements) could cause some minor sedimentation to ephemeral waters.

Environmental Restoration Program – Defense Threat Reduction Agency Sites. Surface disturbing activities for the DTRA sites have been completed, and only environmental monitoring, such as water sampling, would continue. Monitoring would not result in any changes to the physical environment.

Environmental Restoration Program – Borehole Management Program. Unneeded boreholes would continue to be plugged; it was estimated that 183 would be plugged from 2010 through 2013. Open boreholes may capture a small proportion of the surface water that would otherwise continue to flow across the surface as sheetflow. Therefore, plugging of these unneeded boreholes is expected to have a minor beneficial impact in terms of restoring the natural hydrology of these locations.

5.1.6.1.1.3 Nondefense Mission

General Site Support and Infrastructure Program. Infrastructure-associated activities would continue to maintain facilities’ present capabilities. Continued wastewater discharges to the Area 6 Yucca Lake and Area 23 Mercury sewage lagoon systems, as well as the E-Tunnel Waste Water Disposal System ponds, are not expected to affect natural surface-water resources. Wastewater would be contained within the lagoons and ponds and would not be released to the ground surface or any natural water bodies. In 2009, all contaminant concentrations in discharged effluent were within permitted levels.

Conservation and Renewable Energy Program – Renewable Energy. A large-scale commercial solar power generation facility covering approximately 2,400 acres could be established in Area 25. It was assumed that, if developed, this facility would be sited to avoid disturbing larger ephemeral waters located in Area 25, such as Fortymile Wash, Topopah Wash, and Rock Valley Wash.

Land preparation associated with the development of solar power generation facility (e.g., land grading) could cause sedimentation in ephemeral waters, as well as long-term alteration of natural drainage pathways. Considering the relatively large land area that the facility would cover, it is likely that some smaller ephemeral waters would be altered; however, as previously stated, it was assumed that larger surface-water features would not be disturbed.

Stormwater runoff from an operational solar power generation facility would be diverted to an appropriately sized detention basin, as well as to appropriate conveyance features (e.g., ditches and culverts), to contain flows from storm events on site. The potential for surface contamination resulting from the use of process chemicals would be minimized through the use of standard best management practices and standard operating procedures (e.g., providing secondary containment around petroleum storage areas and responding to spills as soon as possible), as well as establishment of a bioremediation area to manage any soils contaminated with toxic materials. Onsite stormwater detention would preclude the possibility for any onsite surface contamination to impact offsite areas during rare flooding events.

Other Research and Development Programs. The DOE National Environmental Research Park Program would continue to perform environmental research activities. It is possible that ground-disturbing activities associated with developing and performing experiments could result in sedimentation to ephemeral waters and alterations of natural drainage pathways; however, assuming
research projects are conducted in an environmentally responsible manner, these impacts could be minimized.

5.1.6.1.2 Expanded Operations Alternative

The following sections describe impacts associated with the various activities that may potentially occur under the three missions. With respect to the aforementioned impact criteria, no activities are expected to conflict with the provisions of approved water discharge permits or cause alteration to 100- or 500-year floodplains or other flood hazard areas in a manner that would endanger lives and property.

The following activities are not expected to alter natural drainage pathways: dynamic experiments and drillback operations under the Stockpile Stewardship and Management Program; NASA support under the Work for Others Program; and UGTA, Soils, and Industrial Sites Projects activities, remediation of DTRA sites, and Borehole Management under the Environmental Restoration Program.

The following activities are not expected to contaminate surface waters with radioactive materials, chemicals, and/or biological simulants: dynamic experiments, drillback operations, and training activities for the Office of Secure Transportation under the Stockpile Stewardship and Management Program; counterterrorism and miscellaneous activities under the Work for Others Program; LLW, MLLW, and sanitary solid waste management activities under the Waste Management Program; Industrial Sites Project and Borehole Management Program activities under the Environmental Restoration Program; activities under the General Site Support and Infrastructure Program; and activities under the Other Research and Development Programs.

The following activities are not expected to deposit sediment in surface waters: dynamic experiments under the Stockpile Stewardship and Management Program; nonproliferation projects, counterproliferation research and development, and NASA support under the Work for Others Program; LLW and MLLW management and explosives waste treatment under the Waste Management Program; and remediation of DTRA sites and Borehole Management Program activities under the Environmental Restoration Program.

5.1.6.1.2.1 National Security/Defense Mission

Stockpile Stewardship and Management Program – Dynamic Experiments. Up to 20 dynamic experiments could be conducted per year. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.1; therefore, no impacts on surface hydrology are expected.

Stockpile Stewardship and Management Program – Conventional High-Explosives Experiments. DOE/NNSA would conduct up to 100 high-explosives experiments per year at BEEF and various locations in the Nuclear and High Explosives Test Zone and would develop new facilities and features within the already developed areas of BEEF. Impacts of these experiments would be similar to those described under the No Action Alternative (see Section 5.1.6.1.1.1), but would be intensified because the number of experiments would increase. Therefore, no impacts are expected as a result of experiments conducted at BEEF; however, experiments at other locations within the Nuclear and High Explosives Test Zone could cause impacts. In comparison to the impacts described under the No Action Alternative, the additional tests would likely result in increased amounts of sedimentation to ephemeral waters, alterations of natural drainage pathways, and instances of surface contamination and other impacts that could occur over a larger land area as a result of the greater number of experiments. New facility construction activities at BEEF could cause some minor sedimentation in ephemeral waters and alteration of natural drainage pathways by introducing structures that would impede natural flows.

DOE/NNSA would establish up to three 40-acre sites within Areas 2, 4, 12, or 16 to conduct explosives experiments using depleted uranium. These experiments could cause surface disturbances that could alter natural drainage pathways in terms of storm-generated sheetflow and flows in ephemeral waters. Overall, no permanent change in surface-water quality is expected because springs are located outside of the experiment areas and are generally upgradient. Ephemeral flows could experience decreases in water
quality resulting from the introduction of pollutants (e.g., sedimentation and chemicals); however, these impacts would be localized to the experiment area and would occur only when local surface-water features contain water (e.g., after a storm event). However, depending on their size and location, these experiments could cause more significant surface contamination (lead and depleted uranium primarily). Any potential surface contamination would be located within hydrographic basins that drain internally within the NNSS and would not affect offsite areas during rare flooding events.

Stockpile Stewardship and Management Program – Drillback Operations. Impacts of drillback operations would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.

Stockpile Stewardship and Management Program – Training for Office of Secure Transportation. Activities associated with training for the Office of Secure Transportation would include development of several new facilities and expansions of existing facilities. Construction of new facilities and support infrastructure (e.g., roads, utility lines, and a firing range) to support training activities in Area 17 could cause sedimentation in ephemeral waters and short-term alterations of natural drainage pathways because it is likely that ephemeral waters would be crossed by linear features (e.g., pipelines), thus causing short-term disturbances to local surface-water features. Natural topographies would be restored following construction, to the extent practicable. Operation of the training areas could also result in a small degree of sedimentation in ephemeral waters, primarily from vehicular movement. New construction proposed for Area 17 (37,400 square feet of facilities) could cause long-term alterations of natural drainage pathways by introducing structures that would impede natural flows. In addition, construction of the support infrastructure would likely cause long-term alterations of natural drainage pathways, primarily due to new roads and land-grading associated with development of the firing range. Expansion of facilities in Areas 6, 12, 17, or 23 could also cause long-term alterations of natural drainage pathways by introducing structures that would impede natural flows.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs – Nonproliferation and Counterterrorism-Related Activities. Impacts of nonproliferation and counterterrorism-related activities would be similar to those described under the No Action Alternative (see Section 5.1.6.1.1.1). Impacts of experiments and training events also would be the same as those described under the No Action Alternative (alterations of natural drainage pathways, sedimentation to ephemeral waters, and surface chemical contamination); however, in addition, new construction of nonproliferation and counterterrorism facilities would occur in additional locations (more than 200 acres). Construction of the facilities could cause sedimentation in ephemeral waters, and the presence of the new facilities could cause long-term alterations of natural drainage pathways by impeding natural flows.

Work for Others Program – Nonproliferation Projects and Counterproliferation Research and Development. Impacts of nonproliferation projects and counterproliferation research and development would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.1.

Work for Others Program – Counterterrorism. Impacts of counterterrorism activities would be similar to those described under the No Action Alternative in Section 5.1.6.1.1.1 (sedimentation to ephemeral waters). However, in addition, new facility construction activities would disturb approximately 100 acres of land, which could cause localized sedimentation in ephemeral waters and long-term alteration of natural drainage pathways by introducing structures that would impede natural flows.

Work for Others Program – Support for the National Aeronautics and Space Administration. DOE/NNSA would provide support to NASA on nuclear rocket motor development. The use of boreholes to sequester the emissions of a prototype nuclear rocket motor could result in minimal amounts of localized surface contamination, which could be introduced to ephemeral waters; however, because this activity would likely occur in the Yucca Flat area, any surface contamination would be confined to the NNSS.
Work for Others Program – Miscellaneous Work for Others. Activities would include increased research, development, and use of aerial platforms, as well as construction of additional facilities at Desert Rock Airport, the Area 6 Aerial Operations Facility, Pahute Mesa, and other locations. Additional construction could cause localized sedimentation in ephemeral waters from construction-related land disturbing activities and long-term alteration of natural drainage pathways by introducing structures that would impede natural flows. Minimal impacts are expected. Experiments using releases of biological simulants into water are expected to have no impact on natural water bodies because releases would be contained in manmade features (i.e., Cambric Ditch or sewer and septic systems).

5.1.6.1.2 Environmental Management Mission

Waste Management Program – Low-Level Radioactive Waste and Mixed Low-Level Radioactive Waste Management. Impacts would be similar to those described under the No Action Alternative in Section 5.1.6.1.2; however, these impacts would increase somewhat because waste disposal volumes would increase, so more disposal cells would be developed. In addition, the Area 3 RWMS would be reactivated, as opposed to its possible reactivation under the No Action Alternative. Therefore, impacts at the Area 5 RWMC under the Expanded Operations Alternative would likely be the same as those under the No Action Alternative because engineered berms would continue to alter natural drainage pathways; no flood hazard impacts are expected because flood hazard areas would be avoided. Increased use of the Area 3 RWMS would have a greater beneficial impact on natural drainage pathways compared to the impact under the No Action Alternative because additional craters would be filled to manage greater waste volumes, thus restoring natural surface topographies and drainage patterns over a larger area.

Waste Management Program – Explosives Waste Treatment. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.2.

Waste Management Program – Manage Sanitary Solid Waste. DOE/NNSA would continue to operate existing waste disposal sites and develop a new landfill on approximately 15 acres of land. In addition, a 20-acre construction/demolition debris landfill would be established in Area 25. Chapter 4, Section 4.1.6.1, describes potential flood hazards on the NNSS. Flood protection is an important issue when siting waste management facilities. DOE/NNSA would consider flood potential when siting and designing new landfills. Land preparation activities associated with the development of new landfills (e.g., land grading) could alter natural drainage pathways and cause sedimentation in ephemeral waters.

Environmental Restoration Program – Underground Test Area Project. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.2.

Environmental Restoration Program – Soils Project. Impacts would be similar to those described under the No Action Alternative in Section 5.1.6.1.2; however, these impacts could be greater because activities could occur at an accelerated rate. Therefore, compared to the No Action Alternative, an increased potential for surface contamination would occur, as well as increased sedimentation to ephemeral waters under the Expanded Operations Alternative. No water-quality impacts on offsite areas are expected during rare flooding events.

Environmental Restoration Program – Industrial Sites Project. Impacts would be similar to those described under the No Action Alternative in Section 5.1.6.1.2; however, these impacts could be greater because activities could occur at an accelerated rate. Therefore, compared to the No Action Alternative, more work would be done to restore natural topographies and drainage patterns in areas where remediated facilities are demolished and increased sedimentation to ephemeral waters would occur.

Environmental Restoration Program – DTRA Sites. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.2.

Environmental Restoration Program – Borehole Management Program. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.2.
5.1.6.1.2.3 Nondefense Mission

General Site Support and Infrastructure Program. Infrastructure-related activities would cause impacts similar to those described under the No Action Alternative in Section 5.1.6.1.1.3. Therefore, continued wastewater discharges are not expected to cause any impacts on surface hydrology. However, there would be additional impacts associated with several new facility construction projects and expansion of some existing facilities. Demolition and construction of facilities and infrastructure could cause short-term sedimentation and increased loads of inorganic compounds in ephemeral waters, as well as long-term alteration of natural drainage pathways. Improvements within and adjacent to existing developed areas would likely have lower impacts compared to those resulting from improvements in more pristine areas.

Conservation and Renewable Energy Program. Impacts resulting from construction and operation of one or more commercial solar power generation facilities with up to 1,000 megawatts of combined capacity in Area 25 would be similar to the impacts described under the No Action Alternative in Section 5.1.6.1.1.3; however, these impacts would occur to a larger area of land because the facilities would be considerably larger, occupying a land area of approximately 10,300 acres. Therefore, compared to the No Action Alternative, increased amounts of long-term alterations to natural drainage pathways would occur over a larger land area, as well as sedimentation to ephemeral waters. In addition, the potential for surface contamination would apply to a larger land area. Onsite stormwater detention would preclude the possibility of onsite surface contamination affecting offsite areas during rare flooding events. In addition to the large-scale solar power generation facilities, a 5-megawatt photovoltaic solar power generation facility would be developed near the Area 6 Construction Facilities on 50 acres of land. Geothermal energy production would also be explored. Development of a Geothermal Demonstration Project would require approximately 30 to 50 acres of land and would include an excavated, lined sump to store water during drilling and reservoir development. Land preparation activities associated with development of the photovoltaic solar power generation facility and construction of geothermal power system facilities (e.g., land grading) could cause sedimentation and increased loads of inorganic compounds in ephemeral waters, as well as long-term alteration of natural drainage pathways.

Other Research and Development Programs. Operation of the Nevada National Environmental Research Park would continue and could include new research and development projects. Impacts would be similar to those described under the No Action Alternative in Section 5.1.6.1.1.3; however, the development of additional research projects could result in somewhat greater impacts or could generate additional ones. Therefore, compared to the No Action Alternative, increased amounts of alterations of natural drainage pathways, as well as sedimentation to ephemeral waters, could occur under the Expanded Operations Alternative.

5.1.6.1.3 Reduced Operations Alternative

The following sections describe impacts associated with the various activities that may potentially occur under the three missions. With respect to the aforementioned impact criteria, no activities are expected to conflict with the provisions of approved water discharge permits or cause alteration to 100- or 500-year floodplains or other flood hazard areas in a manner that would endanger lives and property.

The following activities are not expected to alter natural drainage pathways: dynamic experiments, drillback operations, and training activities for the Office of Secure Transportation under the Stockpile Stewardship and Management Program; counterterrorism activities under the Work for Others Program; UGTA, Soils, and Industrial Sites Projects activities, remediation of DTRA sites, and Borehole Management Program activities under the Environmental Restoration Program; and activities under the General Site Support and Infrastructure Program.

The following activities are not expected to contaminate surface waters with radioactive materials, chemicals, and/or biological simulants: dynamic experiments, pulsed-power experiments, drillback
operations, and training activities for the Office of Secure Transportation under the Stockpile Stewardship and Management Program; counterterrorism activities under the Work for Others Program; LLW, MLLW, and solid waste management activities under the Waste Management Program; Industrial Sites Project and Borehole Management Program activities under the Environmental Restoration Program; activities under the General Site Support and Infrastructure Program; and activities under the Other Research and Development Programs.

The following activities are not expected to deposit sediment in surface waters: dynamic and conventional high-explosives experiments under the Stockpile Stewardship and Management Program; nonproliferation projects and counterproliferation research and development under the Work for Others Program; LLW and MLLW management and explosives waste treatment under the Waste Management Program; remediation of DTRA sites and Borehole Management Program activities under the Environmental Restoration Program; and activities under the General Site Support and Infrastructure Program.

5.1.6.1.3.1 National Security/Defense Mission

Stockpile Stewardship and Management Program – Dynamic Experiments. Up to six dynamic experiments could be conducted per year. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.1; therefore, no impacts on surface hydrology are expected.

Stockpile Stewardship and Management Program – Conventional High-Explosives Experiments. Up to 10 conventional high-explosives experiments could be conducted per year. Impacts would be similar to those described under the No Action Alternative in Section 5.1.6.1.1.1; however, these impacts would generally be reduced because the number of experiments conducted would be lower. Therefore, no impacts are expected for experiments conducted at BEEF; however, experiments at other locations within the Nuclear and High Explosives Test Zone could cause impacts. In comparison to the impacts described under the No Action Alternative, the additional tests would likely result in decreased amounts of sedimentation to ephemeral waters and alterations of natural drainage pathways; instances of surface contamination and impacts could occur over a smaller land area (if possible) if fewer experiments are conducted. Any potential surface contamination would be located within hydrographic basins that drain internally within the NNSS and would not affect offsite areas during rare flooding events.

Stockpile Stewardship and Management Program – Pulsed-Power Experiments. Pulsed-power experiments at the Atlas Facility would be discontinued and the facility would be decommissioned. Earth-disturbing activities during decommissioning (e.g., facility demolition) could cause a small degree of sedimentation in ephemeral waters; however, should the facility be demolished to ground level, decommissioning could restore the natural topography and drainage patterns at location of the Atlas Facility.

Stockpile Stewardship and Management Program – Drillback Operations. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.1.

Stockpile Stewardship and Management Program – Training for Office of Secure Transportation. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.1.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs – Nonproliferation and Counterterrorism-Related Activities. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.1.

Work for Others Program – Counterterrorism. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.1.
5.1.6.1.3.2 Environmental Management Mission

Waste Management Program – Low-Level Radioactive Waste and Mixed Low-Level Radioactive Waste Management. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.2.

Waste Management Program – Explosives Waste Treatment. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.2.

Waste Management Program – Manage Sanitary Solid Waste. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.2.

Environmental Restoration Program – Underground Test Area Project. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.2.

Environmental Restoration Program – Soils Project. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.2.

Environmental Restoration Program – Industrial Sites Project. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.2.

Environmental Restoration Program – DTRA Sites. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.2.

Environmental Restoration Program – Borehole Management Program. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.2.

5.1.6.1.3.3 Nondefense Mission

General Site Support and Infrastructure Program. Impacts would be the same as those described under the No Action Alternative in Section 5.1.6.1.1.3; therefore, no impacts on continued wastewater discharges are expected.

Conservation and Renewable Energy Program. Impacts of the commercial solar power generation facility in Area 25 would be similar to those described for a similar facility under the No Action Alternative in Section 5.1.6.1.1.3. However, these impacts would generally be reduced because the facility would have less than one-half the generating capacity and occupy a smaller land area of approximately 1,200 acres. In addition, due to the smaller overall facility size, about 12 acres would be devoted to stormwater detention ponds. Therefore, compared to the No Action Alternative, decreased amounts of long-term alterations to natural drainage pathways would occur over a smaller land area, as well as sedimentation to ephemeral waters. In addition, the potential for surface contamination would occur over a smaller land area, and onsite stormwater detention would preclude the possibility of onsite surface contamination affecting offsite areas during rare flooding events.

Other Research and Development Programs. DOE/NNSA would continue to host existing environmental research projects at the NNSS, but would not actively promote the Nevada National Environmental Research Park. Impacts would be similar to those described under the No Action Alternative in Section 5.1.6.1.1.3; however, these impacts would generally be reduced because fewer research projects would be performed overall. Therefore, compared to the No Action Alternative, alterations of natural drainage pathways and sedimentation to ephemeral waters could decrease.
5.1.6.2 **Groundwater**

Groundwater impacts were assessed by reviewing the proposed activities described in Chapter 3 to determine whether they have the potential to directly or indirectly affect groundwater resources. Activities under an alternative would have an adverse impact on groundwater resources if they result in any of the following effects:

- Noncompliance with applicable water quality standards
- Water level declines in areas adjacent to operating wells that adversely affect other uses in that aquifer
- Alteration of groundwater recharge to another downgradient aquifer to the degree that it reduces that aquifer’s sustainable yield or adversely affects current uses of that aquifer
- Exceedance of the sustainable withdrawal capacity of an aquifer

Impacts on groundwater availability were analyzed by comparing current groundwater demand for each individual basin found throughout the NNSS, as discussed in Chapter 4, Section 4.1.6, to the sustainable yield of each individual basin, under each alternative. Chapter 4, Table 4–24, presents the sustainable yield (the perennial yield of the basin minus any rights already committed to other users by the State Engineer) of each basin, and Table 4–30 presents the percentage of total NNSS water demand historically met by withdrawals from each basin. DOE/NNSA has made the following assumptions for purposes of analysis of the impacts on groundwater supply:

- Future groundwater withdrawals at the NNSS would continue to occur in the four basins that are currently developed (Frenchman Flat, Yucca Flat, and the Buckboard Mesa and Jackass Flats subdivisions of Fortymile Canyon). Of the remaining six basins underlying the NNSS, most only slightly overlap the NNSS near its borders and are not likely to be developed in the future due to their remote location relative to existing and proposed facilities. Any future project requiring water withdrawals from a new basin would require NEPA review. The Mercury Valley Basin is not considered viable for new withdrawals under any alternative at this time.

- Recent patterns of water use distribution among the four developed basins (i.e., the percent of the NNSS’s total demand met from each basin) would be representative of future water withdrawal patterns under each alternative, with the exception of a commercial solar power generation facility, whose additional demand would be met solely through withdrawals from the Jackass Flats subdivision of Fortymile Canyon (Basin 227a).

- The sustainable yield used for each basin is based only on the recharge from precipitation within that basin and does not include recharge associated with subsurface inflow from upgradient basins. Annual water withdrawals from a basin that are below the sustainable yield of that basin were generally assumed not to reduce outflow (recharge) to other downgradient basins. In cases where withdrawals approach sustainable yield, or where other site-specific aspects affect the potential for reduction of recharge to other basins, DOE/NNSA would consider flow modeling efforts and studies to reach determinations about the potential for adverse impacts.

Potential impacts on water quality (e.g., contamination resulting in exceedance of water quality standards) were assessed qualitatively by examining a project or activity’s potential for release of hazardous constituents and the likely pathways for contaminants to reach groundwater resources.

5.1.6.2.1 No Action Alternative

Under the No Action Alternative, activities at the NNSS would primarily continue at frequencies and levels consistent with those experienced since 1996. DOE/NNSA would continue to maintain and repair facilities and associated infrastructure as needed to maintain the present capabilities of DOE/NNSA...
facilities. The only significant new facility considered would be construction of a large solar power generation facility by an outside commercial entity.

From 2005 through 2009, measured annual water usage at the NNSS from the active wells ranged from approximately 173 million to 225 million gallons per year, with an average of approximately 198 million gallons per year. DOE/NNSA estimates that total water withdrawals across all programs (excluding construction or operation of a commercial solar power generation facility) would not exceed 225 million gallons per year, the highest measured value since 2005. However, the implementation of water conservation efforts in support of the NNSS Energy Executable Plan (see Section 5.1.6.1.3) would result in a downward trend in potable water consumption. Therefore, an amount of 225 million gallons per year (691 acre-feet per year) is viewed as a conservative estimate of total water consumption for activities excluding construction or operation of a solar power generation facility. As an acre-foot is the conventional unit of measurement for capacity of an aquifer, acre-feet are used in the remainder of this analysis in lieu of gallons per year.

Annual water withdrawals from each basin on the NNSS between 2005 and 2009 are presented in Chapter 4, Table 4–27. For purposes of analysis, the 5-year average of the percentage of total water demand met by each basin (e.g., 68.6 percent of total demand on Frenchman Flat) was used to estimate the future demand on each basin. Table 5–23 presents the individual demands on each basin to support a total demand of 691 acre-feet per year, as well as additional demands associated with a commercial solar power generation facility (discussed in subsequent paragraphs), and compares these demands to the sustainable yield of each basin.

Table 5–23 Impacts on Groundwater Supply Under the No Action Alternative

<table>
<thead>
<tr>
<th>Basin</th>
<th>Water Demand, Excluding Solar Power Generation Facility (acre-feet per year)</th>
<th>Water Demand, Including Construction Demand from Solar Power Generation Facility (acre-feet per year)</th>
<th>Water Demand, Including Operational Demand from Solar Power Generation Facility (acre-feet per year)</th>
<th>Sustainable Yield of Basin (acre-feet per year)</th>
<th>Maximum Percentage of Sustainable Yield Consumed During Construction</th>
<th>Maximum Percentage of Sustainable Yield Consumed During Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frenchman Flat (160)</td>
<td>474</td>
<td>474</td>
<td>474</td>
<td>100</td>
<td>474%</td>
<td>474%</td>
</tr>
<tr>
<td>Fortymile Canyon, Buckboard Mesa subdivision (227b)</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>3,600</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Fortymile Canyon, Jackass Flats subdivision (227a)</td>
<td>47</td>
<td>397</td>
<td>297</td>
<td>4,000</td>
<td>10%</td>
<td>7%</td>
</tr>
<tr>
<td>Yucca Flat (159)</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>350</td>
<td>37%</td>
<td>37%</td>
</tr>
</tbody>
</table>

Source: Derived from Chapter 4, Tables 4–24, 4–27, and 4–30.

A commercial solar power generation facility was analyzed in the 1996 NTS EIS, but was never implemented. In the 1996 NTS EIS, both Areas 25 and 22 were analyzed as potential facility sites. A sensitive environmental area, Devils Hole, exists downgradient from Area 22; therefore, potential groundwater impacts from large-scale pumping would be much higher in Area 22 compared to Area 25. For that reason, Area 22 is no longer considered a viable option for siting a commercial solar power generation facility.

Currently, there are no specific proposals from private applicants for a commercial-scale solar power generation project at the NNSS. To support an NNSS decision regarding allowing commercial-level power production as a land use, DOE/NNSA has analyzed a notional design based on other proposed facilities in southern Nevada. Were a specific design to be proposed by a private applicant, additional
project-level NEPA review would be required. The existing NNSS water system may be used to convey water from the point of extraction.

Construction and operation of a 240-megawatt commercial solar power generation facility would represent the largest water demand from any single activity or project on the NNSS. Operation of a 240-megawatt solar power generation facility in Area 25 would add an additional demand of approximately 250 acre-feet per year. During construction of the solar power generation facility, there would be a temporary demand of approximately 350 acre-feet per year for 35 months to support dust suppression, soil compaction, and other facility construction needs. This analysis assumes that all water demand for the solar power generation facility would be withdrawn from the Jackass Flats subdivision of Fortymile Canyon (Basin 227a).

As illustrated in Table 5–23, annual withdrawals from each basin under the No Action Alternative would be below the sustainable yield of each basin, with the exception of Frenchman Flat. The greatest demand would likely be placed on Frenchman Flat, with approximately 474 percent of the basin’s sustainable yield consumed on an annual basis. As discussed in Chapter 4, Section 4.1.6.2, the Nevada State Engineer estimated a perennial yield of only 100 acre-feet per year for Frenchman Flat (NDWR 2010a), based on previous assumptions that little or no groundwater recharge from precipitation occurred in Basin 160. More-recent studies suggest that in-basin recharge does occur in Basin 160 and perennial yield values are much higher than 100 acre-feet per year. DOE/NNSA has extensively studied the groundwater recharge in Frenchman Flat using a model from the UGTA Project, two U.S. Geological Survey (USGS) models (Hevesi et al. 2003), and two Desert Research Institute models (Russell and Minor 2002). All of these models provide revised estimates of precipitation-driven recharge (and thus perennial yield) of Frenchman Flat using more-rigorous analytical methods and more-recent data. For example, the UGTA Project model estimates a perennial yield of 1,070 acre-feet per year for Frenchman Flat, and the USGS and Desert Research Institute models estimate perennial yields of 1,830 and 1,920 acre-feet per year, respectively. As it stands now, the NNSS appears to be over-drawing water from Frenchman Flat by a large percentage; however, water levels have remained static and have not shown a downward trend of water drawdown, even during peak water usage of 3,375 acre-feet per year in 1989 at the NNSS. This suggests that the perennial yield of Frenchman Flat is significantly higher than 100 acre-feet per year, and more likely in the range of the yields calculated by other DOE and USGS models.

Construction and operation of a commercial solar power generation facility would result in a marked increase in water consumption in Basin 227a (and likely the single largest use of water on the NNSS), resulting in a demand of 10 percent of the sustainable yield of Basin 227a. While the Nevada State Engineer lists the perennial yield of the Jackass Flats Subdivision of Fortymile Canyon as 4,000 acre-feet per year, this value actually represents an aggregation of yield values for several basins adjacent to Basin 227a (i.e., a regional yield value). Studies conducted by DOE/NNSA show a range of values as low as 880 acre-feet per year (DOE 2008d). However, for purposes of this analysis, the perennial yields listed by the Nevada State Engineer were used for all basins.

These demands on each basin would be unlikely to reduce groundwater recharge to another downgradient aquifer to the degree that it reduces that aquifer’s sustainable yield or adversely affects current uses of that aquifer. However, DOE/NNSA would still continue to monitor groundwater levels and flow patterns across the NNSS, would employ site-specific modeling to estimate specific impacts of future projects, and would modify the points of diversion and pumping rates if needed to avoid adversely impacting any single aquifer. Therefore, no adverse effects on groundwater supply are expected under the No Action Alternative.

No proposed activities under the No Action Alternative are expected to result in violations of water quality standards, water level drawdowns precluding other uses of an aquifer, or alterations of groundwater recharge adversely affecting downgradient aquifers. Ongoing maintenance of the quality of waters that are currently clean will continue to be managed by the NNSS through implementation of the Groundwater Management Protection Plan. The Groundwater Management Protection Plan includes
measures such as ensuring the continued sustainable use of groundwater through the installation, closing, or buffering of wells to prevent groundwater contamination from testing activities; locating equipment maintenance and fueling areas away from groundwater wells; and conducting periodic groundwater sampling to identify adverse impacts on groundwater during current operations. Aspects of specific projects and activities under the NNSS missions, particularly water quality effects, are discussed in the remainder of Section 5.1.6.2.

5.1.6.2.1 National Security/Defense Mission

Past underground nuclear testing has contaminated some groundwater resources at the NNSS, as discussed in Chapter 4, Section 4.1.6. The NNSS must maintain the capability to conduct nuclear tests under the Stockpile Stewardship and Management Program.

Under the Stockpile Stewardship and Management Program, the NNSS would conduct up to 10 dynamic experiments per year in Areas 1–4, 6–12, 16, 19, and 20 and would perform up to 30 conventional high-explosives experiments per year at BEEF and other locations in Areas 1–4, 12, and 16. While these types of experiments can release hazardous materials at or below ground surface, the NNSS operates under standard operating procedures that ensure no experiments are conducted within approximately 300 feet of the groundwater table. Given these operational restrictions and the depth of groundwater at the NNSS (up to 2,000 feet below the ground surface), these experiments are not expected to result in any adverse impacts on groundwater quality.

The NNSS would conduct five “post-shot” drillback operations over the next 10 years under the Stockpile Stewardship and Management Program. Drillback operations provide essential data on the results and post-shot underground environment of areas previously used for an underground nuclear test. Drillback activities have been conducted since the end of underground nuclear testing as a means of exercising the capability to do such drilling (maintenance of capability) and to obtain data for groundwater studies. There is the potential for small quantities of drilling fluids to be introduced to groundwater during drillback operations. However, the drillback operations are conducted in former underground nuclear test sites that are already contaminated, and any contamination resulting from the drillback activities would not result in any new violation of water quality standards.

DOE/NNSA’s Office of Secure Transportation conducts exercises on the NNSS to maintain the skills of personnel transporting nuclear weapons. Convoy exercises may be conducted up to six times annually and could include activities such as refueling of vehicles in off-road areas. Any potential impacts associated with substances (i.e., fuels, oils, and other lubricants) leaking into soils and entering groundwater aquifers would be avoided through the use of best management practices (BMPs) to prevent spills or leaks, as well as the extreme depth to groundwater at most locations. Such BMPs would include regular inspection of vehicles and routine maintenance checks to limit adverse impacts.

Under the Work for Others Program, the DOE/NNSA NSO would support DoD in unmanned aerial system field-testing and training activities. Should unmanned aerial system operations encounter complications (e.g., an emergency landing), there is the possibility that aircraft fuel or other hazardous materials could leak and result in localized soil contamination. However, the depth to groundwater and existing procedures for emergency response and site remediation make it highly unlikely that contaminants would impact groundwater resources.

While other activities under the National Security/Defense Mission require the use of hazardous materials, or would generate hazardous or radioactive wastes, these activities are performed in contained locations and use operational procedures that preclude the release of contaminants to groundwater.

5.1.6.2.1.2 Environmental Management Mission

Groundwater monitoring at the Area 5 RWMC indicates that no contamination of groundwater resources has occurred as a result of waste management activities. Annual modeling exercises used to support the performance assessment for the Area 5 RWMC conclude that no groundwater pathway exists for this
disposal facility (NSTec 2010f). Given the depth to groundwater at waste disposal facilities at Area 3 and the stringent operating controls and monitoring programs, LLW and MLLW disposal operations are not expected to adversely affect groundwater resources.

Hazardous waste generated at the NNSS would be stored up to 1 year prior to shipment for offsite treatment. Additionally, JASPER would generate approximately 24 cubic meters of TRU waste per year that would be stored at the TRU Storage Pad pending characterization and shipment off site. While small releases of hazardous or TRU waste are possible during storage or transportation, stringent operating procedures would reduce the likelihood of such an event. The depth to groundwater in most areas of the NNSS and the stringent operating controls and inspection programs in place would preclude contamination of groundwater resources from a release.

Environmental Restoration Program activities at the NNSS include the UGTA Project, which monitors groundwater in the interest of developing groundwater flow and transport models to assist in remediation strategies. Groundwater use during environmental activities under the UGTA Project would be limited to dust control, drilling and testing of wells, decontamination of sampling materials, and purging of wells prior to sampling. The greatest demand for nonpotable water would be during drilling of a new well. It was estimated that water demand for drilling of a new well would be approximately 6 acre-feet. Through 2020, it is expected that a maximum of 5 new wells a year would be drilled throughout the NNSS, totaling an annual nonpotable demand of approximately 30 acre-feet per year. This demand is included with the estimate of total demand across the NNSS for this alternative.

The Industrial Sites Project would continue decontaminating and decommissioning facilities through 2012. Decommissioning of facilities is unlikely to affect groundwater due to the short duration of these activities, the small quantity of contaminants that could be released, and the extreme depth of the groundwater. Nonpotable water demands for dust suppression during decontamination and decommissioning (D&D) would be temporary and minor (estimated at less than 1 percent of total water use).

The Borehole Management Program plugs unneeded boreholes that exist throughout the NNSS. Based on the current schedule, DOE/NNSA would complete plugging by 2013 (see Table A–3). This activity would serve to eliminate potential pathways for contaminants to reach groundwater resources.

5.1.6.2.1.3 Nondefense Mission

DOE/NNSA may enter into an agreement with a commercial entity to construct a solar power generation facility within Area 25. The additional water demand associated with this project is presented in the previous overview subsection for this alternative, and is not expected to result in adverse impacts related to groundwater supply. While numerous hazardous materials (e.g., fuel, lubricants, heat transfer fluid) would be stored and used during both construction and operation of the commercial solar power generation facility, any releases are not expected to adversely impact groundwater quality. These materials would be handled and stored in accordance with established spill prevention and response procedures, and any releases would be promptly contained, and contaminated soil managed appropriately.

DOE/NNSA would continue to employ water conservation measures at the NNSS as described in annual Site Sustainability Plans prepared in accordance with DOE Order 436.1, Departmental Sustainability. Goals under the fiscal year 2012 plan include achieving by fiscal year 2020 a 26 percent reduction in water use intensity and a 20 percent reduction in water consumption for industrial landscaping.

As per the DOE/NNSA NSO Energy Executable Plan of December 2008, the goal is to reduce potable water production by at least 16 percent from the 2007 level. This reflects an average reduction in water consumption of approximately 2 percent per year (see Table 5–24). To accomplish this positive effect on groundwater resources, the NNSS began saving water through several water conservation measures and BMPs for water efficiency. Examples include the installation of water-conserving products (more-efficient toilets, urinals, faucets, showerheads, boiler systems, and other items), xeric landscaping,
water-efficient irrigation, system audits and repairs of leaks, use of nonpotable water for dust suppression when possible, and institution of 4-day workweeks.

Table 5–24 Potable Water Production Goals

<table>
<thead>
<tr>
<th>Year</th>
<th>Potable Water Production Goals (millions of gallons)</th>
<th>Cumulative Percent Reduction</th>
<th>Actual Water Production (millions of gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>210.6</td>
<td>Base Year</td>
<td>225.2</td>
</tr>
<tr>
<td>2008</td>
<td>206</td>
<td>2</td>
<td>172.6</td>
</tr>
<tr>
<td>2009</td>
<td>202</td>
<td>4</td>
<td>190</td>
</tr>
<tr>
<td>2010</td>
<td>198</td>
<td>6</td>
<td>N/A</td>
</tr>
<tr>
<td>2011</td>
<td>194</td>
<td>8</td>
<td>N/A</td>
</tr>
<tr>
<td>2012</td>
<td>190</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>2013</td>
<td>185</td>
<td>12</td>
<td>N/A</td>
</tr>
<tr>
<td>2014</td>
<td>181</td>
<td>14</td>
<td>N/A</td>
</tr>
<tr>
<td>2015</td>
<td>177</td>
<td>16</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Source: NSTec 2009e.

5.1.6.2.2 Expanded Operations Alternative

This section describes the proposed changes to activities under the Expanded Operations Alternative and their associated impacts on groundwater resources.

Under the Expanded Operations Alternative, the NNSS workforce would increase by approximately 25 percent from the No Action Alternative, activity levels of existing programs would increase, and some new facilities and operations would be phased in over the 10-year planning period. The NNSS water supply system would also be expanded as necessary to connect to new facilities that would be constructed.

As potable water uses would likely continue to represent the majority of total water demand (see Chapter 4, Section 4.1.6.2), it was estimated that total water use (i.e., potable and nonpotable) (excluding construction and operation of one or more solar power generation facilities) would increase by approximately 25 percent from the value analyzed under the No Action Alternative. This results in an estimate of approximately 862 acre-feet per year for all activities excluding construction or operation of commercial solar power generation facilities. However, the implementation of water conservation efforts in support of the NNSS Energy Executable Plan would likely result in more efficient potable and nonpotable water uses, making this a conservative estimate.

Under the Expanded Operations Alternative, one or more commercial solar power generation facilities with a combined capacity of up to 1,000 megawatts would add an additional demand of approximately 700 acre-feet per year. During construction of the solar power generation facilities, there would be a temporary demand of approximately 1,000 acre-feet per year for 42 months to support dust suppression, soil compaction, and other facility construction needs.

Table 5–25 summarizes the demand on each basin associated with a withdrawal of 862 acre-feet per year, as well as additional demands associated with commercial solar power generation facilities (discussed in subsequent paragraphs), and compares these demands to the sustainable yield of each basin.

As illustrated in Table 5–25, annual withdrawals from each basin under the Expanded Operations Alternative would be well below the sustainable yield of each basin, with the exception of Frenchman Flat. The greatest demand from DOE/NNSA activities would be placed on Frenchman Flat, with approximately 591 percent of the basin’s sustainable yield consumed on an annual basis. As discussed in Section 5.1.6.2.1, although the Frenchman Flat basin appears to be overdrawn, there is no evidence of a downward trend of water drawdown in the basin, and the perennial yield is believed to be much higher when groundwater recharge into the basin is considered. The UGTA Project has the most conservative estimate of perennial yield for Basin 160 (1,070 acre-feet per year), compared to those of the USGS and...
the Desert Research Institute models (1,830 and 1,920 acre-feet per year, respectively). Construction of one or more commercial solar power generation facilities would result in a temporary marked increase in water consumption in Basin 227a (with construction demand exceeding all other uses of water on the NNSS), resulting in a demand of 27 percent of the sustainable yield of Basin 227a. Operation of the commercial solar power generation facilities would also result in a marked increase in water consumption in Basin 227a, resulting in a demand of 19 percent of the sustainable yield of Basin 227a.

Table 5–25 Impacts on Groundwater Supply Under the Expanded Operations Alternative

<table>
<thead>
<tr>
<th>Basin</th>
<th>Water Demand, Excluding Solar Power Generation Facilities (acre-feet per year)</th>
<th>Water Demand, Including Construction Demand from Solar Power Generation Facilities (acre-feet per year)</th>
<th>Water Demand, Including Operational Demand from Solar Power Generation Facilities (acre-feet per year)</th>
<th>Sustainable Yield of Basin (acre-feet per year)</th>
<th>Maximum Percentage of Sustainable Yield Consumed During Construction</th>
<th>Maximum Percentage of Sustainable Yield Consumed During Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frenchman Flat (160)</td>
<td>591</td>
<td>591</td>
<td>591</td>
<td>100</td>
<td>591%</td>
<td>591%</td>
</tr>
<tr>
<td>Fortymile Canyon, Backboard Mesa subdivision (227b)</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>3,600</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Fortymile Canyon, Jackass Flats subdivision (227a)</td>
<td>59</td>
<td>1,059</td>
<td>759</td>
<td>4,000</td>
<td>27%</td>
<td>19%</td>
</tr>
<tr>
<td>Yucca Flat (159)</td>
<td>159</td>
<td>159</td>
<td>159</td>
<td>350</td>
<td>46%</td>
<td>46%</td>
</tr>
</tbody>
</table>

Source: Derived from Chapter 4, Tables 4–24, 4–27, and 4–30.

The demands on each basin would be unlikely to reduce groundwater recharge to another downgradient aquifer to the degree that it reduces that aquifer’s sustainable yield or adversely affects current uses of that aquifer because the flow out of each basin would be less than the flow into each basin. However, DOE/NNSA would continue to monitor groundwater levels and flow patterns across the NNSS, would employ site-specific modeling to estimate specific impacts of future projects, and would modify the points of diversion and pumping rates if needed to avoid adversely impacting any single aquifer.

No proposed activities under the Expanded Operations Alternative are expected to result in violations of water quality standards, water-level drawdowns precluding other uses of an aquifer, or alterations of groundwater recharge adversely affecting downgradient aquifers. Aspects of specific projects and activities under the NNSS missions, particularly water quality effects, are discussed in the remainder of Section 5.1.6.2.2.

5.1.6.2.2.1 National Security/Defense Mission

New facilities. DOE/NNSA is proposing 39,000 square feet of permanent facilities for the Office of Secure Transportation in Area 17 to support training activities, as well as a mock town and live-fire training area. The Office of Secure Transportation also proposes to construct 30,000 square feet of maintenance and administrative buildings and a 20,000-square-foot dormitory in Area 6, 12, or 23. Approximately 85,000 square feet of new facilities are also proposed under the Nuclear Emergency Response, Nonproliferation, Counterterrorism, and Work for Others Programs, collectively disturbing an additional 500 acres of land, although locations for these facilities are not yet known. Depending on the exact location and final design of these facilities, additional water supply infrastructure, such as distribution pipelines and water storage tanks would also be constructed. It is not known at this time whether additional water supply wells would be required to support these facilities.

Various types and quantities of hazardous materials (e.g., fuel, lubricants, and paints) would be stored and used at construction sites, and small spills or leaks could possibly occur. Adherence to established spill control procedures would reduce the likelihood of such an event, and the depth to groundwater across
most of the NNSS would generally preclude such spills from reaching groundwater sources. Additionally, the location of the permanent facilities and construction sites would also be evaluated for their proximity to water supply wells to avoid wellhead contamination. Therefore, impacts on groundwater quality are not expected to occur from facility construction activities.

Construction would require water for activities such as mixing concrete, washing equipment, dust control and soil compaction, and meeting the sanitary needs of construction employees. It is anticipated that this water would be obtained from the NNSS’s groundwater distribution system via a temporary service connection or would be trucked to the point-of-use, especially during the early stages of construction. Although the timing and intensity of individual construction activities are not known at this time, it was estimated that approximately 250 construction employees (excluding those associated with one or more proposed commercial solar power generation facilities) would be present at the NNSS at any given time (see Section 5.1.4). Assuming that construction workers would each use approximately 30 gallons of potable water per day, total potable water demand for these workers was estimated at approximately 1.8 million gallons (5.5 acre-feet) annually. However, use of portable toilets by construction personnel could greatly reduce this demand.

Annual nonpotable water demands from these construction projects would vary greatly, depending on the type of facility and the construction phase of each project, and are not well known at this time. However, the assumption of a 25 percent increase in all water uses (including nonpotable uses) from the No Action Alternative provides a conservative estimate of demand associated with these and other nonpotable uses in any given year. Given the remaining sustainable capacity of the water supply system at the NNSS, no adverse impacts are expected on aquifer supply and recharge from these construction activities.

The design of new facilities would include more-efficient water conservation design and measures (e.g., installation of WaterSense™ products [toilets, urinals, faucets, showerheads, boiler systems, and other items] and xeric landscaping) combined with demolition of existing facilities under the Environmental Management Mission, which would help offset water use once these facilities become operational. The estimate of a 25 percent increase in total annual water consumption noted in the introduction to Section 5.1.6.2.2 incorporates the demand from personal and non-personal uses of water once new facilities are occupied.

Experiments and activities. Under the Expanded Operations Alternative, DOE/NNSA proposes increases in both the frequency and intensity of ongoing activities described under the No Action Alternative. For example, within the Stockpile Stewardship and Management Program, the number of conventional high-explosive detonations would increase to as high as 100 per year (from 20), and the size of the charges would increase to up to 120,000 pounds (from 70,000 pounds) of TNT-equivalent explosives. This increase in operational tempo would also result in increased levels of waste generation (e.g., a three-fold increase in TRU waste from experiments at JASPER) throughout the NNSS. However, the same factors that preclude impacts on groundwater quality (e.g., contained and/or aboveground nature of experiments, depth to groundwater, operational controls, and groundwater monitoring programs) under the No Action Alternative would continue to all ongoing activities in the Expanded Operations Alternative. DOE/NNSA does not estimate any additional impacts on groundwater quality from activities under the Expanded Operations Alternative.

Several new or significantly revised activities are also proposed under the Expanded Operations Alternative. Within the Stockpile Stewardship and Management Program, DOE/NNSA would establish up to three areas at the NNSS for conducting explosive experiments with depleted uranium. While the locations and operational parameters of these experiments have not been fully defined, DOE/NNSA would consider site- and project-specific criteria (e.g., local groundwater depth and movement rates, solubility of potential contaminants) in the planning process to ensure that depleted uranium or other chemical contaminants would not adversely affect groundwater resources.
Under the Work for Others Program, DOE/NNSA would support NASA nuclear rocket motor
development, including the use of existing boreholes to test their suitability for sequestering of emissions. Although testing of an actual nuclear rocket is not planned at this time, NASA may conduct a proof-of-concept experiment using a surrogate, such as xenon, in a borehole. Any radioactive materials released in the subsurface in this or other related experiments (such as radioactive tracer experiments) would have short half-lives and would be used well above the groundwater table; as such, they are not expected to adversely affect groundwater quality.

As noted in Chapter 3 of this SWEIS, there are several activities and facilities considered for the NNSS that are still conceptual in nature; no detailed design or siting information is available at this time. These include construction of test beds and support facilities for nonproliferation and counterterrorism activities; new counterterrorism training facilities and reconfiguration of the RNCTEC facility for DHS; and additional facilities for nuclear material detection training for DHS and other Federal agencies. These types of conceptual facilities and activities would undergo an appropriate level of NEPA review and documentation before they would be implemented.

5.1.6.2.2.2 Environmental Management Mission

Waste management activities on the NNSS would increase under the Expanded Operations Alternative, with up to 44,498,253 cubic feet of LLW and 2,790,583 cubic feet of MLLW disposed at the Area 5 RWMC and Area 3 RWMS. TRU waste amounts stored at the TRU Storage Pad pending characterization and shipment off site would increase to approximately 1,766 cubic feet. Annual modeling exercises used to support performance assessments for the Area 5 RWMC and Area 3 RWMS conclude that no groundwater pathway exists for these disposal facilities (NSTec 2010f). Although the waste management activities would increase, the absence of a groundwater pathway, the depth to groundwater at waste disposal facilities at Areas 3 and 5, and the stringent operating controls and monitoring programs, LLW and MLLW disposal operations are not expected to adversely affect groundwater resources.

DOE/NNSA would construct sanitary solid waste disposal facilities as needed in Area 23, and develop a new sanitary solid waste disposal site in Area 25 to support environmental restoration activities, as well as the construction associated with potential solar energy projects in Area 25. These facilities would incorporate contaminant containment strategies in their design, and are not expected to result in adverse impacts on groundwater quality during their construction or operational phases.

No changes to environmental restoration activities are proposed under the Expanded Operations Alternative.

5.1.6.2.2.3 Nondefense Mission

Infrastructure-related activities, including repairs and replacements, would include increasing the capacities, capabilities, and ranges of facilities to accommodate expanded operations. Approximately 300,000 square feet of new facilities would be constructed to support air operations, Desert Rock Airport, and security requirements. Similar to the construction activities described in Section 5.1.6.1.2, these activities are not expected to result in any adverse impacts on groundwater quality or supply.

Any facilities that are no longer required and economically salvageable would be decommissioned. Decommissioning activities are unlikely to affect groundwater quality due to their short durations, operational controls applied, and the depth of the groundwater. Nonpotable water demands for dust suppression during decommissioning would be smaller than those required for construction activities, and would not strain the sustainable capacity of the NNSS. The estimated 25 percent increase in total water use under the Expanded Operations Alternative incorporates any water demand that would occur as a result of decommissioning facilities.

DOE/NNSA may enter into an agreement with a commercial entity to construct one or more solar power generation facilities within Area 25. Under the Expanded Operations Alternative, the generating capacity
of the commercial solar power generation facilities would increase to 1,000 megawatts. While numerous hazardous materials (e.g., fuel, lubricants, heat transfer fluid) would be stored and used during both construction and operation of the commercial solar power generation facilities, any releases are not expected to adversely impact groundwater quality. These materials would be handled and stored in accordance with established spill prevention and response procedures, and any releases would be promptly contained, and contaminated soil managed appropriately. The notional design for this solar power generation facility includes a bioremediation cell for the segregation and remediation of contaminated soil.

Additionally, DOE/NNSA proposes to construct a 5-megawatt photovoltaic solar power generation facility near the Area 6 Construction Facilities. It was estimated that annual nonpotable water use would total approximately 165,000 gallons (0.5 acre-feet) per year, which is only a small fraction of the total water use on the NNSS.

DOE/NNSA would additionally explore the NNSS for geothermal energy to evaluate the feasibility of developing a Geothermal Demonstration Project. There are seven locations on the NNSS that have enhanced geothermal potential, as depicted in Appendix A, Figure A–3. Several boreholes may be drilled up to 20,000 feet in depth, and the development of a reservoir would be necessary to store water during drilling. Minor quantities of drilling fluids may be introduced to groundwater during drilling operations, but are not expected to result in violation of any water quality standards or otherwise threaten potable water sources. The nonpotable water demand to prime the system initially (which includes the boreholes and reservoir) would be approximately 20 acre-feet on a one-time basis, or about 2 percent of the NNSS’s water use in any year. Once a geothermal power plant is continuously operating, it was estimated that 50 acre-feet of water would be required annually (about 6 percent of the NNSS average annual water use). The seven locations on the NNSS to be possibly explored for enhanced geothermal potential are located within six separate hydrographic basins. Of the six basins, Yucca Flat, with 350 acre-feet available for withdrawal, has the lowest remaining yield for groundwater withdrawals (see Chapter 4, Table 4–24). An annual operational use of 50 acre-feet per year would represent 14 percent of this basin’s available yield, resulting in a minor impact. Impacts on the remaining five hydrographic basins would be lower as the remaining yield for withdrawals are greater. Therefore, construction, initial priming, and operational water demands from this project would not significantly affect groundwater supply in any of the six basins to be possibly explored.

5.1.6.2.3 Reduced Operations Alternative

This section describes the proposed changes to activities under the Reduced Operations Alternative and their associated impacts on groundwater resources. Under the Reduced Operations Alternative, the frequency and scope of most ongoing activities at the NNSS would be reduced, and no new activities and facilities (even if selected in a previous NEPA decision) would be implemented. Several activities would be more geographically restricted than under the other alternatives in this SWEIS, and a 10 percent reduction in workforce from the No Action Alternative is expected.

As potable water uses would likely continue to represent the majority of total water demand (see Chapter 4, Section 4.1.6.2), it was estimated that total water use (excluding construction and operation of a solar power generation facility) would also decrease by 10 percent from that projected for the No Action Alternative, to approximately 622 acre-feet per year. However, the implementation of water conservation efforts in support of the NNSS Energy Executable Plan would likely result in more efficient potable and nonpotable water uses, making this a conservative estimate.

Under the Reduced Operations Alternative, the size of the commercial solar power generation facility would decrease to 100 megawatts in generating capacity. This facility would add an additional demand of approximately 175 acre-feet per year. During construction of the solar power generation facility, there would be a temporary demand of approximately 200 acre-feet per year for 32 months to support dust suppression, soil compaction, and other facility construction needs.
Table 5–26 summarizes the demand on each basin associated with a withdrawal of 622 acre-feet per year, as well as additional demands associated with a commercial solar power generation facility (discussed in subsequent paragraphs), and compares these demands to the sustainable yield of each basin.

As illustrated in Table 5–26, annual withdrawals from each basin under the Reduced Operations Alternative would be well below the sustainable yield of each basin, with the exception of Frenchman Flat. The greatest demand would be placed on Frenchman Flat, with approximately 427 percent of the basin’s sustainable yield consumed on an annual basis. As discussed in Sections 5.1.6.2.1 and 5.1.6.2.2, the Frenchman Flat basin appears to be overdrawn, however, there is no evidence of a downward trend of water drawdown in the basin, and the perennial yield is believed to be much higher when groundwater recharge into the basin is considered. The UGTA Project has the most conservative estimate of perennial yield for Basin 160 (1,070 acre feet per year) compared to those of the USGS and the Desert Research Institute models (1,830 and 1,920 acre-feet per year, respectively). While construction and operation of a commercial solar power generation facility would result in a marked increase in water consumption in Basin 227a (construction demand would likely be the single largest use of water on the NNSS), the resulting demand would be 6 percent of the sustainable yield of Basin 227a.

<table>
<thead>
<tr>
<th>Basin Description</th>
<th>Water Demand, Excluding Solar Power Generation Facility (acre-feet per year)</th>
<th>Water Demand, Including Construction Demand from Solar Power Generation Facility (acre-feet per year)</th>
<th>Water Demand, Including Operational Demand from Solar Power Generation Facility (acre-feet per year)</th>
<th>Sustainable Yield of Basin (acre-feet per year)</th>
<th>Maximum Percentage of Sustainable Yield Consumed During Construction</th>
<th>Maximum Percentage of Sustainable Yield Consumed During Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frenchman Flat (160)</td>
<td>427</td>
<td>427</td>
<td>427</td>
<td>100</td>
<td>427%</td>
<td>427%</td>
</tr>
<tr>
<td>Fortymile Canyon, Buckboard Mesa subdivision (227b)</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>3,600</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Fortymile Canyon, Jackass Flats subdivision (227a)</td>
<td>42</td>
<td>242</td>
<td>217</td>
<td>4,000</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>Yucca Flat (159)</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>350</td>
<td>33%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Source: Derived from Chapter 4, Tables 4–24, 4–27, and 4–30.

These demands on each basin would be unlikely to reduce groundwater recharge to another downgradient aquifer to the degree that it would reduce that aquifer’s sustainable yield or adversely affect current uses of that aquifer. However, DOE/NNSA would continue to monitor groundwater levels and flow patterns across the NNSS, employ site-specific modeling to estimate specific impacts of future projects, and modify the points of diversion and pumping rates if needed to avoid adversely impacting any single aquifer. Therefore, no adverse effects on groundwater supply are expected under the Reduced Operations Alternative.

No proposed activities under the Reduced Operations Alternative are expected to result in violations of water quality standards, water level drawdowns precluding other uses of an aquifer, or alterations of groundwater recharge adversely affecting downgradient aquifers. Aspects of specific projects and activities under the NNSS missions, particularly water quality effects, are discussed in the remainder of Section 5.1.6.2.3.

5.1.6.2.3.1 National Security/Defense Mission

Under the Reduced Operations Alternative, DOE/NNSA would reduce the frequency and scope of experiments and activities and place additional geographic restrictions on ongoing activities. Specifically, Areas 12, 18, 19, and 20 would not support most activities within the National Security/Defense Mission.
This would effectively curtail most activities (other than environmental restoration) in the northwest portion of the NNSS. DOE/NNSA does not anticipate any adverse impacts on groundwater quality from National Security/Defense Mission activities under the Reduced Operations Alternative.

5.1.6.2.3.2 Environmental Management Mission

Under the Reduced Operations Alternative, LLW and MLLW waste disposal would remain the same as under the No Action Alternative. Onsite generation of hazardous, nonhazardous, and TRU waste would decrease relative to the No Action Alternative. DOE/NNSA does not anticipate any adverse impacts on groundwater quality from waste management activities under the Reduced Operations Alternative.

No change in Environmental Restoration Program activities is proposed under this alternative. Although most defense-related activities would cease in the northwest portion of the NNSS, environmental restoration and environmental monitoring activities would continue as described under the No Action Alternative. Therefore, impacts would remain the same as those under the No Action Alternative.

5.1.6.2.3.3 Nondefense Mission

Under the Reduced Operations Alternative, the only new infrastructure considered would be a solar power generation facility, whose net generating capacity would be reduced to 100 megawatts. The additional water demand associated with this project is presented in the previous introductory subsection for this alternative and is not expected to result in adverse impacts related to groundwater supply. While numerous hazardous materials (e.g., fuel, lubricants, heat transfer fluid) would be stored and used during both construction and operation of the commercial solar power generation facility, any releases are not expected to adversely impact groundwater quality. These materials would be handled and stored in accordance with established spill prevention and response procedures; any releases would be promptly contained, and contaminated soil would be managed appropriately. The notional design for this solar power generation facility includes a bioremediation cell for the segregation and remediation of contaminated soil.

Hydrology—American Indian Perspective

The Consolidated Group of Tribes and Organizations (CGTO) knows we are in a drought because humans have disrespected the earth. It is affecting the balance of our earth's climate. One inevitable implication of the current 100-year drought is that the surface water¹ on the Nevada National Security Site (NNSS) and immediate areas have diminished and become more sporadic. The modification and availability of surface water has the ability to affect all trophic levels on the NNSS.

Other tribal elders noted, “Water has been disrespected and therefore it is disappearing. It is a medicine—used to heal and used for healing. It is used for ceremonial purposes in prayer. It is alive and must be awakened. It is spiritual—an essential component to begin religious ceremonies, and part of sweat ceremonies. Historically, water was pure and available to those who respected it. Bathing was a ritual. Now we do not trust the purity of the water because it has been disrespected. Hot springs have been affected and are no longer at the temperatures they used to be.”

When humans respect water, it sustains them and life-forms on the surface, but when water is not treated well, it withdraws its life-giving support and returns to the underworld. The CGTO knows that the springs on Pahute and Rainier mesas and near Buckboard Mesa have dried up. Water has returned to the underworld because it has not been treated correctly by the U.S. Department of Energy (DOE) activities. There are places on the NNSS where the rain falls but does not nurture the plants and animals. The CGTO wants to be involved in DOE hydrology studies because if the water continues to be treated in inappropriate ways, it will totally remove itself from the NNSS.

See Appendix C for more details.

¹ Surface water is defined here as water available for shallow rooted plants during rainfall, water available during post-rain ponding, runoff, and absorption, and water recharged into near-surface aquifers.
5.1.7 Biological Resources

Biological resources addressed in this impact analysis include native and nonnative vegetation and wildlife that inhabit or otherwise use DOE/NNSA sites in Nevada. Nonnative invasive or introduced species are generally considered deleterious. Both RSL and NLVF are located within developed urban settings that are devoid of natural habitat and are maintained with ornamental plant species. For this reason, detailed analysis of impacts on biological resources is limited to the NNSS and the TTR in this NNSS SWEIS.

Adverse impacts on wildlife include damage to or loss of habitat, direct mortality, and disturbance. Adverse impacts on vegetation include direct removal and reduction in suitable growing area. Loss of habitat and reduction in growing area are directly related to acres of land disturbed. Adverse impacts on soils, wells, and springs would also result in adverse impacts on vegetation and wildlife. DOE/NNSA is subject to, and complies with, existing laws, regulations, and policies regarding protection of sensitive and otherwise regulated plant and animal species and has established practices to minimize or avoid potential adverse effects on biological resources.

The following criteria are used in this analysis of potential impacts on biological resources resulting from activities of DOE/NNSA in Nevada:

- Area of land disturbance, i.e., habitat loss, particularly important habitats, and potential damage to biologically important habitat features, such as wells, springs, wetlands, and other resources that support biological resources. Impacts on habitats by land disturbance could affect both wildlife and native vegetation.

- The potential of proposed activities to cause damage to any species protected by applicable statutes, including exceeding the terms and conditions in the Final Programmatic Biological Opinion for Implementation of Actions Proposed on the Nevada Test Site, Nye County, Nevada (2009 Biological Opinion) (USFWS 2009a). It is important to note that the analyses of potential impacts on biological resources in this SWEIS are conservative and are not intended to represent a biological assessment within the meaning of the U.S. Fish and Wildlife Service (USFWS) in its regulations implementing the Endangered Species Act. For this reason, where the take of desert tortoises may appear to exceed the terms and conditions of the 2009 Biological Opinion, this is only for purposes of comparing the relative impacts of the alternatives addressed in this SWEIS.

Table 5–27 shows the potential area of land that would be disturbed for each mission and program area under each of the three alternatives. Potential land disturbance related to UGTA and Soils Projects activities on the Nevada Test and Training Range (except the TTR) are included in the analysis of potential impacts on biological resources at the NNSS. In 2008, the DOE/NNSA NSO estimated that about 790,400 acres, or about 91 percent of the total area of the NNSS, were considered undisturbed land based on implementation of the Expanded Use Alternative from the 1996 NTS EIS (DOE 2008f). Although some projects envisioned in 1996 were not implemented, such as construction of a large defense industrial complex or a commercial solar power generation facility, there have been other land-disturbing projects, such as the RNCTEC and various security improvements in the areas around some facilities. For purposes of this analysis, it was assumed that about 790,400 acres of the NNSS would remain undisturbed and that all undisturbed land would continue to provide habitat for wildlife.
Table 5–27 Habitat Disturbance from Proposed Projects and Activities at the Nevada National Security Site

<table>
<thead>
<tr>
<th>Mission or Program</th>
<th>No Action Alternative</th>
<th>Expanded Operations Alternative</th>
<th>Reduced Operations Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disturbed Area (acres)</td>
<td>No Action Alternative</td>
<td>Expanded Operations Alternative</td>
</tr>
<tr>
<td></td>
<td>Percentage of Undisturbed Area on the NNSS</td>
<td>Percentage of Undisturbed Area on the NNSS</td>
<td>Percentage of Undisturbed Area on the NNSS</td>
</tr>
<tr>
<td>Stockpile Stewardship and Management Program</td>
<td>685 0.09</td>
<td>12,805 1.62</td>
<td>415 0.05</td>
</tr>
<tr>
<td>NERNC Program</td>
<td>15 0.002</td>
<td>215 0.03</td>
<td>15 0.002</td>
</tr>
<tr>
<td>Work for Others Program</td>
<td>0 0</td>
<td>435 0.06</td>
<td>0 0</td>
</tr>
<tr>
<td>National Security/Defense Mission</td>
<td>700 0.09</td>
<td>13,455 1.70</td>
<td>430 0.05</td>
</tr>
<tr>
<td>Waste Management Program</td>
<td>190 0.02</td>
<td>635 0.08</td>
<td>190 0.02</td>
</tr>
<tr>
<td>Environmental Restoration Program b</td>
<td>920 0.12</td>
<td>920 0.12</td>
<td>920 0.12</td>
</tr>
<tr>
<td>Environmental Management Mission</td>
<td>1,110 0.14</td>
<td>1,555 0.2</td>
<td>1,110 0.14</td>
</tr>
<tr>
<td>General Site Support and Infrastructure Program</td>
<td>0 0</td>
<td>467 0.06</td>
<td>0 0</td>
</tr>
<tr>
<td>Conservation and Renewable Energy Program</td>
<td>0 0</td>
<td>50 0.01</td>
<td>0 0</td>
</tr>
<tr>
<td>Other Research and Development Programs</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Nondefense Mission</td>
<td>0 0</td>
<td>517 0.07</td>
<td>0 0</td>
</tr>
<tr>
<td>Total for Alternative for DOE/NNSA</td>
<td>1,810 0.23</td>
<td>15,527 2.00</td>
<td>1,540 0.2</td>
</tr>
<tr>
<td>Commercial Solar Power Generation Facility(ies)</td>
<td>2,650 0.34</td>
<td>10,300 1.30</td>
<td>1,200 0.15</td>
</tr>
<tr>
<td>Geothermal Demonstration Project</td>
<td>0 0</td>
<td>50 0.006</td>
<td>0 0</td>
</tr>
<tr>
<td>Total Commercial/ Demonstration Projects</td>
<td>2,650 0.34</td>
<td>10,350 1.31</td>
<td>1,200 0.15</td>
</tr>
<tr>
<td>Total DOE/NNSA and Commercial/ Demonstration Projects</td>
<td>4,460 0.56</td>
<td>25,877 3.27</td>
<td>2,740 0.35</td>
</tr>
</tbody>
</table>

NERNC = Nuclear Emergency Response, Nonproliferation, and Counterterrorism; NNSS = Nevada National Security Site.

b Land disturbance for Environmental Restoration activities includes 500 acres for new Underground Test Area Project groundwater characterization and monitoring wells and 420 acres for Soils Project sites. About one-half (250 acres) of the disturbance for new characterization and monitoring wells was assumed to occur on land owned or managed by others adjacent to the NNSS on the Nevada Test and Training Range, Bureau of Land Management (BLM) land, and privately owned land. Almost all of the 420 acres of land disturbance for the Soils Projects sites would occur on the Nevada Test and Training Range. For purposes of analysis and because of the close proximity of the portions of the Nevada Test and Training Range, BLM land, and privately owned land that would be disturbed, all land disturbances associated with these Environmental Restoration Program activities are included with NNSS land disturbances.
Disturbance impacts on vegetation are considered permanent when there is no evidence to indicate that predisturbance levels of biomass, cover, density, soils, and plant community structure could be achieved within approximately 5 years of the disturbance or of conducting reclamation efforts. Based on this, all vegetation disturbances under each of the alternatives would be considered permanent because reclamation is not required for all land disturbances at the NNSS; therefore, reclamation was not assumed for any land disturbances.

Under all alternatives, disturbance of native vegetation either by direct removal or by mechanical damage from off-road vehicular or pedestrian traffic could promote the proliferation of nonnative invasive weeds, such as Russian thistle. This species is currently not listed on the Nevada noxious weed list, but is considered aggressive and opportunistic, and often portrays weed-like trends. Other weed species that could invade the disturbed areas over the long term include puncture vine (Tribulus terrestris), perennial pepperweed (Lepidium latifolium), gumweed (Grindelia spp.), yellow star thistle (Centaurea solstitialis), and Russian knapweed (Acroptilon repens). Other impacts on vegetation include soil compaction, spread of weeds already present in the disturbance footprint to areas not currently infested, and accidental introduction of new weed species from contaminated equipment brought in from other regions. DOE/NNSA takes positive steps to prevent the introduction and/or spread of noxious weeds at the NNSS, as described in Chapter 7, Section 7.7.

In 1998, DOE/NNSA evaluated biotic and abiotic data collected from ecological landform units to identify areas of the NNSS that may warrant active protection from land-disturbing activities (DOE/NV 1998d). Four habitat types on the NNSS were identified as “important habitats”: (1) pristine habitat includes areas that have few manmade disturbances; (2) unique habitats contain uncommon biological resources, such as a natural wetland; (3) sensitive habitat includes areas where vegetation recovers very slowly from direct disturbance (i.e., areas with high susceptibility to wind erosion); and (4) diverse habitats have high plant species diversity (DOE/NV 1998d). Important habitats are shown in Chapter 4, Figure 4–23. DOE/NNSA believes that the long-term protection of these important habitats is one method by which overall cumulative impacts on biological resources may be minimized. During siting for new projects, these important habitats (pristine, sensitive, and diverse) are avoided whenever possible. Unique habitats, such as wetlands and springs, are particularly sensitive to disturbance and are avoided for all activities. Important habitats on the NNSS are not based on regulatory requirements, but were developed as management tools.

Sensitive species are defined as species that are at risk of extinction or serious decline or whose long-term viability has been identified as a concern. Protected/regulated species are those that are protected or

Endangered Species Act Definitions

Endangered Species – Any species that is in danger of extinction throughout all or a significant portion of its range.

Threatened Species – Any species that is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.

Take – To harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct.

Harm – Includes any act that actually kills or injures fish or wildlife; such acts may include habitat modification or degradation that significantly impairs essential behavioral patterns of fish or wildlife.

Harass – To intentionally or negligently, through act or omission, create the likelihood of injury to wildlife by annoying it to such an extent that normal behavior patterns such as breeding, feeding, and sheltering are significantly disrupted.

Critical Habitat – Specific geographic areas, whether occupied by a listed species or not, that are essential for its conservation and have been formally designated by a rule published in the Federal Register.

Habitat – The place or environment where a plant or animal naturally lives and grows (a group of particular environmental conditions).

Biological Assessment – A document prepared by a Federal agency to determine whether a proposed major construction activity under its authority is likely to adversely affect listed species, proposed species, or designated critical habitat.

Biological Opinion – A document stating the opinion of the U.S. Fish and Wildlife Service as to whether a Federal action is likely to jeopardize the continued existence of listed species or result in the destruction or adverse modification of critical habitat.
regulated by Federal or state law, such as the Endangered Species Act (16 United States Code [U.S.C.] 1531 et seq.), Migratory Bird Treaty Act (16 U.S.C. 703 et seq.), Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and Wild Free-Roaming Horses and Burros Act (16 U.S.C. 1331 et seq.). Resources important to sensitive species include cover sites, nest or burrow sites, roost sites, or water sources. There are 88 sensitive and protected/regulated species known to occur on or adjacent to the NNSS (NSTec 2010j): 1 moss, 18 flowering plants (excluding 3 species of yucca, one of agave, 18 of cacti, single-leaf pinyon pine \([\text{Pinus monophylla}]\), and juniper \([\text{Juniperus osteosperma}]\), 1 mollusk, 2 reptiles (including the desert tortoise), 15 birds (all bird species on the NNSS are protected by the Migratory Bird Treaty Act, except chukar \([\text{Alectois chukkar}]\), Gambel’s quail \([\text{Callipepla gambelii}]\), English house sparrow \([\text{Passer domesticus}]\), rock dove \([\text{Columba livia}]\), and European starling \([\text{Sturnus vulgaris}]\)), and 27 mammals. Two bird species, chukar and Gambel’s quail, and seven mammals are regulated as game species (pronghorn antelope \([\text{Antilocarpra Americana}]\), Rocky Mountain elk \([\text{Cervus elaphus}]\), desert bighorn sheep \([\text{Ovis canadensis nelsoni}]\), mule deer \([\text{Odocoileus hemionus}]\), mountain lion \([\text{Puma concolor}]\), Audubon’s cottontail \([\text{Sylvilagus audubonii}]\), and Nuttall’s cottontail \([\text{Sylvilagus nuttallii}]\)). Three species of mammals are regulated as fur-bearers: bobcat \([\text{Lynx rufus}]\), gray fox \([\text{Urocyon cinereoargenteus}]\), and kit fox \([\text{Vulpes velox macrotis}]\)). Protected and sensitive species of plants and animals are listed in Appendix F, Table F–1.

The desert tortoise \([\text{Gopherus agassizii}]\), a threatened species, is the only federally listed species that occurs on the NNSS. The southern approximately one-third of the NNSS, including all or parts of Areas 5, 6, 11, 14, 22, 23, 25, 26, 27, and 29, is within the range of the desert tortoise, an area of about 328,400 acres. Approximately 7,350 acres, or 2 percent of NNSS land within desert tortoise range, has been disturbed in the past by construction of facilities and infrastructure and other activities. The net area of desert tortoise habitat at the NNSS is about 321,050 acres (about 42 percent of the undisturbed land on the NNSS). The population density of desert tortoises on the NNSS is unknown, but is considered “very low” (USFWS 2009a).

In July 2008, the DOE/NNSA NSO provided USFWS with a biological assessment of activities anticipated to occur on the NNSS over the following 10 years and entered into formal consultation, pursuant to Section 7 of the Endangered Species Act (16 U.S.C. 1531 et seq.), to update the 1996 Biological Opinion (USFWS 1996) and obtain a new Biological Opinion. In February 2009, USFWS issued the 2009 Biological Opinion (USFWS 2009a) to the DOE/NNSA NSO, which authorized the incidental “take” (accidental killing, injury, harassment, etc.) of desert tortoises that may occur during NNSS activities. Before implementing any new activity in desert tortoise habitat, DOE/NNSA provides specified information and consults with USFWS to determine whether the anticipated incidental take for each action, at the project level, complies with the programmatic 2009 Biological Opinion. Both the 1996 Biological Opinion and 2009 Biological Opinion concluded that activities anticipated to occur on the NNSS would not jeopardize the continued existence of the Mojave population of desert tortoises and that no critical habitat would be destroyed or adversely modified. NNSS activities occurring within the range of the desert tortoise must comply with the terms and conditions outlined in the 2009 Biological Opinion, as shown in Table 5–28. The 2009 Biological Opinion also states that, if either the level of incidental take or the permitted amount of habitat disturbance is reached and anticipated to be exceeded during the course of actions, such an incidental take or habitat disturbance would represent new information requiring reinitiation of consultation and review of the reasonable and prudent measures. If a proposed activity or group of activities would result in an exceedance of the 2009 Biological Opinion, DOE/NNSA would consult with USFWS, in accordance with Section 7 of the Endangered Species Act.
Table 5–28 Parameters and Threshold Values for Desert Tortoise Take on the Nevada National Security Site

<table>
<thead>
<tr>
<th>Mission or Program</th>
<th>Maximum Allowable Land Disturbance (acres)</th>
<th>Maximum Number of Tortoises Anticipated to be Incidentally Taken</th>
<th>Killed/Injured</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpile Stewardship and Management Program</td>
<td>500</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Work for Others Program</td>
<td>500</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>National Security/Defense Mission Total</td>
<td>1,000</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Waste Management Program</td>
<td>100</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Environmental Restoration Program</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Environmental Management Mission Total</td>
<td>110</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Other Research and Development Programs</td>
<td>1,500</td>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>General Site Support and Infrastructure Program</td>
<td>100</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Nondefense Mission Total</td>
<td>1,600</td>
<td>3</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Nonprogrammatic Take on Existing Roads b</td>
<td>0</td>
<td>15 c</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Overall Totals</td>
<td>2,710</td>
<td>22</td>
<td>194</td>
<td></td>
</tr>
</tbody>
</table>

a “Other Research and Development” was designated as “Nondefense Research and Development” in the Final Programmatic Biological Opinion for Implementation of Actions Proposed on the Nevada Test Site, Nye County, Nevada (2009 Biological Opinion) (USFWS 2009a).

b Refers to tortoises that may be taken by vehicular traffic on existing roads, as opposed to those that may be taken through ground-disturbing activities.

c No more than 4 desert tortoises may be killed or injured by nonprogrammatic take on existing NNSS roads during any calendar year, and no more than 15 during the term of the 2009 Biological Opinion.

Source: Modified from Table 3 in USFWS 2009a.

The DOE/NNSA NSO Desert Tortoise Compliance Program was developed in 1992, with the issuance by USFWS of the first Biological Opinion for the NNSS. The Desert Tortoise Compliance Program serves to implement the terms and conditions of the most current version of the Biological Opinion for the NNSS, to document compliance actions taken, and to assist the DOE/NNSA NSO with USFWS consultations. Some of the activities of the Desert Tortoise Compliance Program include (1) reviewing proposed activities at the NNSS to determine whether they may be located in tortoise habitat and whether clearance surveys and/or monitoring are required; (2) conducting clearance surveys at project sites within 1 day of the start of project construction; (3) ensuring that environmental monitors are on site during heavy equipment operations; (4) developing training modules and ensuring that all personnel working on the NNSS are trained in the requirements of the 2009 Biological Opinion (USFWS 2009a); and (5) preparing annual compliance reports for submittal to USFWS. By implementing the Desert Tortoise Compliance Program, the DOE/NNSA NSO will ensure that most if not all impacts on desert tortoises addressed in this analysis would involve harassment rather than injury or mortality. For purposes of analysis in this NNSS SWEIS, the definition of “harass” or “harassment” includes the intentional removal and relocation of desert tortoises by qualified biologists, which would significantly reduce the “likelihood of injury” to desert tortoises contained in the definition of “harass” in the text box on page 5-112.

Tables 5–30 (Section 5.1.7.1.3), 5–31 (Section 5.1.7.2.3), and 5–32 (Section 5.1.7.3.3.1) display the estimated impacts on desert tortoises in terms of acres of habitat removed and numbers of tortoises taken by DOE/NNSA activities at the NNSS under each of the three alternatives, respectively. The acres of tortoise habitat that could be taken under the three alternatives were determined by summing the potential areas of disturbance for all of the activities that may occur within tortoise habitat on the NNSS, as depicted in Chapter 4, Figure 4–24, Northern Boundary of the Desert Tortoise Range on the Nevada National Security Site, under each alternative. Then, based upon the “Estimated Tortoise Density” ranges in Figure 4–24, a range of numbers of desert tortoises that could be impacted was calculated for each.
program and mission. Included within each of the three tables are the “allowable takes” of both tortoises and habitat from the 2009 Biological Opinion (USFWS 2009a), for ready comparison. In each of the three tables, the row that lists “Nonprogrammatic Takes on NNSS Roads” (i.e., 125 over the next 10 years) is derived directly from the 2009 Biological Opinion. As noted above, based on actual operations at the NNSS since 1992 and ongoing implementation of DOE/NNSA’s Desert Tortoise Compliance Program, the calculated estimated programmatic take of desert tortoises shown in the three tables and discussed in the text would result from harassment. Of the 125 tortoises that may be “taken” under the 2009 Biological Opinion, only 1 to 2 tortoises are expected to be taken by injury or mortality each year; the remainder would be taken by harassment by being moved by qualified biologists off of roadways or from areas of proposed land disturbance to prevent their injury or death. This estimated number of tortoises taken by injury or death on NNSS roadways over the next 10 years is based on the annual average of actual recorded takes of desert tortoises on NNSS roadways since 1992, as shown in Table 5–29.

Table 5–29 Number of Desert Tortoises Injured or Killed on Nevada National Security Site Roadways, 1992 through 2011

<table>
<thead>
<tr>
<th>Year</th>
<th>Numbers of Desert Tortoises</th>
<th>Year</th>
<th>Numbers of Desert Tortoises</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1</td>
<td>2001</td>
<td>1</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>1</td>
<td>1999</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>1998</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>1997</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>1996</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
<td>1995</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>3</td>
<td>1994</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>1993</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>1992</td>
<td>3</td>
</tr>
<tr>
<td>Total Number of Desert Tortoises Injured or Killed</td>
<td>15</td>
<td>Average Number of Desert Tortoises Injured or Killed per year</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Sources: NSTec 2008c, 2009a, 2010j, 2011b; Ostler 2011.

In addition to the Desert Tortoise Compliance Program, the DOE/NNSA NSO conducts comprehensive program activities to monitor and protect sensitive plant and animal species and other biological resources on the NNSS, including the following:

- Biological surveys are performed at project sites where land-disturbing activities are proposed. The goal is to minimize the adverse effects of land disturbance on sensitive and protected/regulated plant and animal species, their associated habitat, and other important biological resources. Survey reports document species and resources found and provide mitigation recommendations. During these surveys, ecologists note any noxious/invasive plants that are growing in the survey area and, as appropriate, notify NNSS Maintenance, which may take steps to eradicate the plants from that area.

- Beginning in 2004, the DOE/NNSA NSO began annual surveys each spring to assess wildland fire hazards on the NNSS. NNSS ecologists conduct these wildland fire surveys in coordination with NNSS Fire and Rescue. As with biological surveys, ecologists conducting wildland fire hazards surveys identify noxious/invasive plants and, as appropriate, notify NNSS Maintenance.

- Under the NNSS Sensitive Plant Monitoring Program, the status or ranking of sensitive plant species known to occur on the NNSS is evaluated annually to ensure such plants are afforded the appropriate protection under Federal and state laws. Sensitive plant species populations on the NNSS are routinely monitored to assess plant density and plant vigor or identify any threats or
impacts on the species. Currently, there are 19 species of sensitive plants that are monitored on the NNSS. A full list of sensitive plant species on the NNSS may be found in Appendix F, Table F–1. As with biological surveys, ecologists monitoring sensitive plant species identify noxious/invasive plants and, as appropriate, notify NNSS Maintenance.

- The DOE/NNSA NSO currently monitors 18 animal species on the NNSS as part of the Sensitive and Protected/Regulated Animal Monitoring Program to ensure such animal species are afforded the appropriate protection under Federal and state laws. These monitored species include 13 species of bats, wild horses (*Equus caballus*), mule deer, mountain lion, dark kangaroo mouse (*Microdipodops meacephalus*), and pale kangaroo mouse (*Microdipodops pallidus*). In addition, the DOE/NNSA NSO monitors raptorial bird species, including the western burrowing owl (*Athene cunicularia hypugaea*). The western red-tailed skink, a potentially sensitive species of reptile, has been under evaluation since 2006 to determine its abundance and distribution on the NNSS and whether it should be added to the list of actively monitored animal species. A list of all sensitive and protected/regulated animal species known to occur on the NNSS may be found in Appendix F, Table F–1. As with biological surveys, ecologists monitoring sensitive and protected/regulated animal species identify noxious/invasive plants and, as appropriate, notify NNSS Maintenance.

- Additional monitoring of such things as natural wetlands is conducted to characterize seasonal baselines and trends in physical and biological parameters; help the Southern Nevada Health District ascertain the presence and/or prevalence of the West Nile virus in the NNSS mosquito population; and assess the use of constructed water sources by wildlife and develop and implement mitigation measures to prevent significant harm to wildlife.

- The Habitat Restoration Program involves the revegetation of disturbed land and evaluation of previous revegetation efforts. These activities are conducted at both the NNSS and the TTR. Revegetation of disturbed areas helps promote reestablishment of native plant species and reduce the opportunities for noxious/invasive plant species to colonize those areas.

- An Ecological Monitoring and Compliance Program Report is published each year to document the previous year’s activities and accomplishments in all of the above-noted areas.

These activities are all elements of the DOE/NNSA NSO’s program to ensure compliance with DOE Order 436.1, *Departmental Sustainability*, and all applicable statutes and regulations.

Most activities described in Chapter 3 for the three alternatives have the potential to adversely affect biological resources at the NNSS. Direct impacts on biological resources would occur as a result of ground-disturbing activities, such as drilling new monitoring/characterization wells; grading; excavation; detonations of explosives; remediation of contaminated soils sites; construction of fencing, buildings, roads, firebreaks, and utilities; building modifications; and decontamination or demolition of buildings. Vehicular access to areas containing biological resources would increase the potential for direct mortality for wildlife and disturbance of native vegetation. NNSS activities at existing facilities are expected to have no new direct impacts on biological resources, although impacts such as startled reactions and flight due to detonation of explosives or operation of machinery would continue to occur.

The discussion of potential impacts on biological resources resulting from activities addressed in this SWEIS evaluates those impacts at the alternative level and by mission and program under each of the three alternatives. In this analysis, the overall area of land disturbance for each alternative may differ from the area of desert tortoise habitat that may be disturbed. Any potentially disturbed land area that clearly would not be located within desert tortoise habitat was excluded from the desert tortoise analyses, including the Project 57 site (about 100 acres) located on the Nevada Test and Training Range, dynamic experiments conducted in boreholes, one-half of open-air explosives experiments, drillback operations, depleted uranium experiment sites, a 5-megawatt photovoltaic power generation facility, about one-half of proposed UGTA Project characterization and monitoring wells, about one-half of the Office of Secure
Transportation training and exercises, and the proposed 10,000-acre Office of Secure Transportation training facility in Area 17. Because of implementation of the NNSS Desert Tortoise Compliance Program and based on NNSS operating experience, this analysis assumes that all of the impacts on tortoises from project/activity-related actions under all three alternatives would be takes by harassment; however, takes resulting from collisions with motor vehicles would not be considered harassment and, for reasons discussed below, are not included with the analysis of missions, programs and activities. It is acknowledged that some tortoises could be taken by injury or mortality; however, based on experience at the NNSS from 1992 to 2010, for DOE/NNSA programs, projects, and activities, there would be no tortoises taken by injury or mortality by project activities and less than one per year taken due to non-project-related impacts by vehicles on NNSS roads. Vehicular traffic associated with a commercial solar power generation facility located in Area 25 of the NNSS could result in additional desert tortoise take, but would be addressed under a separate project-specific Biological Opinion that would need to be obtained by the proponent of such a project.

For all proposed activities that could result in habitat disturbance under each alternative, disturbances occurring during the nesting season for birds could affect the eggs or young in nests located within the project area. Most birds that nest within the NNSS are protected under the Migratory Bird Treaty Act and other statutes, such as the Bald and Golden Eagle Protection Act (16 U.S.C. 668-668c). A migratory bird is any species or family of birds that lives, reproduces, or migrates within or across international borders at some point during their annual life cycle. The Migratory Bird Treaty Act prohibits the taking, killing, possession, transportation, and importation of migratory birds, their eggs, parts, and nests except as authorized under a valid permit (50 CFR 21.11). Originally passed in 1940, the Bald and Golden Eagle Protection Act provides for the protection of the bald and golden eagle by prohibiting the take, possession, sale, purchase, barter, offer to sell, purchase or barter, transport, export or import, of any bald or golden eagle, alive or dead, including any part, nest, or egg, unless allowed by permit (16 U.S.C. 668(a); 50 CFR Part 22). “Take” includes pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, molest or disturb (16 U.S.C. 668c; 50 CFR 22.3).

The following sections describe potential impacts on biological resources from DOE/NNSA activities under the alternatives that have not already been addressed.

5.1.7.1 No Action Alternative

5.1.7.1.1 Impacts on Vegetation

DOE/NNSA proposed activities at the NNSS would impact native vegetation directly by clearing areas or by crushing or breaking due to vehicular or pedestrian traffic. Table 5–1 displays estimated areas of land disturbance under each alternative, mission, and program for continuing and proposed DOE/NNSA activities and commercial and demonstration projects at the NNSS. DOE/NNSA activities would disturb a small portion of undisturbed habitat on the NNSS, regardless of alternative. However, some of the areas where activities could occur may be considered important habitats and are addressed under each alternative, mission, and program, as appropriate. The impacts of habitat disturbance on wildlife and sensitive and protected species under the No Action Alternative are addressed in Sections 5.1.7.1.2 and 5.1.7.1.3, respectively.

Overall, under the No Action Alternative, less than 1 percent (4,460 acres) of undisturbed habitat on the NNSS would be affected. Over one-half of land disturbances under the No Action Alternative would be due to potential development of a commercial solar power generation facility (2,650 acres) and are addressed under the Conservation and Renewable Energy Program. For DOE/NNSA activities, most vegetation disturbance (1,810 acres) would occur in areas generally along Mercury Highway in Yucca Flat and Frenchman Flat, although some activities, such as releases of chemicals and biological simulants and Office of Secure Transportation training and exercises, may occur in almost any area of the NNSS.

Under the No Action Alternative, over one-half of the 1,810 acres of land disturbance attributed to DOE/NNSA activities would be caused by short-term activities that would occur in small increments
across a broad geographical area. The primary vegetation alliances that would be impacted are creosote bush/white bursage (Larrea tridentata/Ambrosia dumosa) shrubland, Nevada jointfir (Ephedra nevadensis) shrubland, saltbush (Atriplex spp.) shrubland, and burrobush/wolfberry (Lycium andersonii/Hymenoclea salsola) shrubland. These vegetation alliances cover about 150,800 acres, 106,000 acres, 25,900 acres, and 20,250 acres, respectively, or a total of about 36 percent of the NNSS (Ostler et al. 2000). Because of the prevalence of the potentially affected vegetation types on the NNSS, as well as regionally, and the geographical distribution of impacts, this level of habitat disturbance would not reduce the viability of any of the potentially affected vegetation alliances or have substantial negative impacts on biodiversity.

Some areas of the creosote bush/white bursage vegetation alliance in Frenchman Flat are considered sensitive habitat because the soils are particularly vulnerable to wind erosion and require long periods to recover from disturbance. DOE/NNSA would avoid siting new facilities or activities in this sensitive habitat to the extent reasonably possible; however, as noted below, ongoing development of the Area 5 RWMC would affect up to 190 acres of this sensitive habitat.

5.1.7.1.1 National Security/Defense Mission

Disturbances to up to 700 acres of habitat resulting from National Security/Defense Mission activities under the No Action Alternative would include removal of vegetation to clear areas or crushing plants by vehicular and pedestrian traffic. Crushed plants may recover if they are not too severely damaged and the cause of crushing does not damage their roots. Where vegetation must be removed to accomplish the activity, even though the activity would last only a relatively short period, recovery of the site would likely take many years. In addition, removal or weakening of native vegetation would increase the opportunity for invasive and weedy species to invade the disturbed areas, which could prolong or even preclude the ability of native vegetation to recolonize the area. As previously mentioned, some National Security/Defense Mission activities that occur in Frenchman Flat could impact sensitive habitat, but those habitat areas would be avoided if reasonably possible.

Stockpile Stewardship and Management Program. With the exception of a potential underground nuclear test (if so directed by the President), some explosives experiments, drillback operations, and Office of Secure Transportation training and exercises, all Stockpile Stewardship and Management Program activities would occur at existing facilities and would not cause any new or additional direct impacts on biological resources. Stockpile Stewardship and Management Program activities that would occur outside of existing facilities would likely affect vegetation directly due to disturbance of up to about 685 acres of land (less than 0.10 percent of undisturbed NNSS land). In many cases, vegetation would not need to be removed, but would be damaged by vehicular traffic and the setting up of equipment associated with the activities.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. The NNSS would provide research, development, and training in support of the Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs, including arms control and improvised nuclear device dispositioning and forensics activities. Most of these activities would occur at existing facilities. Under the No Action Alternative, the only new land disturbance expected to occur in this program area would be associated with releases of chemicals and biological simulants, which would temporarily disturb up to 15 acres of previously undisturbed land at the NNSS.

Arms control and counterterrorism activities would include training exercises in large, remote areas that involve the use of explosives and live fire. Areas where these exercises would be conducted would be accessible to pedestrians and on- and off-road vehicles; however, areas used for these activities have been used for similar activities for many years, and no new land areas would be affected.

Work for Others Program. Under the No Action Alternative, DOE/NNSA would continue to host the projects of other Federal agencies such as DoD and DHS, as well as other Federal, state, and local government agencies and nongovernmental organizations. Projects such as treaty verification activities,
nonproliferation projects, counterproliferation research and development, and counterterrorism projects
would include localized on-the-ground operations, including explosives detonations, military hardware
field testing, chemical and biological simulant releases, and personnel field training. These operations
would occur in various locations at the NNSS, many in remote, high-desert environments, and could
potentially disturb native vegetation; however, the areas used for these activities have been used for
similar activities for many years, and no additional land areas would be affected.

5.1.7.1.1.2 Environmental Management Mission

Under the No Action Alternative, up to 1,110 acres of land (0.14 percent of undisturbed land on the
NNSS) would be disturbed by Environmental Management Program activities, including the Project 57
(located on the Nevada Test and Training Range to the north of NNSS Area 15) and Small Boy (located
on the eastern edge of Frenchman Flat in Area 5 of the NNSS and extending onto the Nevada Test and
Training Range) sites and new groundwater characterization and monitoring wells. A significant portion
of the areas that would be disturbed under the Environmental Restoration Program is located on the
Nevada Test and Training Range. Specific impacts related to habitat disturbance are discussed for each
Environmental Management Mission program.

Waste Management Program. Under the No Action Alternative, waste management facilities would
continue to operate in Areas 5, 6, 9, 11, and 23. The Area 5 RWMC would continue to operate within the
approximately 740-acre area set aside for radioactive waste management, and approximately 190 acres of
that area would be permanently disturbed by construction of new disposal cells. When closing these
waste disposal cells, DOE/NNSA would in most if not all cases use a vegetated cap, which would, in the
long term, offset most of the habitat disturbance impacts.

All of the area that would be disturbed for the Area 5 RWMC is located within the creosote bush/white
bursage vegetation alliance in Frenchman Flat. As land is disturbed within the Area 5 RWMC, it would
be immediately managed for waste disposal purposes, and erosion of the soil would be controlled by
application of water sprays and other treatments to stabilize exposed soils. Operations within other
existing waste management facilities are not anticipated to disturb additional land and would not result in
any additional habitat loss.

Environmental Restoration Program. Under the No Action Alternative, the DOE/NNSA
Environmental Restoration Program would continue in compliance with the most recent version of the
FFACO to characterize, monitor, and remediate, as necessary, identified contaminated areas, facilities,
soils, and groundwater.

Land disturbance for Environmental Restoration Program activities would include 500 acres for new
UGTA Project groundwater characterization and monitoring wells and 420 acres for Soils Project sites. It
was assumed that about one-half (250 acres) of the disturbance for new characterization and monitoring
wells would occur on land owned or managed by others adjacent to the NNSS on the Nevada Test and
Training Range, and BLM land. Almost all of the 420 acres of land disturbance for the Soils Project sites
would occur on the Nevada Test and Training Range. For purposes of analysis and because of the close
proximity of the portions of the Nevada Test and Training Range, and BLM land that would be disturbed,
all land disturbances associated with these Environmental Restoration Program activities are included
with NNSS land disturbances.

Ground-disturbing soils remediation project activities would include onsite surveys and monitoring, soil
sampling, clean closure, and/or closure in place. Clean closure would entail mechanical removal and
disposal of contaminated soils in an NNSS LLW waste management facility (based on approved cleanup
levels). Closure in place would create very low levels of land disturbance and would consist of
establishing appropriate administrative controls (land use restrictions) and/or physical barriers (fences) to
control access to contaminated sites and allowing radioactive decay to gradually decrease the level of
contamination. Up to approximately 420 acres of land on the NNSS and Nevada Test and Training Range
(exclusive of the TTR) would be affected if clean closure were selected for remediating both the
Project 57 and Small Boy sites. Those areas have been previously disturbed, although they continue to support native vegetation and are used by wildlife. The Project 57 site consists of about 100 acres of four-wing saltbush (*Atriplex canescens*)/Anderson’s wolfberry vegetation, and the Small Boy site consists of about 320 acres of shadscale saltbush/rabbit thorn or Shockley’s desert thorn (*Atriplex confertifolia-Lycium pallidum* or *Lycium shockleyi*) vegetation in the eastern portions of Frenchman Flat. Both the Project 57 and Small Boy sites are in areas that would be considered sensitive habitats due to high susceptibility of their soils to wind erosion if disturbed.

Development of up to 50 groundwater characterization and monitoring wells on the NNSS and Nevada Test and Training Range would disturb up to 500 acres, approximately one-half of which are located on the Nevada Test and Training Range in blackbrush (*Coleogyne ramosissima*)/Nevada jointfir (*Ephedra nevadensis*), spiny mendor (Menodora spinescens)/Anderson’s wolfberry, Anderson’s wolfberry/spiny hopsage (*Grayia spinosa*), and four-wing saltbush/Anderson’s wolfberry vegetation associations, with the balance located on the NNSS in primarily blackbrush shrubland and Nevada jointfir shrubland. These are all common vegetation alliances and associations. On the NNSS, the blackbrush and Nevada jointfir shrubland alliances are the first and fifth most prevalent vegetation alliances, respectively, accounting for a combined 286,221 acres. Because the locations of the characterization and monitoring wells are not known at this time, it is not possible to know for certain, but it is very possible that some of them could be located in habitats that would be considered pristine, sensitive, or diverse. The amount of vegetation and soil that would be disturbed is not expected to reduce the viability of any of the potentially affected vegetation alliances or associations or have a substantial negative impact on biodiversity, or wetlands and springs in these areas. In the longer term, Environmental Restoration Program activities at the NNSS would have a beneficial effect on biological resources because contamination would be removed or stabilized, some buildings would be removed, and areas would be revegetated with native plant species appropriate to the sites, thus improving existing habitat conditions.

5.1.7.1.1.3 Nondefense Mission

Under the No Action Alternative, DOE/NNSA would continue maintaining and repairing existing infrastructure and taking measures to improve energy efficiency and conservation. These activities may create some minor disturbances at existing facilities, but would not disturb previously undisturbed land. Therefore, there would be no new or additional impacts on vegetation. All new land disturbances related to the Nondefense Mission (2,650 acres) would be related to potential construction of a 240-megawatt commercial solar power generation facility in Area 25. This project is discussed below under the Conservation and Renewable Energy Program.

General Site Support and Infrastructure Program. Under the No Action Alternative, small projects to maintain and repair NNSS facilities would occur at existing facilities in previously disturbed areas and are not anticipated to directly affect biological resources.

Conservation and Renewable Energy Program. Measures taken to increase energy efficiency, fuel efficiency, and water conservation would occur at existing facilities and are not anticipated to directly affect biological resources.

Under the No Action Alternative, DOE/NNSA would allow construction of up to 240 megawatts of commercial solar power generation that would permanently disturb about 2,650 acres of creosote bush/white bursage habitat in Area 25 and nearby off-NNSS areas (for transmission line construction). Much of the area of potential disturbance, primarily north and west of Lathrop Wells Road, is considered sensitive habitat. The entire facility would be graded and stabilized to minimize soil erosion and would be maintained in an unvegetated condition. Additionally, access roads and utilities would be constructed to support the facilities. There are approximately 150,800 acres of creosote bush/white bursage habitat on the NNSS. Disturbance of up to 2,650 acres for a commercial solar power generation facility and associated transmission lines would affect about 1.8 percent of the habitat type on the NNSS and only about 0.3 percent of overall undisturbed land. The amounts of vegetation and soil that would be disturbed
are not expected to reduce the viability of creosote bush/white bursage vegetation in the region or have a substantial negative impact on biodiversity in this area. Approximately 700 acres of the area that would be disturbed by construction of a 240-megawatt commercial solar power generation facility would be within an area considered sensitive habitat because it contains vegetation associations that recover very slowly from direct disturbance and is susceptible to wind erosion. However, the area would be graded and stabilized to minimize soil erosion and would be maintained in an unvegetated condition; thus, there would be no additional impact associated with disturbance of this sensitive habitat.

Other Research and Development Programs. The Nevada National Environmental Research Park in Area 5 contains two existing facilities used to support outside scientific research on long-term environmental health. Future research programs could include activities such as habitat reclamation and remediation, which could potentially cause impacts on vegetation and soils due to ground disturbance and increased access to previously undisturbed land. No such activities are being proposed at this time.

5.1.7.1.2 Impacts on Wildlife

Under the No Action Alternative, most impacts on wildlife from DOE/NNSA activities would be temporary. Many of those temporary disturbances would occur in areas adjacent to previously disturbed areas that may possess marginal value as wildlife habitat, such as off-road vehicular traffic associated with Office of Secure Transportation training and exercises, which would occur within about 100 feet of the edge of existing roads. During periods of any human activity in an area, larger and more mobile species of wildlife would leave the area during the period of disturbance but smaller and less mobile species may be subject to direct injury and mortality. In addition to these direct effects, disturbance of vegetation, particularly in large blocks, could adversely impact wildlife populations through loss and fragmentation of cover, breeding, traveling, and foraging habitat. However, disturbance of up to 4,460 acres of habitat would represent only about 0.56 percent of undisturbed habitat on the NNSS, with the largest contiguous area of land disturbance being 2,650 acres for a commercial solar power generation facility. In addition, predation could increase because construction may attract additional predators, such as ravens or coyotes, as wildlife is displaced from protective cover to uncovered habitat.

Noise associated with DOE/NNSA activities would impact wildlife in various ways, depending on the nature and location of the noise source and the particular species of wildlife. Where noises from human activities are fairly constant, such as the Area 5 RWMC, animals become accustomed and use the habitat around the noise source in accordance with their individual comfort levels. For some species, such as coyotes, human occupation of an area may be an opportunity for foraging. Other species are less adaptable to human presence. Sudden loud noises such as explosives detonations could startle wildlife, resulting in impacts on certain species. If sudden loud noises were to occur near vital water sources, they could cause large and mobile species of wildlife to avoid them until the disturbance subsides, which could affect animal species that depend on those water sources. Most DOE/NNSA activities that would create sudden loud noises or other large disturbances that would cause wildlife to flee an area are sporadic and of such short duration that it is doubtful they would cause significant interference with wildlife activities, including foraging and visiting drinking water sources. Nesting birds may flush from their nests in response to a sudden loud noise; however, based on experience at Cape Canaveral, nesting birds respond to Space Shuttle launch noise by flying away from the nests and then returning within a few minutes (FAA 2002).
5.1.7.1.3 Impacts on Sensitive and Protected Species

Based on previous studies, data are available to delineate desert tortoise habitat on the NNSS (Rautenstrauch et al. 1994) (see Chapter 4, Figure 4–24) and to make quantitative estimates of potential impacts on desert tortoises (DOE/NV 1998b) at the alternative, mission, and program levels for proposed activities at the NNSS. Similar detailed data are not available for other sensitive and protected species that inhabit the NNSS. For those species, the impact assessment is qualitative and only at the alternative level.

Table 5–30 displays the potential impacts on the desert tortoise under the No Action Alternative. Overall, implementation of the No Action Alternative, including all DOE/NNSA activities and a 240-megawatt commercial solar power generation facility, would result in disturbance of up to 3,705 acres of desert tortoise habitat (about 1.2 percent of remaining tortoise habitat on the NNSS) and impact 133 to 213 tortoises. DOE/NNSA activities under the No Action Alternative would disturb a total of 1,055 acres of tortoise habitat; this represents about 0.3 percent of the remaining tortoise habitat on the NNSS. Disturbance of this amount of habitat and associated activities would result in a potential take of 8 to 29 tortoises due to projects and activities, as well as up to 125 on NNSS roads for a total of 133 to 172, all by harassment; however, as noted earlier in this section, based on operating experience at the NNSS since 1992, an average of no more than 1 desert tortoise is expected to be taken by injury or mortality due to vehicle collisions each year. These values do not exceed the total threshold limits (2,710 acres and 194 tortoises) of the 2009 Biological Opinion (USFWS 2009a). Potential impacts on the desert tortoise from development of a commercial solar power generation facility under the No Action Alternative are addressed below under the Conservation and Renewable Energy Program.

In the following discussion of potential impacts on desert tortoises resulting from missions and programs under the No Action Alternative, if the level of incidental take is reached and anticipated to be exceeded during the course of actions, such an incidental take would represent new information requiring reinitiation of consultation with USFWS and review of the reasonable and prudent measures in the 2009 Biological Opinion (USFWS 2009a).

Compared to most other special status animal species on the NNSS, the western burrowing owl (Athene cunicularia hypugaea) requires greater management attention because it occupies the flat, open valley bottoms in each of the three ecoregions found on the NNSS; primarily Yucca Flat (Transition Ecoregion), Frenchman Flat, Jackass Flats (both Mojave Desert Ecoregion), and near Bunkboard Mesa (Great Basin Desert Ecoregion). Except for Bunkboard Mesa, these are areas on the NNSS where most ongoing activities occur and most future activities are likely to occur (Hall et al. 2003). DOE/NNSA NSO activities, such as emplacing culverts and pipes, road building, digging pits and channels, and mound building, have benefited the burrowing owl directly by increasing the number of available burrows for owls to use and indirectly by altering the natural habitat so it is more suitable for owls (Hall et al. 2003). Data developed by Hall et al. 2003 indicate that creation of a buffer area of about 60 meters around active burrowing owl burrows would preclude flushing birds by either human pedestrian or vehicular activity. Because the burrowing owl is protected under the Migratory Bird Treaty Act, DOE/NNSA enforces this buffer area around active burrows.

Other sensitive and protected bird species would be primarily impacted by disturbance during the nesting season. If active nests of sensitive and otherwise protected bird species were located during pre-project biological surveys, DOE/NNSA would avoid impacting the nests until the young birds fledge. In compliance with the Migratory Bird Treaty Act, if it were imperative to disturb an active nest of any bird species protected under the act, DOE/NNSA would consult with USFWS prior to taking any action that would affect the nest or nesting birds. For example, in 2009, three nests with chicks were protected from harm, including one Say’s phoebe nest with four chicks and two nests of unknown species, each with chicks. Activities that may have caused harm to these nests were postponed until the chicks fledged and the nests were empty (DOE/NV 2010).
Table 5–30 Potential Impacts on Desert Tortoises Under the No Action Alternative

<table>
<thead>
<tr>
<th>Mission/Program</th>
<th>Primary Locations of Activities</th>
<th>Area of Desert Tortoise Habitat Disturbance (acres)</th>
<th>Maximum Desert Tortoise Abundance (number per square mile)</th>
<th>Number of Desert Tortoises Affected<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpile Stewardship and Management Program</td>
<td>Yucca Flat and Frenchman Flat</td>
<td>280<sup>c</sup>
 <500<sup>c</sup></td>
<td>Low (10–45)</td>
<td>4 to 20
 <10<sup>c</sup></td>
</tr>
<tr>
<td>Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs</td>
<td>Frenchman Flat, Yucca Flat, and Mercury Valley</td>
<td>15
 <10<sup>d</sup></td>
<td>Low (10–45)</td>
<td>0 to 1</td>
</tr>
<tr>
<td>Work for Others Program</td>
<td>Yucca Flat, Frenchman Flat, Mercury Valley, and Fortymile Canyon</td>
<td>None
 <500<sup>e</sup></td>
<td>N/A</td>
<td>N/A
 <10<sup>e</sup></td>
</tr>
<tr>
<td>National Security/Defense Mission Total</td>
<td></td>
<td>295
 <1,000<sup>f</sup></td>
<td></td>
<td>4 to 21
 <20<sup>f</sup></td>
</tr>
<tr>
<td>Waste Management</td>
<td>Frenchman Flat</td>
<td>190
 <100<sup>g</sup></td>
<td>Very Low (0–10)</td>
<td>0 to 3</td>
</tr>
<tr>
<td>Environmental Restoration – Soils Project</td>
<td>Frenchman Flat, and, Nevada Test and Training Range</td>
<td>320<sup>d</sup>
 <10<sup>d</sup></td>
<td>Very Low (0–10)</td>
<td>0 to 5
 <2<sup>d</sup></td>
</tr>
<tr>
<td>Environmental Restoration – Underground Test Area Project</td>
<td>Yucca Flat and Frenchman Flat</td>
<td>250<sup>e</sup>
 <10<sup>e</sup></td>
<td>Low (10–45)</td>
<td>4 to 18<sup>e</sup></td>
</tr>
<tr>
<td>Environmental Management Mission Total</td>
<td></td>
<td>760
 <110<sup>h</sup></td>
<td></td>
<td>4 to 26
 <4<sup>h</sup></td>
</tr>
<tr>
<td>General Site Support and Infrastructure</td>
<td>NNSS</td>
<td>None
 <100<sup>i</sup></td>
<td>N/A</td>
<td>N/A
 <10<sup>i</sup></td>
</tr>
<tr>
<td>Renewable Energy (DOE/NNSA)</td>
<td>NNSS</td>
<td>None
 <1500<sup>j</sup></td>
<td>N/A</td>
<td>N/A
 <35<sup>j</sup></td>
</tr>
<tr>
<td>Nondefense Mission Total</td>
<td></td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nonprogrammatic Takes on NNSS Roads</td>
<td>NNSS</td>
<td>None</td>
<td>125</td>
<td>125<sup>k</sup></td>
</tr>
<tr>
<td>Total DOE/NNSA</td>
<td></td>
<td>1,055
 <2,710<sup>l</sup></td>
<td>133 to 172</td>
<td>133 to 194<sup>l</sup></td>
</tr>
<tr>
<td>Commercial Solar Power Generation Facility</td>
<td>Jackass Flats</td>
<td>2,650<sup>f</sup>
 <2,400<sup>l</sup></td>
<td>Very Low (0–10)</td>
<td>0 to 41</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3,705</td>
<td>133 to 213</td>
<td>133 to 213</td>
</tr>
</tbody>
</table>

N/A = not applicable; NNSS = Nevada National Security Site.

^a Desert tortoise abundance class from Woodward et al. 1998.

^b Acres of Disturbance/640 × Maximum Desert Tortoise Abundance range

^c Dynamic experiments in boreholes, drillback operations, and one-half of high-explosives experiments and Office of Secure Transportation training proposed under the No Action Alternative would be located outside of the range of the desert tortoise and are not included in this table.

^d A total of 420 acres would be disturbed at Soils Project sites on the NNSS and Nevada Test and Training Range, but only the Small Boy site (320 acres) in the Frenchman Flat area would be within desert tortoise habitat.

^e A total of 10 acres of tortoise habitat disturbance and 2 takes by harassment are allowable for all Environmental Restoration Program activities at the NNSS under the Final Programmatic Biological Opinion for Implementation of Actions Proposed on the Nevada Test Site, Nye County, Nevada.

^f 2,400 acres would be required for a commercial solar power generation facility with 240 megawatts capacity, about 250 acres would be used for transmission line right-of-way to connect the facility to the main transmission grid.
Impacts on the western red-tailed skink (*Eumeces gilberti rubricaudatus*), a potentially sensitive species of reptile, would be small because it is widespread regionally and occupies small pockets of isolated habitat in the western and northwestern portions of the NNSS (NSTec 2010j) that would not be subject to land disturbance under the No Action Alternative. The western red-tailed skink may be found in dry rocky areas, but tends to be more abundant in rocky areas near intermittent or permanent streams and springs (Stebbins 2003; NSTec 2007).

At least 13 sensitive species of bats are known to occur at the NNSS or in adjacent areas. Tunnels, abandoned mine shafts and adits, natural caves and alcoves, and buildings at the NNSS may be used by bats as maternity roosts, night roosts, day roosts, and foraging sites (NSTec 2010j). Closure of unused tunnels and abandoned mine features could impact bats by reducing habitat necessary for them to reproduce and raise young and to fulfill other functions important to their survival. Prior to closing such facilities, the DOE/NNSA NSO conducts surveys and determines the level and type of use, if any, of these sites and installs bat gates and other means to ensure adequate closure and still provide access for bats. When bats are found occupying buildings, they are captured and relocated to other areas of the NNSS. These measures reduce any impacts on bats from DOE/NNSA activities at the NNSS to very low and are largely beneficial to the various species of bats that inhabit the NNSS.

Appendix F, Figure F–1, shows the known locations of sensitive plant populations on the NNSS. DOE/NNSA routinely monitors the populations of these species to assess plant density and vigor and to identify any threats or impacts on the species. As new populations of sensitive plants are found on the NNSS, maps and databases are updated to ensure they are afforded the appropriate protection under Federal and state law. DOE/NNSA uses this information in planning projects to avoid impacting sensitive plant species. In addition to regular monitoring, biological surveys are conducted before any potential ground-disturbing activities, and if previously unknown populations of sensitive plants were discovered, DOE/NNSA would take reasonable measures to avoid those areas; however, if avoidance is not possible, there are no specified mitigation measures and the susceptible population would be lost. In this regard, it is important to note that most sensitive plant populations are located in portions of the NNSS that would be unlikely to be disturbed by any of the activities proposed under the No Action Alternative. Two sensitive species of plants occur in the valleys and would be more susceptible to being impacted: *Camissonia megalantha*, *Cymopterus ripleyi* var. *saniculoides*. Others like *Eriogonum concinnum* are growing on disturbed areas, such as road cuts and cut slopes for well pads.

5.1.7.1.3.1 National Security/Defense Mission

Land disturbance of about 295 acres for National Security/Defense Mission activities in desert tortoise habitat could result in the potential take of from 4 to 21 tortoises, all by harassment. The amount of potential land disturbance is within the threshold value given in the 2009 Biological Opinion (USFWS 2009a) for the National Security/Defense Mission (1,000 acres). The take of tortoises could marginally exceed the threshold value (20) given in the 2009 Biological Opinion for the National Security/Defense Mission.

Stockpile Stewardship and Management Program. Most Stockpile Stewardship and Management Program activities would occur in the Yucca Flat and Frenchman Flat areas of the NNSS and incur about 280 acres of potential land disturbance within desert tortoise habitat in these areas. The estimated number of tortoises taken by harassment would range from 4 to 20. The acres of potential disturbance would meet the threshold value in the 2009 Biological Opinion (USFWS 2009a), but the maximum potential take of desert tortoises would exceed the threshold value (10).

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Releases of chemicals and biological simulants would occur at many locations at the NNSS, mostly within previously disturbed areas such as NPTEC, Test Cell C, and established training areas; however up to 15 such releases may occur in undisturbed desert tortoise habitat, resulting in 15 acres of disturbance, which would impact up to 1 tortoise. The 2009 Biological Opinion (USFWS 2009a) does not include a
designation for this program area; however, biological simulant and chemical releases would result primarily from Work for Others Program activities. As such, the 15 acres of potential disturbance would be within the 500 acres allotted to the Work for Others Program, and the number of tortoises potentially taken by harassment would be well within the allowable take (10) in the 2009 Biological Opinion.

Work for Others Program. Because no new land disturbances are anticipated under the Work for Others Program, none of the parameters of the 2009 Biological Opinion (USFWS 2009a) would likely be exceeded.

5.1.7.1.3.2 Environmental Management Mission

Under the No Action Alternative, DOE/NNSA NSO Environmental Management Program activities would disturb up to 760 acres of land within desert tortoise habitat (about 0.24 percent of remaining undisturbed habitat). Environmental Management Program activities that would disturb desert tortoise habitat on the NNSS include remediation of the 320-acre Small Boy site located on the eastern edge of the NNSS in Area 5, one-half of the proposed UGTA characterization and monitoring wells (within 250 acres assumed to be located within desert tortoise habitat for purposes of this analysis), and 190 acres from land disturbance associated with waste disposal operations at the Area 5 RWMC. However, upon completion of remediation of the Small Boy site, about 320 acres of desert tortoise habitat would be restored. The potential take of desert tortoises would range from 4 to 26, all by harassment. The area of desert tortoise habitat that would be disturbed exceeds the threshold (110 acres) of the 2009 Biological Opinion (USFWS 2009a), and the potential take of tortoises could exceed the allowable take (four) of the 2009 Biological Opinion.

Waste Management Program. The Area 5 RWMC is located in Frenchman Flat, and the 1,900 acres of new land disturbance would potentially affect up to three desert tortoises, all by harassment. The acres of potential disturbance and the number of potentially affected desert tortoises would exceed the allowable take (100 acres and two tortoises) in the 2009 Biological Opinion (USFWS 2009a).

Environmental Restoration Program. The 570 acres of new land disturbance from the Soils Project (Small Boy site) and UGTA Project (new characterization and monitoring wells) would potentially affect from 4 to 23 desert tortoises, all by harassment. The acres of potential disturbance and the number of potentially affected desert tortoises would exceed the allowable take of the 2009 Biological Opinion (i.e., 10 acres and two tortoises).

5.1.7.1.3.3 Nondefense Mission

Under the No Action Alternative, DOE/NNSA Nondefense Mission activities would not disturb previously undisturbed land; however, they could cause some temporary short-term elevated noise levels in the immediate vicinity of the facilities that would temporarily disturb wildlife in the local area. Therefore, there would be no new or additional impacts on the desert tortoise. A potential solar power generation facility considered under this alternative is discussed below under the Conservation and Renewable Energy Program.

General Site Support and Infrastructure Program. Under the No Action Alternative, small projects to maintain and repair NNSS facilities would occur at existing facilities in previously disturbed areas and are not anticipated to affect desert tortoises.

Conservation and Renewable Energy Program. Measures taken to increase energy efficiency, fuel efficiency, and water conservation would occur at existing facilities and are not anticipated to affect desert tortoises.

Under the No Action Alternative, DOE/NNSA would consider allowing development of a commercial solar power generation facility on about 2,400 acres in Area 25 of the NNSS. To interconnect a commercial solar power generation facility to the electrical grid would require some construction of transmission lines. Assuming that up to 10 miles of new transmission line with a right-of-way 200 feet
wide would be needed for a solar power generation facility with 240 megawatts of capacity on the NNSS, an additional approximately 250 acres of land would be disturbed. Most of the transmission line impacts would occur off the NNSS on BLM and private land. The 240-megawatt facility would be located within the range of the desert tortoise and would permanently disturb its habitat. The number of desert tortoises potentially affected by this project would range from none to 41. This estimate is conservative because, within the portion of Area 25 where a solar power generation facility would be located, the soils tend to be too sandy to provide suitable tortoise burrow sites and there are very few, if any, tortoises actually inhabiting the area. The commercial solar power generation facility is not covered by the 2009 Biological Opinion (USFWS 2009a) and would require consultation among the project proponents, USFWS, and BLM to develop a project-specific Biological Opinion.

5.1.7.1.4 Impacts on Offsite Biota

Under the No Action Alternative, activities at the NNSS would continue at about the same levels as they have since 1996. In the southern Nevada area in the vicinity of the NNSS, there are a number of sensitive locations for plants and animals. These areas include USFWS’s Desert National Wildlife Range and Devils Hole National Wildlife Refuge and BLM’s Ash Meadows and Amargosa Mesquite Areas of Critical Environmental Concern. The potential for DOE/NNSA activities at the NNSS to impact plants and animals in areas outside of the NNSS is negligible. The primary paths for activities at the NNSS to cause impacts at these offsite areas are surface-water runoff, groundwater withdrawals and/or contamination, wildlife migration, and air emissions.

As noted in Section 5.1.6.1, there is a negligible potential for existing onsite contamination to be transported off site via surface water, or through flood events, to affect offsite areas. This would make it unlikely that DOE/NNSA activities at the NNSS would affect plants or animals in these areas through the surface-water runoff pathway.

As discussed in Section 5.1.6.2, past underground nuclear testing introduced a substantial amount of radioactive contamination into the underground environment. A portion of that contamination is available to be transported by groundwater (i.e., the hydrologic source term). If radioactive contaminants from underground nuclear testing were to reach any of the noted offsite sensitive areas via the groundwater, it could result in a significant impact on plants and animals in that area, particularly the endangered Devils Hole pupfish (Cyprinodon diabolis). As described in Chapter 4, Section 4.1.6.2, DOE/NNSA has established the UGTA Project that, working with NDEP under the FFACO, is characterizing and monitoring groundwater in areas surrounding the primary underground nuclear testing areas on the NNSS, including offsite areas, as appropriate. Based on the most current studies and state-of-the-art modeling, it is unlikely that levels of radioactive contamination from the NNSS would exceed the standards established in the FFACO in areas outside of the NNSS and Nevada Test and Training Range over the next 1,000 years (see Chapter 6, Section 6.3.6.2). Therefore, it is unlikely that radioactive contamination in the groundwater would impact any of the sensitive offsite areas or seeps, springs, or other sources of water important to wildlife and vegetation over the next 1,000 years.

Groundwater withdrawals are of particular concern as they relate to maintenance of the water level at Devils Hole, which is critical to the continued survival of the Devils Hole pupfish (NPS 2010h). Under the No Action Alternative, groundwater withdrawals at the NNSS required to support DOE/NNSA activities would not likely result in excessive drawdown of the affected aquifers, and DOE/NNSA would continue to monitor groundwater levels and adjust points of diversion, as necessary, to protect the integrity of the aquifers (see Section 5.1.6.2.1). Therefore, there would not likely be any effect on water levels at Devils Hole. If a commercial solar power generation facility were proposed in Area 25 of the NNSS, a project-specific NEPA review would be performed and the project proponent would be required to obtain a groundwater appropriation from the Nevada State Engineer for any withdrawals necessary for construction and operation of the facility. As noted in Chapter 6, Section 6.3.6.2, to protect the Devils Hole pupfish, Nevada State Engineer Order 1197 states in part, “…any applications to appropriate additional underground water and any application to change the point of diversion of an existing ground-
water right to a point of diversion closer to Devils Hole, described as being within a 25-mile radius from Devils Hole within the Amargosa Desert Hydrographic Basin, will be denied.” For any project needing a stable water supply within the area subject to Nevada State Engineer Order 1197, the developer would need to either lease or purchase water currently being pumped under an existing certified water right. As the water user can only pump up to the authorized duty of the water right, there would be no net increase in groundwater pumping within the basin. Continued implementation of Nevada State Engineer Order 1197 will help to preclude impacts on Devils Hole and the Devils Hole pupfish due to groundwater withdrawals.

Under the No Action Alternative, all emissions to the air would be within all applicable standards and would not result in adverse impacts on plants or animals at any of the sensitive offsite locations of concern.

5.1.7.2 Expanded Operations Alternative

5.1.7.2.1 Impacts on Vegetation

Under the Expanded Operations Alternative, DOE/NNSA proposed activities at the NNSS would impact native vegetation directly by clearing areas or by crushing or breaking due to vehicular or pedestrian traffic. Crushed plants may recover if they are not too severely damaged and the cause of crushing does not damage their roots. Where vegetation must be removed to accomplish the activity, even though the activity would last only a relatively short period, recovery of the site would likely take many years. In addition, removal or weakening of native vegetation would increase the opportunity for invasive and weedy species to invade the disturbed areas, which could prolong or even preclude the ability of native vegetation to recolonize the area. Some of the areas where activities would occur may be considered important habitats and are addressed, as appropriate, in this section. Table 5–1 displays estimated areas of land disturbance by alternative, mission, and program for DOE/NNSA activities and commercial and demonstration projects at the NNSS. The impacts of habitat disturbance on wildlife and sensitive and protected species under the Expanded Operations Alternative are addressed in Sections 5.1.7.2.2 and 5.1.7.2.3, respectively.

Overall, under the Expanded Operations Alternative about 3.3 percent (25,877 acres) of undisturbed habitat on the NNSS would be disturbed. Most of this disturbance would occur in Yucca Flat, Frenchman Flat, and Jackass Flats, although some activities, such as releases of chemicals and biological simulants and Office of Secure Transportation training and exercises may occur in almost any area of the NNSS. About 10,350 acres of land disturbance under the Expanded Operations Alternative would be the result of potential development of commercial solar power generation facilities (including associated transmission lines) in the Jackass Flats in Area 25 and 50 acres the result of development of a Geothermal Demonstration Project. The remaining 15,527 acres of land disturbances would be attributed to DOE/NNSA activities.

The primary vegetation alliances that would be impacted by Expanded Operations Alternative activities are creosote bush/white bursage shrubland, Nevada jointfir shrubland, saltbush shrubland, blackbrush shrubland, and burrobush/wolfberry shrubland. These vegetation alliances cover about 150,800 acres, 106,000 acres, 25,900 acres, 180,250 acres, and 20,250 acres, respectively, or a total of about 56 percent of the NNSS (DOE/NV 2000d). Because of the prevalence of the affected vegetation types on the NNSS, as well as regionally, and the geographical distribution of impacts, this level of habitat disturbance would not reduce the viability of any of the potentially affected vegetation alliances or have substantial negative impacts on biodiversity. However, some areas of creosote bush/white bursage vegetation in Frenchman Flat and blackbrush vegetation in Yucca Flat are considered sensitive habitat because the soils are particularly vulnerable to wind erosion if disturbed and require long periods to recover. DOE/NNSA would avoid activities that would disturb soils in this sensitive habitat to the extent reasonably possible.
5.1.7.2.1.1 National Security/Defense Mission

Up to 13,455 acres of vegetation (about 1.7 percent of undisturbed land on the NNSS) would be impacted by National Security/Defense Mission projects and activities under the Expanded Operations Alternative. A number of new facilities for supporting the National Security/Defense Mission programs are proposed under the Expanded Operations Alternative. Some National Security/Defense Mission activities that occur in portions of Frenchman Flat could impact sensitive habitat, but those habitat areas would be avoided if reasonably possible.

Stockpile Stewardship and Management Program. With the exception of a potential underground nuclear test (if so directed by the President), some explosives experiments, depleted uranium experiment sites, drillback operations, and Office of Secure Transportation training and exercises, all Stockpile Stewardship and Management Program activities would occur at existing facilities and would not cause any new or additional direct impacts on biological resources. Stockpile Stewardship and Management Program activities that would occur outside of existing facilities would likely affect vegetation directly due to disturbance of up to about 12,805 acres of land, which represents about 1.6 percent of undisturbed land on the NNSS.

Development of the proposed training facility for the Office of Secure Transportation would displace 10,000 acres of blackbrush and Nevada jointfir shrublands along the western margins of Yucca Flat. These two vegetation alliances cover about 286,250 acres of the NNSS. The proposed training facility would disturb about 3.5 percent of the combined area covered by these two vegetation alliances on the NNSS. The remaining 2,805 acres of potential land disturbance attributed to the Stockpile Stewardship and Management Program under the Expanded Operations Alternative would be primarily located in the Yucca Flat and Frenchman Flat areas.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. The NNSS would provide research, development, and training in support of the Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs, including arms control and improvised nuclear device dispositioning and forensics activities. To provide increased support to these activities, DOE/NNSA would develop an Arms Control Treaty Verification Test Bed and an Urban Warfare Complex at the NNSS. These new facilities would result in about 200 acres of permanent land disturbance in the Frenchman Flat and Yucca Flat areas and would most likely affect one or more of the following vegetation alliances: creosote bush/white bursage, saltbrush, Nevada jointfir, blackbrush, and burrobush/wolfberry. As under the No Action Alternative, about 15 acres of land would be temporarily disturbed for experiments involving releases of biological simulants and chemicals.

Other arms control and counterterrorism activities would include training exercises in large, remote areas that involve the use of explosives and live fire. Areas where these exercises would be conducted would be accessible to pedestrians and on- and off-road vehicles; however, areas used for these activities have been used for similar activities for many years and no additional land areas would be affected. These activities are expected to disturb native vegetation, but are not expected to reduce the viability of vegetation, including special status plant species.

Work for Others Program. Under the Expanded Operations Alternative, DOE/NNSA would continue to host the projects of other Federal agencies such as DoD and DHS, as well as other Federal, state, and local government agencies and nongovernmental organizations. Projects such as treaty verification activities, nonproliferation projects, counterproliferation research and development, and counterterrorism projects would include localized on-the-ground operations, including explosives detonations, military hardware field testing, chemical and biological simulant releases, and personnel field training. These operations would occur in various locations at the NNSS, many in remote, high-desert environments, and could potentially disturb native vegetation; however, the areas used for these activities have been used for similar activities for many years, and no additional land areas would be affected.

5-127
About 15 acres of land would be disturbed by construction of new support buildings at existing aviation facilities on the NNSS. About 20 acres of land would be disturbed in Area 15 of the NNSS for radioactive tracer experiments. In addition, as part of its Work for Others Program, DOE/NNSA would permanently disturb about 400 acres of land for various facilities, such as an Improvised Explosives Device Research and Defeat Facility and Active Interrogation Facilities. At this time, there are no specific plans or locations for these facilities, but they would most likely be located in Frenchman Flat or Yucca Flat, potentially affecting the same vegetation alliances as noted under Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs, above. Some areas of sensitive habitat may be impacted, but these areas would be avoided to the extent possible.

5.1.7.2.1.2 Environmental Management Mission

Under the Expanded Operations Alternative, up to 1,555 acres of land (about 0.2 percent of undisturbed land on the NNSS) would be disturbed, for Environmental Management activities, over the next 10 years. Specific impacts related to habitat disturbance are discussed for each Environmental Management program.

Waste Management Program. Under the Expanded Operations Alternative, waste management facilities would continue to operate in Areas 5, 6, 9, 11, and 23. The Area 5 RWMC would continue to operate within the approximately 740-acre area set aside for radioactive waste management, and approximately 600 acres of that area would be permanently disturbed by construction of new disposal cells. If necessary, DOE/NNSA would develop two new sanitary waste facilities at the NNSS. One would be located in Mercury Valley and would permanently disturb up to 15 acres of Nevada jointfir shrubland. A second sanitary waste facility would be developed in Area 25 to accept waste from Environmental Restoration demolition projects under the Industrial Sites Project. The new Area 25 sanitary waste disposal facility would permanently disturb about 20 acres of creosote bush/white bursage shrubland. Operations within other existing waste management facilities are not anticipated to disturb additional land and would not result in any additional habitat loss.

Environmental Restoration Program. Under the Expanded Operations Alternative, the DOE/NNSA Environmental Restoration Program would continue in compliance with the most recent version of the FFACO to characterize, monitor, and remediate, as necessary, identified contaminated areas, facilities, soils, and groundwater. Impacts on vegetation from these activities would be the same as under the No Action Alternative.

5.1.7.2.1.3 Nondefense Mission

Under the Expanded Operations Alternative, DOE/NNSA Nondefense Mission activities would disturb up to 517 acres of previously undisturbed land; about 467 acres for the rebuild of the 138-kilovolt electric transmission line on the NNSS and about 50 acres for a proposed 5-megawatt photovoltaic electrical generation facility in Area 6. One or more potential commercial solar power generation facilities and a potential Geothermal Demonstration Project considered under this alternative are discussed below under the Conservation and Renewable Energy Program.

General Site Support and Infrastructure Program. DOE/NNSA would continue to conduct small projects to maintain and repair NNSS facilities in previously disturbed areas that are not anticipated to directly affect vegetation. A proposed rebuild of the existing 138-kilovolt transmission line between Mercury Substation in the south and Valley Substation in the northern part of the NNSS would disturb an estimated 467 acres of vegetation. Most of that disturbance would be from crushing vegetation due to vehicular access, with only a small area around the base of each transmission line structure, and some new access roads resulting in the only areas that would be cleared of vegetation. Being a linear project, it would affect a large number of different vegetation alliances and associations, but would only affect an important habitat in Frenchman Flat, where it would cross sensitive creosote bush/white bursage shrubland. Applications of water sprays and other measures during construction would reduce wind erosion in this sensitive habitat.
Conservation and Renewable Energy Program. Measures taken to increase energy efficiency, fuel efficiency, and water conservation would occur at existing facilities and are not anticipated to directly affect biological resources.

DOE/NNSA proposes to construct, operate, and maintain a 5-megawatt photovoltaic solar power generation facility in Area 6, on Yucca Flat. The proposed facility would result in permanent disturbance to about 50 acres of saltbrush shrubland and would not affect any important habitats on the NNSS. There are about 25,900 acres of saltbrush shrubland on the NNSS (DOE/NV 2000d), of which the proposed photovoltaic solar power generation facility would impact about 0.2 percent.

Under the Expanded Operations Alternative, DOE/NNSA would host a Geothermal Demonstration Project. The potential location for such a facility is unknown, but would likely be located in one of the areas identified as having potential hot dry rocks in Areas 10, 12, 15, 18 or 25 (see Figure A–2 in Appendix A). Up to about 50 acres of vegetation would be disturbed for development of a Geothermal Demonstration Project, but it is not possible at this time to determine the specific impacts.

Under the Expanded Operations Alternative, DOE/NNSA would allow construction of one or more commercial solar power generation facilities with up to 1,000 megawatts of generating capacity. Development of these facilities and associated electrical transmission lines to interconnect with the main transmission grid would permanently disturb about 10,000 acres and 300 acres, respectively, of creosote bush/white bursage habitat in Area 25 and other vegetation alliances in nearby offsite areas. Much of the area of potential disturbance, primarily north and west of Lathrop Wells Road, is considered to be sensitive habitat due to susceptibility of the soils to wind erosion. However, because the entire facility would be graded and stabilized to minimize soil erosion and would be maintained in an unvegetated condition, there would be no additional impact associated with disturbance of this sensitive habitat. Disturbance of up to 10,000 acres on the NNSS (300 acres of disturbance would be off of the NNSS for transmission line construction) for commercial solar power generation facilities would affect about 1.3 percent of undisturbed land and about 6.6 percent of creosote bush/white bursage shrubland on the NNSS. The amount of vegetation and soil that would be disturbed is not expected to reduce the viability of creosote bush/white bursage vegetation in the region or have a substantial negative impact on biodiversity in this area.

Other Research and Development Programs. The Nevada National Environmental Research Park in Area 5 contains two existing facilities used to support outside scientific research on long-term environmental health. Future research programs could include activities such as habitat reclamation and remediation, which could potentially cause impacts on vegetation and soils due to ground disturbance and increased access to previously undisturbed land. No specific activities are proposed at this time.

5.1.7.2.2 Impacts on Wildlife

Under the Expanded Operations Alternative, most impacts on wildlife from DOE/NNSA activities would be sporadic and short term. Many of those disturbances would occur in areas adjacent to previously disturbed areas that may possess marginal value as wildlife habitat, such as off-road vehicular traffic associated with Office of Secure Transportation training and exercises, which would occur within about 100 feet of the edge of an existing road. During periods of any human activity in an area, larger and more mobile species of wildlife would leave the area during the period of disturbance, but smaller and less mobile species may be subject to direct injury and mortality. In addition to these direct effects, loss of large blocks of habitat, such as for commercial solar power generation facilities or the Office of Secure Transportation training area, could adversely impact wildlife populations through loss and fragmentation of cover, breeding, traveling, and foraging habitat. In addition, predation could increase because construction and other disturbances may attract predators, such as ravens and coyotes, as wildlife is displaced from protective cover to uncovered habitat.

Noise associated with DOE/NNSA activities would impact wildlife in various ways, depending on the nature and location of the noise source and the particular species of wildlife. Where noises from human
activities are fairly constant, such as at the Area 5 RWMC, animals become accustomed and use the habitat around the noise source in accordance with their individual comfort levels. For some species, such as coyotes, human occupation of an area may be an opportunity for foraging on trash. Other species are less adaptable to human presence. Sudden loud noises such as explosives detonations could startle wildlife, resulting in impacts on certain species. If sudden loud noises were to occur near vital water sources, they could cause large and mobile species of wildlife to avoid them until the disturbance subsides, which could affect animal species that depend on those water sources. Most DOE/NNSA activities that would create sudden loud noises or other large disturbances that would cause wildlife to flee an area are sporadic and of such short duration that it is doubtful that they would cause significant interference with wildlife activities, including foraging and visiting drinking water sources. Nesting birds may flush from their nests in response to a sudden loud noise; however, based on experience at Cape Canaveral, nesting birds respond to Space Shuttle launch noise by flying away from the nests and then returning within a few minutes (FAA 2002).

In addition to these general impacts on wildlife, under the Expanded Operations Alternative, DOE/NNSA would conduct some activities under the Stockpile Stewardship and Management Program that could have additional impacts. Most Stockpile Stewardship and Management Program activities would continue to occur at existing facilities. At locations other than BEEF within the Nuclear and High Explosives Test Zone on the NNSS, the amount of explosives that may be used in experiments would be increased to 120,000 pounds of TNT-equivalent explosives. In addition, up to three 40-acre areas would be established in Areas 2, 4, 12, and 16 for conducting explosives experiments involving depleted uranium. Use of larger amounts of explosives at locations other than BEEF would result in a greater amount of noise and increase the area in which wildlife would be startled.

Use of depleted uranium in experiments with explosives would deposit depleted uranium particles in the soil in a localized area. Because depleted uranium is a low-activity, alpha-emitting radioactive material, it would have to be internalized by wildlife to induce radiologic effects (USAF 2006d). Because of its high density, the air transport of depleted uranium is generally limited to relatively small particles, and most of the depleted uranium dust would be deposited within a distance of 100 meters from the source (EPA 1999). In general, depleted uranium deposited by airborne transport would be present on or near the soil surface, but would show minimal uptake by plant roots. Depleted uranium is not effectively transported through the food chain because low-level organisms tend to excrete soluble uranium species quickly (Littleton 2006). For this reason, the main pathways for incorporation into an organism would be inhalation and dermal absorption. Dermal contact is considered a relatively unimportant type of exposure because little of the depleted uranium would pass across the skin into the blood. However, depleted uranium could enter systemic circulation through open wounds or from embedded fragments (WHO 2001). Inhalation is the most likely pathway for depleted uranium to be internalized in wildlife. In humans, inhaled depleted uranium particles that reside in the lungs for long periods may damage lung cells and increase the possibility of lung cancer after many years (Littleton 2006). Smaller species of mammals and reptiles and animals that live in burrows would be most susceptible to inhaling depleted uranium particles. However, development of most cancers, including lung cancer, requires a number of years, and the majority of smaller/burrowing species do not live long enough for such cancers to develop. For instance, the life span of burrowing owls is less than 10 years.

5.1.7.2.3 Impacts on Sensitive and Protected Species

Based on previous studies, data are available to delineate desert tortoise habitat on the NNSS (Rautenstrauch et al. 1994) (see Chapter 4, Figure 4–24) and to make quantitative estimates of potential impacts on desert tortoises (DOE/NV 1998b) at the alternative, mission, and program levels for proposed activities at the NNSS. Similar detailed data are not available for other sensitive and protected species that inhabit the NNSS. For those species, the impact assessment is qualitative and only at the alternative level.
Table 5–31 displays the potential impacts on the desert tortoise under the Expanded Operations Alternative. Overall, implementation of the Expanded Operations Alternative, including all DOE/NNSA activities and one or more commercial solar power generation facilities with a 1,000-megawatt combined capacity, would result in disturbance of up to 13,760 acres of desert tortoise habitat (about 4.3 percent of remaining tortoise habitat on the NNSS) and potentially affect 163 to 346 tortoises (this estimate includes up to 125 tortoises taken by harassment on NNSS roads). DOE/NNSA activities would disturb a total of 3,370 acres of desert tortoise habitat (about 1 percent of the remaining tortoise habitat on the NNSS) and result in a potential take ranging from 38 to 60 tortoises due to DOE/NNSA project-related activities, as well as up to 125 on NNSS roads, for a total of 163 to 185, all by harassment. As noted under the No Action Alternative, based on DOE/NNSA operating experience at the NNSS since 1992, all takes resulting from DOE/NNSA project activities would be by harassment, with no more than one desert tortoise per year expected to be taken by injury or mortality due to non-project/activity-related vehicle collisions. Although the area of tortoise habitat that would be affected exceeds the threshold (2,710 acres) of the 2009 Biological Opinion (USFWS 2009a), the number of tortoises taken would not exceed the overall allowable takes (194 tortoises). Potential impacts on the desert tortoise from development of one or more commercial solar power generation facilities under the Expanded Operations Alternative are addressed below under the Conservation and Renewable Energy Program.

Under the Expanded Operations Alternative, DOE/NNSA would continue to implement protective measures for sensitive species of plants and animals, as described under the No Action Alternative. Although the level of activities would be greater than under the No Action Alternative, the protective measures would greatly reduce the potential for adversely impacting any sensitive species, such as the burrowing owl, other migratory bird species, or bats. Because there would be a greater amount of habitat disturbance in NNSS valleys under the Expanded Operations Alternative, sensitive plant species that inhabit the valley floors, such as Camissonia megalantha, Cymopterus ripleyi var. saniculoides would be subject to more impact if avoidance is not possible.

In the following program-level analyses under the Expanded Operations Alternative, take values that exceed the threshold limits of the 2009 Biological Opinion are noted. If the level of incidental take is reached or anticipated to be exceeded during the course of actions, such an incidental take would represent new information requiring reinitiation of consultation with USFWS and review of the reasonable and prudent measures in the 2009 Biological Opinion.

5.1.7.2.3.1 National Security/Defense Mission

Under the Expanded Operations Alternative, National Security/Defense Mission activities could result in disturbance of up to 1,930 acres of desert tortoise habitat and the potential take of from 30 to 136 tortoises due to projects and activities, all by harassment. This take would exceed the threshold values (1,000 acres and 20 tortoises) given in the 2009 Biological Opinion (USFWS 2009a) for the National Security/Defense Mission.

Stockpile Stewardship and Management Program. Most Stockpile Stewardship and Management Program activities would occur in the Yucca Flat and Frenchman Flat areas of the NNSS and incur about 1,280 acres of potential land disturbance within desert tortoise habitat in these areas. The estimated number of tortoises taken by harassment would range from 20 to 90. The acres of potential disturbance and the consequent potential take of desert tortoises would exceed the allowable take (500 acres and 10 tortoises) in the 2009 Biological Opinion (USFWS 2009a).

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Under the Expanded Operations Alternative, releases of chemicals and biological simulants that would occur outside of existing developed areas would temporarily disturb up to 15 acres of land during the next 10 years and construction of an Arms Control Verification Test Bed and a mock urban complex would permanently disturb up to 200 acres of land. The 2009 Biological Opinion (USFWS 2009a) does not include a
designation for this program area; however, the land-disturbing activities of this program are closely associated with the Work for Others Program and are included in the discussion of that program below.

Table 5–31 Potential Impacts on Desert Tortoises Under the Expanded Operations Alternative

<table>
<thead>
<tr>
<th>Mission/Program</th>
<th>Primary Locations of Activities</th>
<th>Area of Desert Tortoise Habitat Disturbance (acres)</th>
<th>Maximum Desert Tortoise Abundance (number per square mile)</th>
<th>Number of Desert Tortoises Affected b</th>
<th><allowable take></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpile Stewardship and Management</td>
<td>Yucca Flat and Frenchman Flat</td>
<td>1,280<sup>c</sup></td>
<td>Low (10–45)</td>
<td>20 to 90</td>
<td><500></td>
</tr>
<tr>
<td>Nuclear Emergency Response, Nonproliferation,</td>
<td>Frenchman Flat, Yucca Flat, and Mercury Valley</td>
<td>215</td>
<td>Low (10–45)</td>
<td>3 to 15</td>
<td><10></td>
</tr>
<tr>
<td>and Counterterrorism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work for Others</td>
<td>Yucca Flat, Frenchman Flat, Mercury Valley, and</td>
<td>435</td>
<td>Low (10–45)</td>
<td>7 to 31</td>
<td><500></td>
</tr>
<tr>
<td></td>
<td>Fortymile Canyon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Security/Defense Mission Total</td>
<td></td>
<td>1,930<sup>c</sup></td>
<td></td>
<td>30 to 136</td>
<td><1,000></td>
</tr>
<tr>
<td>Waste Management</td>
<td>Frenchman Flat, Mercury Valley, and Jackass Flats</td>
<td>635</td>
<td>Very Low (0–10)</td>
<td>0 to 10</td>
<td><100></td>
</tr>
<tr>
<td>Environmental Restoration – Soils Project</td>
<td>Frenchman Flat, and Nevada Test and Training Range</td>
<td>320<sup>d</sup></td>
<td>Very Low (0–10)</td>
<td>0 to 5</td>
<td><100></td>
</tr>
<tr>
<td>Environmental Restoration – Underground Test</td>
<td>Yucca Flat and Frenchman Flat</td>
<td>250<sup>e</sup></td>
<td>Low (10–45)</td>
<td>4 to 18<sup>e</sup></td>
<td></td>
</tr>
<tr>
<td>Area Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Management Mission Total</td>
<td></td>
<td>1,205<sup>c</sup></td>
<td></td>
<td>4 to 33<sup>c</sup></td>
<td><110></td>
</tr>
<tr>
<td>General Site Support and Infrastructure</td>
<td>Frenchman Flat, Mercury Valley, and Yucca Flat</td>
<td>235</td>
<td>Low (10–45)</td>
<td>4 to 17</td>
<td><100></td>
</tr>
<tr>
<td>Renewable Energy (DOE/NNSA)</td>
<td>None</td>
<td></td>
<td>Low (10–45)</td>
<td>N/A</td>
<td><1,500></td>
</tr>
<tr>
<td>Nondefense Mission Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonprogrammatic Takes on NNSS Roads</td>
<td>NNSS</td>
<td></td>
<td></td>
<td>4 to 17</td>
<td><1,600></td>
</tr>
<tr>
<td>Total DOE/NNSA</td>
<td></td>
<td></td>
<td></td>
<td>163 to 185</td>
<td><None></td>
</tr>
<tr>
<td>Commercial Solar Power Generation Facilities</td>
<td>Jackass Flats</td>
<td>10,300<sup>f</sup></td>
<td>Very Low (0–10)</td>
<td>0 to 161</td>
<td><None></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13,670</td>
<td></td>
<td>163 to 346</td>
<td></td>
</tr>
</tbody>
</table>

NNSS = Nevada National Security Site.

Notes:

- Desert tortoise abundance class from DOE/NV 1998b.
- Acres of Disturbance/640 × Maximum Desert Tortoise Abundance
- The Office of Secure Transportation training facility, dynamic experiments in boreholes, drillback operations, and one-half of high-explosives experiments and Office of Secure Transportation training proposed under the Expanded Operations Alternative would be located outside of the range of the desert tortoise and are not included in this table.
- A total of 420 acres would be disturbed at Soils Project sites on the NNSS and Nevada Test and Training Range, but only the Small Boy site (320 acres) in the Frenchman Flat area would be within desert tortoise habitat.
- A total of 10 acres of tortoise habitat disturbance and 2 takes by harassment are allowable for all Environmental Restoration Program activities at the NNSS under the Final Programmatic Biological Opinion for Implementation of Actions Proposed on the Nevada Test Site, Nye County, Nevada.
- One or more commercial solar power generation facilities with a combined capacity of 1,000 megawatts would require 10,000 acres; about 300 acres would be used for transmission line right-of-way to connect the facility to the main transmission grid.
Work for Others Program. Most Work for Others Program activities would occur in the Yucca Flat, Frenchman Flat, Mercury Valley, and Fortymile Canyon areas of the NNSS and would potentially affect desert tortoises. Proposed construction of new test beds and other facilities to support the Work for Others Program would disturb up to 435 acres of land. When the 215 acres of tortoise habitat disturbance under the Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs are included, this total disturbance would be 650 acres. Assuming that all of this disturbance would occur within desert tortoise habitat, the number of affected tortoises would range from 10 to 46. This level of take could exceed the allowable take (10 tortoises) in the 2009 Biological Opinion (USFWS 2009a), and the area of potential land disturbance would exceed the 500 acres allowed.

5.1.7.2.3.2 Environmental Management Mission

Under the Expanded Operations Alternative, DOE/NNSA Environmental Management Program activities would disturb a total of 1,205 acres of land within desert tortoise habitat (about 0.38 percent of remaining undisturbed habitat). In addition to remediation of the Small Boy site and UGTA characterization and monitoring well development, the area of desert tortoise habitat disturbance under the Expanded Operations Alternative includes 635 acres associated with waste disposal operations at the Area 5 RWMC. The potential take of desert tortoises would range from 4 to 33, all by harassment. This would exceed the allowable tortoise habitat disturbance (110 acres) and could exceed the allowable take (4) in the 2009 Biological Opinion (USFWS 2009a).

Waste Management Program. Construction of new LLW/MLLW cells at the Area 5 RWMC in Frenchman Flat and new sanitary landfills in Areas 23 and 25 would disturb 635 acres and potentially affect up to 10 desert tortoises, all by harassment. The acres of potential disturbance and the number of potentially affected desert tortoises would exceed the allowable take (100 acres and two tortoises) in the 2009 Biological Opinion (USFWS 2009a).

Environmental Restoration Program. The only Soils Project site located within the range of the desert tortoise is the Small Boy site (320 acres). Although some groundwater characterization and monitoring wells may be developed within desert tortoise habitat, most would be sited outside of such habitat in the northwestern NNSS and adjacent Nevada Test and Training Range. However, for purposes of this analysis, it was assumed that one-half of such well development (250 acres of land disturbance) would occur in desert tortoise habitat. The 570 acres of new land disturbance would potentially impact from 4 to 23 desert tortoises, all by harassment. The acres of potential disturbance and the number of potentially affected desert tortoises would exceed the terms and conditions of the 2009 Biological Opinion (USFWS 2009a) (i.e., 10 acres and two tortoises).

5.1.7.2.3.3 Nondefense Mission

Under the Expanded Operations Alternative, DOE/NNSA Nondefense Mission activities would disturb about 235 acres of land in desert tortoise habitat. A proposed rebuild of the existing 138-kilovolt transmission line is the only proposed activity under the Nondefense Mission that would potentially cause a take of desert tortoises and is addressed under the General Site Support and Infrastructure Program, discussion below. One or more potential commercial solar power generation facilities considered under this alternative are discussed below under the Conservation and Renewable Energy Program.

General Site Support and Infrastructure Program. In addition to ongoing maintenance, repair, and replacement activities to support NNSS facilities, the DOE/NNSA NSO would construct and modify facilities as needed to support NNSS programs. Under the Expanded Operations Alternative, DOE/NNSA proposes to rebuild the main 138-kilovolt electrical transmission system between Mercury Switchyard in Area 23 and Valley Substation in Area 2. This rebuild is the only proposed infrastructure project that would potentially affect desert tortoises. It would disturb up to 235 acres of desert tortoise habitat located generally adjacent to the existing transmission line. The proposed transmission line rebuild would affect from 4 to 17 tortoises, by harassment. These potential impacts exceed the allowable
acres of tortoise habitat disturbance (100 acres) and could exceed the allowable take for this program (10 tortoises) in the 2009 Biological Opinion (USFWS 2009a).

Conservation and Renewable Energy Program. The DOE/NNSA NSO would continue current energy efficiency and water conservation measures, fleet management improvements, and sustainable building practices. Because these activities would occur at existing facilities, they are not expected to affect the desert tortoise.

In addition, under the Expanded Operations Alternative, DOE/NNSA would allow construction of one or more commercial solar power generation facilities with a combined capacity of up to 1,000 megawatts within the Renewable Energy Zone in Area 25. It was estimated that the potential permanent land disturbance associated with such a project would be 10,000 acres. To interconnect commercial solar power generation facilities to the electrical grid, construction of new transmission lines would be required. Assuming that up to 10 miles of new transmission line with a right-of-way 250 feet wide would be needed for one or more solar power generation facilities on the NNSS, an additional approximately 300 acres of land would be disturbed. Most of the transmission line impacts would occur off the NNSS on BLM and private land. The commercial solar power generation facilities and new transmission line would be located within the range of the desert tortoise and would disturb 10,300 acres of habitat. The number of desert tortoises potentially affected by this project would range from none to 161. While most of these affected desert tortoises would be taken by harassment, the permanent loss of 10,000 acres of tortoise habitat for solar power generation facilities could slightly diminish the capacity of the surrounding area to support tortoises and the overall population in the region could slightly decrease; however, as noted under the No Action Alternative, the soils in much of the potential siting area for commercial solar power generation facilities tend to be too sandy to provide suitable tortoise burrow sites, and there are very few, if any, tortoises actually inhabiting the area. The commercial solar power generation facilities are not covered by the 2009 Biological Opinion and would require consultation among the project proponents, DOE/NNSA, USFWS, and BLM, as well as development of a project-specific Biological Opinion.

Other Research and Development Programs. The Nevada National Environmental Research Park in Area 5 contains two existing facilities used to support outside scientific research on long-term environmental health. Future research programs could include activities such as habitat reclamation and remediation, which could potentially cause disturbance in desert tortoise habitat; however, there are no proposed projects at this time and impacts on desert tortoises cannot be estimated. Any such projects proposed in the future would be subject to the then current Biological Opinion and the DOE/NNSA NSO Desert Tortoise Compliance Program.

5.1.7.2.4 Impacts on Offsite Biota

Under the Expanded Operations Alternative, activities at the NNSS would increase relative to the No Action Alternative and some new activities would be conducted as well. As noted in Section 5.1.7.1.4, in the southern Nevada area in the vicinity of the NNSS, there are a number of sensitive locations for plants and animals. Under the Expanded Operations Alternative, the potential for DOE/NNSA activities at the NNSS to impact plants and animals in areas outside of the NNSS is greater than under the No Action Alternative but still negligible. The primary paths for activities at the NNSS to cause impacts at these offsite areas are through surface-water runoff, groundwater withdrawals and/or contamination, migration of wildlife, and air emissions.

As noted in Section 5.1.6.1, there is no greater than a negligible potential for existing onsite contamination to be transported off site via surface water, or through flood events, to affect offsite areas. This would make it unlikely that DOE/NNSA activities at the NNSS would affect plants or animals in these areas through the surface-water runoff pathway.

As discussed in Section 5.1.6.2, past underground nuclear testing introduced a substantial amount of radioactive contamination into the underground environment. A portion of that contamination is available
to be transported by groundwater (i.e., the hydrologic source term). If radioactive contaminants from underground nuclear testing were to reach any of the noted offsite sensitive areas via the groundwater, it could result in a significant impact on plants and animals in that area, particularly the endangered Devils Hole pupfish. As described in Chapter 4, Section 4.1.6.2, DOE/NNSA established the UGTA Project that, working with NDEP under the FFACO, is characterizing and monitoring groundwater in areas surrounding the primary underground nuclear testing areas on the NNSS, including offsite areas, as appropriate. Based on the most current studies and state-of-the-art modeling, it is unlikely that levels of radioactive contamination from the NNSS would exceed the standards established in the FFACO in areas outside of the NNSS and Nevada Test and Training Range over the next 1,000 years (see Chapter 6, Section 6.3.6.2). Therefore, it is unlikely that radioactive contamination in the groundwater would impact any of the sensitive offsite areas or seeps, springs, or other sources of water important to wildlife and vegetation over the next 1,000 years.

Groundwater withdrawals are of particular concern as they relate to the maintenance of the water level at Devils Hole, which is critical to the continued survival of the Devils Hole pupfish (NPS 2010h). Under the Expanded Operations Alternative, groundwater withdrawals at the NNSS required to support DOE/NNSA activities would not likely result in excessive drawdown of the affected aquifers, and DOE/NNSA would continue to monitor groundwater levels and adjust points of diversion, as necessary, to protect the integrity of the aquifers (see Section 5.1.6.2.1). Therefore, there would not likely be any effect on water levels at Devils Hole. If one or more commercial solar power generation facilities were to be proposed in Area 25 of the NNSS, project-specific NEPA reviews would be required and the project proponents would be required to obtain groundwater appropriations from the Nevada State Engineer for any withdrawals required for construction and operation of the facilities. As noted in Chapter 6, Section 6.3.6.2, to protect the Devils Hole pupfish, Nevada State Engineer Order 1197 states in part, “…any applications to appropriate additional underground water and any application to change the point of diversion of an existing ground-water right to a point of diversion closer to Devils Hole, described as being within a 25-mile radius from Devils Hole within the Amargosa Desert Hydrographic Basin, will be denied.” For any project needing a stable water supply within the area subject to Nevada State Engineer Order 1197, the developer would need to either lease or purchase water currently being pumped under an existing certified water right. As the water user can only pump up to the authorized duty of the water right, there would be no net increase in groundwater pumping within the basin. Continued implementation of Nevada State Engineer Order 1197 will help to preclude impacts on Devils Hole and the Devils Hole pupfish due to groundwater withdrawals.

Under the Expanded Operations Alternative, all emissions to the air would be within all applicable standards and would not result in adverse impacts on plants or animals at any of the sensitive offsite locations of concern.

5.1.7.3 Reduced Operations Alternative

5.1.7.3.1 Impacts on Vegetation

DOE/NNSA-proposed activities at the NNSS would affect native vegetation directly by clearing areas or by crushing or breaking due to vehicular or pedestrian traffic. Table 5–30 displays estimated areas of land disturbance by alternative, mission, and program for DOE/NNSA activities and commercial and demonstration projects at the NNSS. DOE/NNSA activities under the Reduced Operations Alternative would disturb a small portion of undisturbed habitat on the NNSS. However, some of the areas where activities could occur may be considered important habitats. The impacts of habitat disturbance on wildlife under the Reduced Operations Alternative are addressed in Section 5.1.7.3.2; impacts on sensitive and protected/regulated species are discussed in Section 5.1.7.3.3.

Overall, under the Reduced Operations Alternative, about 2,740 acres (about 0.35 percent) of undisturbed habitat on the NNSS would be affected. Almost one-half of the land disturbances under the Reduced Operations Alternative would be due to potential development of a commercial solar power generation
facility (1,200 acres) in Area 25 and are addressed under the Conservation and Renewable Energy Program. For DOE/NNSA activities, a total of 1,540 acres of land would be disturbed, mostly generally along Mercury Highway in Yucca Flat and Frenchman Flat, although some activities, such as releases of chemicals and biological simulants and Office of Secure Transportation training and exercises, may occur in almost any area of the NNSS.

Under the Reduced Operations Alternative, almost all activities with the potential to disturb vegetation would be short-term and would occur in small increments across a broad geographical area. The primary vegetation alliances that would be affected are creosote bush/white bursage shrubland, Nevada jointfir shrubland, saltbush shrubland, and burrobush/wolfberry shrubland. These vegetation alliances are among the most prevalent on the NNSS, covering a total of about 302,150 acres (Ostler et al. 2000). Because of the prevalence of the affected vegetation types on the NNSS, as well as regionally, and the geographical distribution of impacts, this level of habitat disturbance would not reduce the viability of any of the potentially affected vegetation alliances or have substantial negative impacts on biodiversity. However, some areas of creosote bush/white bursage vegetation alliance in Frenchman Flat and Jackass Flats are considered sensitive habitat because the soils are particularly vulnerable to erosion if disturbed and they require long periods to recover. DOE/NNSA would avoid siting new facilities or activities in this sensitive habitat to the extent reasonably possible. There are permanent impacts on vegetation when there is no evidence to indicate that predisturbance levels of biomass, cover, density, soils, and plant community structure could be achieved within approximately 5 years. Based on this, all vegetation disturbances under the Reduced Operations Alternative would be considered permanent because reclamation is not required for all land disturbances; therefore, reclamation was not assumed for any land disturbances. Disturbance of unique habitats, such as wetlands and springs, would be avoided for all activities.

Disturbance of native vegetation either by direct removal or by mechanical damage from off-road vehicular or pedestrian traffic could promote the proliferation of nonnative invasive weeds, such as Russian thistle. This species is currently not listed on the Nevada noxious weed list, but is considered aggressive and opportunistic and often portrays weed-like trends. Other weed species that could invade the disturbed areas over the long term include puncture vine (*Tribulus terrestris*), perennial pepperweed (*Lepidium latifolium*), gumweed (*Grindelia* spp.), yellow star thistle (*Centaurea solstitialis*), and Russian knapweed (*Achillea millefolium*). Other indirect impacts on vegetation include soil compaction, spread of weeds already present in the disturbance footprint to areas not currently infested, and accidental introduction of new weed species from contaminated equipment brought in from other regions.

5.1.7.3.1 National Security/Defense Mission

Disturbances to up to 430 acres of habitat resulting from National Security/Defense Mission activities under the Reduced Operations Alternative would include removal of vegetation to clear areas or crushing plants by vehicular and pedestrian traffic. Crushed plants may recover if they are not too severely damaged and the cause of crushing does not damage their roots. Where vegetation must be removed to accomplish the activity, even though the activity would last only a relatively short period, recovery of the site would likely take many years. In addition, removal or weakening of native vegetation would increase the opportunity for invasive and weedy species to invade the disturbed areas, which could prolong or even preclude the ability of native vegetation to recolonize the area. As previously mentioned, National Security/Defense Mission activities that occur in Frenchman Flat could impact sensitive habitat, but those habitat areas would be avoided if reasonably possible.

Stockpile Stewardship and Management Program. Activities that would occur outside of existing facilities would likely affect vegetation directly due to disturbance of up to about 415 acres of land. In many cases, vegetation would not need to be removed but would be damaged by vehicular traffic and the setting up of equipment associated with the activities.
Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Under the Reduced Operations Alternative, the only new land disturbance expected to occur in this program area would be associated with releases of chemicals and biological simulants, which would temporarily disturb up to 15 acres of previously undisturbed land at the NNSS.

Arms control and counterterrorism activities would include training exercises in large, remote areas that involve the use of explosives and live fire. Areas where these exercises would be conducted would be accessible to pedestrians and on- and off-road vehicles; however, areas used for these activities have been used for similar activities for many years and no additional land areas would be affected. These activities are expected to disturb native vegetation, but are not expected to reduce the viability of any plant species. However, by changing the land use zone designations of Areas 18, 19, 20, 29, and 30 to Limited Use and precluding most activities in these areas, potential impacts in those areas would be reduced relative to the No Action Alternative.

Work for Others Program. Under the Reduced Operations Alternative, DOE/NNSA would continue to host the projects of other Federal, state, and local government agencies and nongovernmental organizations and activities, and impacts would be similar to those under the No Action Alternative. However, by changing the land use zone designations of Areas 18, 19, 20, 29, and 30 to Limited Use and precluding most activities in these areas, potential impacts from Work for Others Program activities in those areas would be reduced relative to the No Action Alternative.

5.1.7.3.1.2 Environmental Management Mission

As under the No Action Alternative, approximately 1,110 acres of land would be disturbed by Environmental Management Program activities under the Reduced Operations Alternative. A significant portion of the areas that would be disturbed under the Environmental Restoration Program is located on the Nevada Test and Training Range.

Waste Management Program. Under the Reduced Operations Alternative, impacts on vegetation resulting from the Waste Management Program would be the same as those under the No Action Alternative.

Environmental Restoration Program. Under the Reduced Operations Alternative, the DOE/NNSA Environmental Restoration Program would continue in compliance with the most recent version of the FFACO to characterize, monitor, and remediate, as necessary, identified contaminated areas, facilities, soils, and groundwater. Impacts on vegetation resulting from Environmental Restoration Program activities would be the same as those under the No Action Alternative.

5.1.7.3.1.3 Nondefense Mission

Under the Reduced Operations Alternative, DOE/NNSA Nondefense Mission activities would not disturb previously undisturbed land. Therefore, there would be no new or additional impacts on biological resources. A potential commercial solar power generation facility considered under this alternative is discussed below under the Conservation and Renewable Energy Program.

General Site Support and Infrastructure Program. Under the No Action Alternative, small projects to maintain and repair NNSS facilities would occur at existing facilities in previously disturbed areas and are not anticipated to directly affect biological resources.

Conservation and Renewable Energy Program. Measures taken to increase energy efficiency, fuel efficiency, and water conservation would occur at existing facilities and are not anticipated to directly affect biological resources.
In addition, under the Reduced Operations Alternative, DOE/NNSA would allow construction of a commercial 100-megawatt solar power generation facility that would permanently disturb about 1,200 acres of creosote bush/white bursage habitat in Area 25. Much of the area of potential disturbance, primarily north and west of Lathrop Wells Road, is considered sensitive habitat. The entire facility would be graded and stabilized to minimize soil erosion and would be maintained in an unvegetated condition. Additionally, access roads and utilities would be constructed to support the facilities. There are approximately 150,800 acres of creosote bush/white bursage habitat on the NNSS. Disturbance of up to 1,200 acres for the commercial solar power generation facility would affect about 1.0 percent of the habitat type on the NNSS and only about 0.2 percent of overall undisturbed land. The amount of vegetation and soil that would be disturbed is not expected to reduce the viability of creosote bush/white bursage vegetation in the region or have a substantial negative impact on biodiversity in this area. Approximately 700 acres of the area that would be disturbed by construction of a 100-megawatt commercial solar power generation facility would likely be within an area considered sensitive habitat because it contains vegetation associations that recover very slowly from direct disturbance and is susceptible to wind erosion. However, the area would be graded and stabilized to minimize soil erosion and would be maintained in an unvegetated condition; thus, there would be no additional impact associated with disturbance of this sensitive habitat.

Other Research and Development Programs. The Nevada National Environmental Research Park in Area 5 contains two existing facilities used to support outside scientific research on long-term environmental health. Future research programs could include activities such as habitat reclamation and remediation, which could potentially cause impacts on vegetation and soils due to ground disturbance and increased access to previously undisturbed land. No such activities are being proposed at this time.

5.1.7.3.2 Impacts on Wildlife

Under the Reduced Operations Alternative, most impacts on wildlife from DOE/NNSA activities would be the result of short-term experiments and exercises. Many of those short-term disturbances would occur in areas adjacent to previously disturbed areas that may possess marginal value as wildlife habitat, such as off-road vehicular traffic associated with Office of Secure Transportation training and exercises, which would occur within about 100 feet of the edge of an existing road. During periods of any human activity in an area, larger and more mobile species of wildlife would leave the area during the period of disturbance, but smaller and less mobile species may be subject to direct injury and mortality. In addition to these direct effects, disturbance of vegetation, particularly in large blocks, could adversely impact wildlife populations through loss and fragmentation of cover, breeding, traveling, and foraging habitat. In addition, predation could increase because construction and other disturbances may attract predators, such as ravens and coyotes, as wildlife is displaced from protective cover to uncovered habitat.

Noise associated with DOE/NNSA activities would impact wildlife in various ways, depending on the nature and location of the noise source and the particular species of wildlife. Where noises from human activities are fairly constant, such as at the Area 5 RWMC, some animals become accustomed and use the habitat around the noise source in accordance with their individual comfort levels. For some species, such a coyotes, human occupation of an area may be an opportunity for foraging. Other species are less adaptable to human presence. Sudden loud noises such as explosives detonations could startle wildlife, resulting in impacts on certain species. If sudden loud noises were to occur near vital water sources, they could cause large and mobile species of wildlife to avoid them until the disturbance subsides, which could affect animal species that depend on those water sources. Most DOE/NNSA activities that would create sudden loud noises or other large disturbances that would cause wildlife to flee an area are sporadic and of such short duration that it is doubtful that they would cause significant interference with wildlife activities, including foraging and visiting drinking water sources. Nesting birds may flush from their nests in response to a sudden loud noise; however, based on experience at Cape Canaveral, nesting birds respond to Space Shuttle launch noise by flying away from the nests and then returning within a few minutes (FAA 2002).
5.1.7.3.3 Impacts on Sensitive and Protected Species

Under the Reduced Operations Alternative, DOE/NNSA would continue to implement protective measures for sensitive species of plants and animals, as described under the No Action Alternative. Impacts on these species would be somewhat less than described under the No Action Alternative due to the reduced level of activities that would occur at the NNSS. Because there would be habitat disturbance in NNSS valleys under the Reduced Operations Alternative, sensitive plant species that inhabit the valley floors, such as *Camissonia megalantha* and *Cymopterus ripleyi* var. *saniculoides*, would be subject to less impact than under the No Action Alternative. Nevertheless, DOE/NNSA would continue to avoid impacts on sensitive species resulting from its activities to the greatest reasonable extent.

Based on previous studies, data are available to delineate desert tortoise habitat on the NNSS (Rautenstrauch et al. 1994) (see Chapter 4, Figure 4–24) and to make quantitative estimates of potential impacts on desert tortoises (DOE/NV 1998b) at the alternative, mission, and program levels for proposed activities at the NNSS. Similar detailed data are not available for other sensitive and protected species that inhabit the NNSS. For those species, the impact assessment is qualitative and only at the alternative level.

Table 5–32 displays the potential impacts on the desert tortoise under the Reduced Operations Alternative. Overall, implementation of the Reduced Operations Alternative, including all DOE/NNSA activities and a commercial 100-megawatt commercial solar power generation facility, would result in disturbance of up to 2,120 acres of desert tortoise habitat (about 0.7 percent of remaining tortoise habitat on the NNSS) and potentially affect 131 to 181 tortoises (this estimate includes up to 125 tortoises taken by harassment on NNSS roads). DOE/NNSA activities would disturb a total of about 920 acres of desert tortoise habitat (representing about 0.3 percent of the 321,050 acres of remaining tortoise habitat on the NNSS) and would result in a take ranging from 6 to 37 tortoises, as well as up to 125 on NNSS roads for a total of 131 to 162 tortoises, all by harassment. Neither the area of tortoise habitat that would be impacted nor the number of tortoises taken would exceed the overall threshold limits (2,710 acres and 194 tortoises) in the 2009 Biological Opinion (USFWS 2009a). Although all of the tortoises taken by project-related activities would be by harassment, based on DOE/NNSA experience between 1992 and 2010, fewer than one tortoise per year would be taken by injury or mortality due to non-project-related collisions by vehicles on NNSS roadways. Potential impacts on the desert tortoise from development of a commercial solar power generation facility under the Reduced Operations Alternative are addressed below under the Conservation and Renewable Energy Program.

In the following program-level analyses under the Reduced Operations Alternative, take values that exceed the threshold limits of the 2009 Biological Opinion are noted. If the level of incidental take is reached or anticipated to be exceeded during the course of actions, such an incidental take would represent new information requiring reinitiation of consultation with USFWS and review of the reasonable and prudent measures in the 2009 Biological Opinion (USFWS 2009a).

5.1.7.3.3.1 National Security/Defense Mission

Land disturbance of up to 160 acres for National Security/Defense Mission activities in desert tortoise habitat could result in the potential take of from 2 to 11 tortoises, all by harassment. This take would be within the threshold values (1,000 acres and 20 tortoises) in the 2009 Biological Opinion (USFWS 2009a) for the National Security/Defense Mission.

Stockpile Stewardship and Management Program. Most Stockpile Stewardship and Management Program activities would occur in the Yucca Flat and Frenchman Flat areas of the NNSS and into about 145 acres of potential land disturbance within desert tortoise habitat in these areas. The estimated number of tortoises taken by harassment would range from 2 to 10. The acres of potential disturbance and incidental take would meet the threshold values for this program in the 2009 Biological Opinion (500 acres and 10 tortoises) (USFWS 2009a).
Table 5–32 Potential Impacts on Desert Tortoises Under the Reduced Operations Alternative

<table>
<thead>
<tr>
<th>Mission/Program</th>
<th>Primary Locations of Activities</th>
<th>Area of Desert Tortoise Habitat Disturbance (acres)</th>
<th>Maximum Desert Tortoise Abundance (number per square mile)</th>
<th>Number of Desert Tortoises Affected <allowable take></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpile Stewardship and Management Program</td>
<td>Yucca Flat and Frenchman Flat</td>
<td>145<sup>c</sup></td>
<td>Low (10–45)</td>
<td>2 to 10 <10></td>
</tr>
<tr>
<td>Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs</td>
<td>Frenchman Flat, Yucca Flat, and Mercury Valley</td>
<td>15</td>
<td>Low (10–45)</td>
<td>0 to 1</td>
</tr>
<tr>
<td>Work for Others Program</td>
<td>Yucca Flat, Frenchman Flat, Mercury Valley, and Fortymile Canyon</td>
<td>None <500></td>
<td>N/A</td>
<td>N/A <10></td>
</tr>
<tr>
<td>Stockpile Stewardship and Management Program</td>
<td>Yucca Flat and Frenchman Flat</td>
<td>160<sup>c</sup></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Waste Management Program</td>
<td>Frenchman Flat</td>
<td>190<sup>c</sup></td>
<td>Very Low (0–10)</td>
<td>0 to 4 <2></td>
</tr>
<tr>
<td>Environmental Restoration Program – Soils Project</td>
<td>Frenchman Flat and Nevada Test and Training Range</td>
<td>320<sup>c</sup></td>
<td>Very Low (0–10)</td>
<td>0 to 5 <2></td>
</tr>
<tr>
<td>Environmental Restoration Program – Underground Test Area Project</td>
<td>NNSS and Nevada Test and Training Range</td>
<td>250<sup>c</sup></td>
<td>Low (10–45)</td>
<td>4 to 18 <5></td>
</tr>
<tr>
<td>Environmental Management Mission Total</td>
<td></td>
<td>760<sup>c</sup></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>General Site Support and Infrastructure</td>
<td>NNSS</td>
<td>None <100></td>
<td>N/A</td>
<td>N/A <10></td>
</tr>
<tr>
<td>Renewable Energy (DOE/NNSA)</td>
<td></td>
<td>None <1,500></td>
<td>Low (10–45)</td>
<td>N/A</td>
</tr>
<tr>
<td>Nondefense Mission Total</td>
<td></td>
<td>None 1,600<sup>c</sup></td>
<td>N/A</td>
<td>N/A <45></td>
</tr>
<tr>
<td>Nonprogrammatic Takes on NNSS Roads</td>
<td>NNSS</td>
<td>None <<100></td>
<td>125<sup>c</sup></td>
<td>131 to 162</td>
</tr>
<tr>
<td>Total DOE/NNSA</td>
<td></td>
<td>1,685</td>
<td>N/A</td>
<td>131 to 181</td>
</tr>
<tr>
<td>Commercial Solar Power Generation Facility</td>
<td>Jackass Flats</td>
<td>1,200</td>
<td>Very Low (0–10)</td>
<td>0 to 19</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,120</td>
<td>N/A</td>
<td>131 to 181</td>
</tr>
</tbody>
</table>

N/A = not applicable; NNSS = Nevada National Security Site.

^a Desert tortoise abundance class from Woodward et al. 1998.

^b Acres of Disturbance/640 × Maximum Desert Tortoise Abundance.

^c Dynamic experiments in boreholes, drillback operations, and one-half of high-explosives experiments and Office of Secure Transportation training proposed under the Reduced Operations Alternative would be located outside of the range of the desert tortoise and are not included in this table.

^d A total of 420 acres would be disturbed at Soils Project sites on the NNSS and Nevada Test and Training Range, but only the Small Boy site (320 acres) in the Frenchman Flat area would be within desert tortoise habitat.

^e A total of 10 acres of tortoise habitat disturbance and 2 takes by harassment are allowable for all Environmental Restoration Program activities at the NNSS under the Final Programmatic Biological Opinion for Implementation of Actions Proposed on the Nevada Test Site, Nye County, Nevada.
Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Experiments that employ releases of chemicals and biological simulants would occur at many locations at the NNSS, mostly within previously disturbed areas such as NPTEC, Test Cell C, and established training areas; however, up to 15 such experiments may occur in undisturbed desert tortoise habitat over the next 10 years, resulting in 15 acres of disturbance, which would result in an estimated take of 1 tortoise. The 2009 Biological Opinion (USFWS 2009a) does not include a designation for this program area; however, experiments involving chemical and biological simulant releases would primarily be for Work for Others Program activities. As such, the 15 acres of potential disturbance would be within the 500 acres allotted to the Work for Others Program, and the number of tortoises potentially taken by harassment would be well within the allowable take (10) in the 2009 Biological Opinion.

Work for Others Program. Because no new land disturbances are anticipated under the Work for Others Program, none of the parameters of the 2009 Biological Opinion (USFWS 2009a) would likely be exceeded.

5.1.7.3.3.2 Environmental Management Mission

Under the Reduced Operations Alternative, potential impacts on desert tortoises from DOE/NNSA Environmental Management Program activities would be the same as those under the No Action Alternative.

Waste Management Program. Potential impacts on desert tortoises resulting from DOE/NNSA Waste Management activities would be the same under the Reduced Operations Alternative as those under the No Action Alternative.

Environmental Restoration Program. Under the Reduced Operations Alternative, the potential impacts on desert tortoises from Environmental Restoration Program activities would be the same as those under the No Action Alternative.

5.1.7.3.3.3 Nondefense Mission

Under the Reduced Operations Alternative, the only Nondefense Mission activities that would potentially impact desert tortoises would be associated with development of a commercial solar power generation facility, which is discussed below under the Conservation and Renewable Energy Program.
General Site Support and Infrastructure Program. Under the Reduced Operations Alternative, small projects to maintain and repair NNSS facilities would occur at existing facilities in previously disturbed areas and are not anticipated to affect biological resources.

Conservation and Renewable Energy Program. Measures taken to increase energy efficiency, fuel efficiency, and water conservation would occur at existing facilities and are not anticipated to affect biological resources.

A commercial 100-megawatt solar power generation facility would be located within the range of the desert tortoise in Area 25 of the NNSS and would permanently disturb its habitat. The 100-megawatt facility would permanently disturb about 1,200 acres of land. The existing electrical transmission system at the NNSS and in the region would be able to accommodate this additional generation without construction of new transmission lines. The number of desert tortoises potentially affected by this project would range from 0 to 19. The commercial solar power generation facility is not covered by the 2009 Biological Opinion (USFWS 2009a) and would require consultation among the project proponents, USFWS, and BLM to develop a project-specific Biological Opinion.

Other Research and Development Programs. The Nevada National Environmental Research Park in Area 5 contains two existing facilities used to support outside scientific research on long-term environmental health. Future research programs could include activities such as habitat reclamation and remediation, which could potentially cause disturbance in desert tortoise habitat; however, there are no proposed projects at this time and impacts on desert tortoises cannot be estimated. Any such projects proposed in the future would be subject to the then-current Biological Opinion and the DOE/NNSA NSO Desert Tortoise Compliance Program.

5.1.7.3.4 Impacts on Offsite Biota

Under the Reduced Operations Alternative, activities at the NNSS would decrease relative to the No Action Alternative, and the offsite areas of concern identified in Section 5.1.7.1.4 would not be impacted by activities at the NNSS.

5.1.8 Air Quality and Climate

This section addresses air quality impacts from stationary, mobile, and fugitive air pollutant sources that would occur within and outside the NNSS under each of the alternatives addressed in this NNSS SWEIS. The ROI for each alternative in this air quality analysis encompasses Nye and Clark Counties in Nevada.

Air quality is determined, in part, by measuring concentrations of certain pollutants (referred to as “criteria pollutants”) in the atmosphere. The U.S. Environmental Protection Agency (EPA) designates an area as “in attainment” for a particular pollutant if ambient air concentrations of that pollutant are below the National Ambient Air Quality Standards. Criteria pollutants regulated under these standards by both the EPA and the State of Nevada include ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, lead, and particulate matter with an aerodynamic diameter less than or equal to 10 micrometers and less than or equal to 2.5 micrometers.

In general, emissions-generating activities within the NNSS would be widely dispersed over the 1,360-square-mile area of the NNSS. Thus, at the boundaries of the NNSS, ambient concentrations of criteria pollutants under each alternative are expected to be below ambient air quality standards, and Nye County would continue its present attainment/nonclassified designation for all criteria pollutants. In Clark County, these emissions would not cause or contribute to any new air quality violations or increase the frequency of severity of any existing violation of any air quality standard.
Hazardous air pollutants (HAPs) are pollutants known or suspected to cause cancer or other serious health effects, such as birth defects. The EPA, under the Clean Air Act, established emission standards (the National Emission Standards for Hazardous Air Pollutants [NESHAPs]) for 188 such pollutants, most of which originate from manmade sources. Benzene, for example, is found in gasoline. In establishing the standards, the EPA identified various industries and corresponding emission limits that, if exceeded, would require the use of additional control technologies to reduce such emissions to the maximum achievable. DOE/NNSA found that, under all alternatives, HAP emissions would be well below this threshold at less than 1 ton per year for all sources and, because these emissions are also widely dispersed (similar to the criteria air pollutants), these emissions are not expected to pose an undue health risk to workers or the public.

Additional details supporting the information presented in this section can be found in Appendix D, Section D.2.1.1.

General conformity determination. EPA published the General Conformity Rule (40 CFR Part 6; 40 CFR Part 51; 40 CFR Part 93) to implement Section 176(c) of the Clean Air Act as amended in 1990. This rule requires Federal actions to conform to the appropriate State Implementation Plan. As defined in the Clean Air Act, such conformity means compliance and cooperation with the requirements of the State Implementation Plan to eliminate or reduce the severity and number of violations of the National Ambient Air Quality Standards and achieve expeditious attainment of such standards. A formal conformity determination is required for Federal actions occurring in nonattainment areas when the total direct and indirect emissions of nonattainment pollutants (or their precursors) exceed specific annual de minimis (threshold) values. Because ozone is a secondary pollutant, the conformity determination for ozone uses the precursor emissions of volatile organic compounds (VOCs) and nitrogen dioxide as surrogate pollutants. The de minimis thresholds are presented in Table 5–33; the total emissions in Clark County under the No Action, Expanded Operations, and Reduced Operations Alternatives would not exceed the de minimis levels for carbon monoxide, nitrogen oxides, VOCs, or particulate matter with an aerodynamic diameter less than or equal to 10 micrometers (PM$_{10}$) in all cases. Therefore, a general conformity analysis would not be required for any of the alternatives addressed in this NNSS SWEIS.

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Degree of Nonattainment</th>
<th>Annual Emissions (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (VOCs and NO$_2$)</td>
<td>Serious</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Extreme</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Other ozone nonattainment areas (outside of ozone transport region)</td>
<td>100</td>
</tr>
<tr>
<td>VOCs</td>
<td>Marginal/moderate nonattainment (within ozone transport region)</td>
<td>50</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Marginal/moderate nonattainment (within ozone transport region)</td>
<td>100</td>
</tr>
<tr>
<td>CO</td>
<td>All</td>
<td>100</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Moderate</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Serious</td>
<td>70</td>
</tr>
<tr>
<td>SO$_2$, NO$_2$</td>
<td>All</td>
<td>100</td>
</tr>
<tr>
<td>Lead</td>
<td>All</td>
<td>25</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; NO$_2$ = nitrogen dioxide; PM$_{10}$ = particulate matter with an aerodynamic diameter less than or equal to 10 micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.
Greenhouse gas emissions general information. The greenhouse gas emissions are presented in carbon-dioxide-equivalent form and are partitioned by various mobile and stationary source types. These emissions levels were derived from fuel use, vehicle activity, and power consumption data. Note that carbon dioxide emissions from onsite government vehicles were calculated for 2008 using measured fuel usage data. As only vehicle-miles-traveled projections were available for the No Action Alternative, a simplified vehicle-miles-traveled approach was used for onsite government vehicles. The greenhouse gas emissions were calculated using the EPA Climate Leaders Simplified Greenhouse Gas Emissions Calculator (EPA 2010b). Because these carbon dioxide emission projections were based on the 2008 car fleet, fuel economy improvement due to the recently mandated Corporate Average Fuel Economy fuel standards (49 CFR Part 531; 49 CFR Part 533) for light-duty vehicles (passenger cars) and light-duty passenger trucks (light-duty trucks) was incorporated into the carbon dioxide emission estimate by reducing the ratio of the 2015 average fuel economy to the 2008 average fuel economy for these vehicle types.

These greenhouse gas emissions are compared with a reference amount of 25,000 metric tons (27,558 tons), the threshold level identified by the President’s Council on Environmental Quality, for which a quantitative assessment may be meaningful (CEQ 2010).

Power generation (electrical energy generation) is by far the largest single source of greenhouse gas emissions related to ongoing NNSS activities. This generation includes reductions due to energy conservation measures to be implemented under the three alternatives.

Greenhouse gas emissions, while estimated to decrease relative to the 2008 baseline level, would still contribute to global climate change. More specifically, emissions of carbon monoxide, nitrogen oxides, and greenhouse gases attributable to the level of operations would decrease relative to existing levels under any alternative. These reductions are due, primarily, to the introduction over time of newer DOE/NNSA fleet and worker vehicles with improved fuel economy, and improved combustion and emissions treatment efficiencies of electric power generating sources on the NNSS.

5.1.8.1 No Action Alternative

5.1.8.1.1 Air Quality

Calculations of emissions on and near the NNSS. Table 5–34 shows the midpoint (year 2015) annual air emissions of the criteria pollutants and hazardous air pollutants associated with various NNSS activities under the No Action Alternative. Most emissions are associated with mobile source activity (e.g., vehicles and portable construction equipment). The stationary source emissions include emissions from the operation of a 240-megawatt commercial solar power generation facility that may be constructed under the No Action Alternative. Table 5–34 does not show construction-related emissions because these would be temporary (see Table 5–35 for construction-related emissions). The midpoint year represents the average annual emissions over the 10-year planning period; however, these emissions are expected to continue beyond the 10-year period. The NNSS contribution to the mobile source emissions in Clark County would continue to be small and would decrease relative to 2008 emission levels (see Chapter 4, Table 4–41), except VOC emissions from NNSS mobile sources in Clark County, which would increase relative to 2008 emission levels by 0.4 tons per year due to the widespread use of ethanol blends in southern Nevada. Only a small fraction of the sulfur dioxide, PM10, and PM2.5 emissions would come from mobile sources, so these air pollutants would show a small overall increase relative to 2008 of 0.32, 3.5, and 0.7 tons per year, respectively, due to the potential increase in activity at the NNSS under the No Action Alternative relative to 2008. These small increases are not expected to lead to any violations of the air quality standards in Nye County. Emissions of nitrogen oxides, carbon monoxide, and PM10 from NNSS mobile sources in Clark County would decrease relative to 2008 emission levels by 12.6, 31.5, and 0.20 tons per year, respectively. Thus, this action would not contribute to or cause additional violations of the carbon monoxide or PM10 air quality standards. In addition, VOC emissions are not expected to violate the ozone air quality standard because the increase would be relatively small and such
mobile source emissions would be dispersed throughout the Las Vegas Valley. Appendix D, Section D.2.1.1.1, provides more detail on how these emissions were determined, as well as source-type and vehicle-type characterization for mobile sources.

Under the No Action Alternative, LLW and MMLW would be transported to the NNSS using either a truck-only or mostly rail scenario. Table 5–35 shows the average annual air emissions for the criteria and hazardous air pollutants under these two scenarios. For all pollutants, the mostly rail scenario has much lower emissions than the truck-only scenario. This is due to the greater energy efficiency of using rail to transport the waste. Further details on the transport scenario can be found in Section 5.1.3.1.2. The majority of these emissions would occur outside of Nevada and would be widely distributed over various routes from the nine origin locations.

Construction activities emissions. Under the No Action Alternative, construction emissions from new development at the NNSS would be limited to emissions from construction of the 240-megawatt commercial solar power generation facility in Area 25. Table 5–36 summarizes emissions from construction activities and construction workers commuting to and from the NNSS. These emissions are for the first year of construction and represent the highest emission rates as construction activity is linear over the multi-year period of construction and mobile source emission factors are highest in the first year. See Appendix D, Section D.2.1.1.1, for more information regarding how these emissions were determined and further portioning by source type and vehicle type for mobile sources. These results are shown separately from those in Table 5–35 because they span only a few years and, thus, are considered temporary.

During the period of construction, most of the PM$_{2.5}$ emissions are from the combustion of diesel construction equipment and vehicles. These diesel particulate matter emissions would be widely dispersed over the commercial solar power generation facility. Screening-level air quality modeling of these emissions found that, on an annual basis, the maximum annual average diesel particulate matter concentration on site was 0.37 micrograms per cubic meter. EPA has established an inhalation reference concentration level of 5 micrograms per cubic meter that is designed to protect against chronic noncarcinogenic health effects (EPA 2003). Thus, no adverse noncancer inhalation impacts are expected from the operation of the construction equipment and vehicles. EPA has identified that diesel particulate matter is likely to be a human carcinogen by inhalation, but has not established a carcinogenic unit risk because the exposure response data in human studies are considered too uncertain. Chapter 7, Section 7.8, identifies possible mitigation measures to reduce PM exposure.

Chemical release emissions. Chemical releases would be subject to release criteria developed in applicable NEPA analyses (DOE 2002g, 2004f) and terms and conditions in the NNSS Air Quality Operating Permit. Releases would not occur unless the meteorological conditions at the release site were appropriate for the release. Prior to an experiment, air dispersion modeling would be conducted to ensure that it would be conducted within the limitations of applicable release criteria. In compliance with the NNSS Air Quality Operating Permit, the DOE/NNSA NSO would submit a detailed test plan to the Nevada Bureau of Air Pollution Control before the planned release, monitor the release, and submit a final analysis of each chemical release test. The DOE/NNSA NSO would notify the Nevada Bureau of Air Pollution Control within 24 hours of any malfunction or upset of a test process that would result in an emission above allowable limits.
Table 5–34 No Action Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Nevada National Security Site in 2015

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Stationary Sources</th>
<th>Government-Owned Vehicles</th>
<th>NNSS Commuters</th>
<th>Commercial Vendors</th>
<th>Radiological Waste Trucks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>4.0</td>
<td>0.86</td>
<td>0.71</td>
<td>0.040</td>
<td>0.21</td>
<td>0.096</td>
</tr>
<tr>
<td>PM2.5</td>
<td>1.4</td>
<td>0.68</td>
<td>0.39</td>
<td>0.027</td>
<td>0.12</td>
<td>0.078</td>
</tr>
<tr>
<td>CO</td>
<td>2.6</td>
<td>29.5</td>
<td>66.3</td>
<td>3.3</td>
<td>18.8</td>
<td>0.36</td>
</tr>
<tr>
<td>NOx</td>
<td>4.0</td>
<td>7.5</td>
<td>12.4</td>
<td>0.69</td>
<td>3.5</td>
<td>0.96</td>
</tr>
<tr>
<td>SO2</td>
<td>0.21</td>
<td>0.080</td>
<td>0.18</td>
<td>0.011</td>
<td>0.045</td>
<td>0.0022</td>
</tr>
<tr>
<td>VOCs</td>
<td>1.8</td>
<td>0.51</td>
<td>1.8</td>
<td>0.64</td>
<td>0.52</td>
<td>0.10</td>
</tr>
<tr>
<td>Lead</td>
<td><0.03</td>
<td>0.000031</td>
<td>0.000052</td>
<td>0.0000033</td>
<td>0.000014</td>
<td>0.0000041</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td>14.0</td>
<td>39.1</td>
<td>81.8</td>
<td>4.7</td>
<td>23.2</td>
<td>1.6</td>
</tr>
<tr>
<td>HAPs</td>
<td>~0.1</td>
<td>0.041</td>
<td>0.14</td>
<td>0.0065</td>
<td>0.043</td>
<td>0.014</td>
</tr>
</tbody>
</table>

* < = less than; CO = carbon monoxide; HAP = hazardous air pollutant; NOx = nitrogen oxides; NNSS = Nevada National Security Site; PMx = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO2 = sulfur dioxide; VOC = volatile organic compound.
Table 5–35 No Action Alternative Annual Average Emissions of Criteria Pollutants and Hazardous Air Pollutants from the Transport of Low-Level and Mixed Low-Level Radioactive Waste to the Nevada National Security Site

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Air Emissions (tons per year)</th>
<th>Low-Level and Mixed Low-Level Radioactive Waste Shipped via Mostly Rail</th>
<th>Low-Level and Mixed Low-Level Radioactive Waste Shipped via Truck Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4.5</td>
<td>21.5</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td></td>
<td>4.1</td>
<td>19.5</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td></td>
<td>14.1</td>
<td>66.4</td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td>63.8</td>
<td>300.6</td>
</tr>
<tr>
<td>NO$_x$</td>
<td></td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>SO$_2$</td>
<td></td>
<td>2.7</td>
<td>12.5</td>
</tr>
<tr>
<td>VOCs</td>
<td></td>
<td>0.0001</td>
<td>0.000</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td>89.3</td>
<td>421.2</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td></td>
<td>0.4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NO$_x$ = nitrogen oxides; PM$_n$ = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.
Table 5–36 No Action Alternative Construction Emissions of Criteria Pollutants and Hazardous Air Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Peak Year Air Emissions from Construction Activities (tons per year)</th>
<th>Nye County</th>
<th>Commuting by Construction Workers</th>
<th>Nye County</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction on-NNSS</td>
<td>Nye County</td>
<td>Off-NNSS</td>
<td>Nye County</td>
<td></td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>19.9</td>
<td>0.11</td>
<td>0.0097</td>
<td>0.023</td>
<td>20.0</td>
</tr>
<tr>
<td>PM\textsubscript{2.5}</td>
<td>5.9</td>
<td>0.064</td>
<td>0.0068</td>
<td>0.014</td>
<td>6.0</td>
</tr>
<tr>
<td>CO</td>
<td>30.0</td>
<td>11.2</td>
<td>0.96</td>
<td>2.6</td>
<td>44.8</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>52.8</td>
<td>2.4</td>
<td>0.22</td>
<td>0.55</td>
<td>56.0</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>0.11</td>
<td>0.027</td>
<td>0.0026</td>
<td>0.0052</td>
<td>0.14</td>
</tr>
<tr>
<td>VOCs</td>
<td>5.7</td>
<td>0.40</td>
<td>0.029</td>
<td>0.087</td>
<td>6.2</td>
</tr>
<tr>
<td>Lead</td>
<td>Not applicable</td>
<td>0.0000067</td>
<td>0.0000078</td>
<td>0.000014</td>
<td>0.0000089</td>
</tr>
<tr>
<td>HAPs</td>
<td>Not applicable</td>
<td>0.0029</td>
<td>0.0023</td>
<td>0.0069</td>
<td>0.038</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NO\textsubscript{x} = nitrogen oxides; NNSS = Nevada National Security Site; PM\textsubscript{n} = particulate matter with an aerodynamic diameter less than or equal to \(n\) micrometers; SO\textsubscript{2} = sulfur dioxide; VOC = volatile organic compound.
5.1.8.1.2 Radiological Air Quality

No activities under the No Action Alternative are expected to produce aboveground radiation beyond those documented for 2008 baseline conditions in Chapter 4, Section 4.1.8.3.

5.1.8.1.3 Climate Change

See Chapter 4, Section 4.1.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse gas emissions due to NNSS-related activities. Table 5–37 shows greenhouse gas emissions levels for NNSS-related activities under the No Action Alternative. The midpoint year (2015) represents the average annual emissions over the 10-year planning period. Greenhouse gas emissions would continue beyond the 10-year planning period. The color coding in Table 5–36 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117) – blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by the NNSS (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–37 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.

Overall, NNSS-related activities under the No Action Alternative would create about 39,690 carbon-dioxide-equivalent tons of greenhouse gas emissions per year (45,376 when including temporary construction worker commuting and construction vehicles), which is about 44 percent over the threshold reporting level (65 percent when including temporary construction worker commuting and construction vehicles). This represents a net reduction over current greenhouse gas emissions (50,478 tons in 2008) of about 21 percent, but these emissions would continue to contribute to global climate change.

LLW and MLLW may be transported to the NNSS under the No Action Alternative using either a truck-only or mostly rail scenario. Under the truck-only scenario, about 8,078 carbon-dioxide-equivalent tons of greenhouse gas emissions would be created per year. For the mostly rail scenario, about 1,753 carbon-dioxide-equivalent tons of greenhouse gas emissions would be created per year. This lower rate of greenhouse gas emissions is due to the greater energy efficiency of using rail to transport the waste.
Table 5–37 No Action Alternative Greenhouse Gas Emissions by Nevada National Security Site Activity in 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 27,558 Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>19,106</td>
<td>0.69</td>
</tr>
<tr>
<td>Natural gas heating</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other stationary sources, excluding air conditioning/refrigeration, natural gas heating, and sources related to the solar power generation facility</td>
<td>501</td>
<td>0.02</td>
</tr>
<tr>
<td>Stationary sources related to solar power generation facility operation</td>
<td>9</td>
<td>0.01</td>
</tr>
<tr>
<td>Sulfur hexafluoride from refrigeration/air conditioning</td>
<td>462</td>
<td>0.02</td>
</tr>
<tr>
<td>Hydrofluorocarbons from refrigeration/air conditioning</td>
<td>218</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>20,296</td>
<td>0.74</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onsite government vehicles</td>
<td>5,238</td>
<td>0.19</td>
</tr>
<tr>
<td>Temporary construction vehicles related to the solar power generation facility (about 3 years’ duration)</td>
<td>4,642</td>
<td>0.17</td>
</tr>
<tr>
<td>Commuting by regular NNSS employees</td>
<td>9,481</td>
<td>0.34</td>
</tr>
<tr>
<td>Commuting by temporary solar power generation facility construction employees (about 3 years’ duration)</td>
<td>1,044</td>
<td>0.04</td>
</tr>
<tr>
<td>Hazardous material and waste transport (nongovernment)</td>
<td>2,922</td>
<td>0.11</td>
</tr>
<tr>
<td>Commercial vendors</td>
<td>1,753</td>
<td>0.06</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES, excluding temporary construction vehicles and construction employee commuting</td>
<td>19,394</td>
<td>0.70</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES, including temporary construction vehicles and construction employee commuting</td>
<td>25,080</td>
<td>0.912</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>6,428</td>
<td>0.23</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>19,106</td>
<td>0.69</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>19,842</td>
<td>0.72</td>
</tr>
<tr>
<td>TOTAL, excluding temporary construction employee commuting and construction vehicles</td>
<td>39,690</td>
<td>1.44</td>
</tr>
<tr>
<td>TOTAL, including temporary construction employee commuting and construction vehicles</td>
<td>45,376</td>
<td>1.65</td>
</tr>
</tbody>
</table>

NNSS = Nevada National Security Site.

Blue: Scope 1 emissions
Orange: Scope 2 emissions
Green: Scope 3 emissions
5.1.8.2 Expanded Operations Alternative

5.1.8.2.1 Air Quality

This section addresses air quality impacts from stationary, mobile, and fugitive criteria pollutant sources that would occur within and outside the NNSS under the Expanded Operations Alternative.

Table 5–38 shows the midpoint (year 2015) annual air emissions for the criteria pollutants and hazardous air pollutants associated with various NNSS activities under the Expanded Operations Alternative. These emissions are expected to continue beyond the 10-year planning period. Most emissions are associated with mobile source activity (e.g., vehicles and portable construction equipment). The stationary source emissions include emissions resulting from the operation of one or more commercial solar power generation facilities with a combined capacity of 1,000 megawatts that may be constructed under the Expanded Operations Alternative. Table 5–38 does not show construction-related emissions because these would be temporary. See Table 5–39 for construction-related emissions. The midpoint year represents the average annual emissions over the next 10 years. VOC and PM$_{10}$ emissions from NNSS mobile sources in Clark County would increase relative to 2008 emission levels by 1.0 and 0.20 tons per year, respectively; nitrogen oxide and carbon monoxide emissions from NNSS mobile sources in Clark County would decrease 7.1 and 13.9 tons per year, respectively. Only a small fraction of the sulfur dioxide, PM$_{10}$, and PM$_{2.5}$ emissions would come from mobile sources, so these air pollutants would show a small overall increase relative to 2008 of 0.69, 16.8, and 5.4 tons per year, respectively, due to the projected increase in activity at the NNSS under the Expanded Operations Alternative relative to 2008. These small increases are not expected to lead to any violations of the air quality standards in Nye County. The VOC increase would be due to the widespread use of ethanol blends in southern Nevada by 2015. Thus, this action would not contribute to or cause additional violations of the carbon monoxide air quality standards. The small increases in VOC and PM$_{10}$ emissions in Clark County would be attributable to mobile sources and would be widely distributed over the Las Vegas Valley. They would not lead to any additional violations of the ozone or PM$_{10}$ air quality standards. See Appendix D, Section D.2.1.2.1, for more detail on how these emissions were determined, as well as source-type and vehicle-type characterization data for mobile sources.

In addition, under the Expanded Operations Alternative, LLW and MLLW would be transported to the NNSS using either a truck-only or mostly rail scenario. Table 5–40 shows the average annual air emissions for the criteria and hazardous air pollutants under these two scenarios. For all pollutants, the mostly rail scenario has much lower emissions than the truck-only scenario. This is due to the greater energy efficiency of using rail to transport the waste. Further details on the transport scenario can be found in Section 5.1.3.1.2. The majority of these emissions would occur outside of Nevada and would be widely distributed over various routes from the nine origin locations.
Table 5–38 Expanded Operations Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Nevada National Security Site in 2015

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Stationary Sources</th>
<th>Government-Owned Vehicles</th>
<th>NNSS Commuters</th>
<th>Commercial Vendors</th>
<th>Radiological Waste Trucks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM₁₀</td>
<td>16.2</td>
<td>1.1</td>
<td>0.89</td>
<td>0.05</td>
<td>0.26</td>
<td>0.12</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>5.1</td>
<td>0.86</td>
<td>0.49</td>
<td>0.034</td>
<td>0.15</td>
<td>0.098</td>
</tr>
<tr>
<td>CO</td>
<td>7.9</td>
<td>37.1</td>
<td>83.3</td>
<td>4.1</td>
<td>23.6</td>
<td>0.45</td>
</tr>
<tr>
<td>NOₓ</td>
<td>5.8</td>
<td>9.4</td>
<td>15.6</td>
<td>0.87</td>
<td>4.4</td>
<td>1.2</td>
</tr>
<tr>
<td>SO₂</td>
<td>0.68</td>
<td>0.10</td>
<td>0.22</td>
<td>0.014</td>
<td>0.057</td>
<td>0.0028</td>
</tr>
<tr>
<td>VOCs</td>
<td>5.6</td>
<td>0.64</td>
<td>2.3</td>
<td>0.80</td>
<td>0.65</td>
<td>0.13</td>
</tr>
<tr>
<td>Lead</td>
<td><0.010</td>
<td>0.000039</td>
<td>0.000065</td>
<td>0.000041</td>
<td>0.000018</td>
<td>0.000025</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td>41.3</td>
<td>49.2</td>
<td>102.8</td>
<td>5.9</td>
<td>29.1</td>
<td>2.0</td>
</tr>
<tr>
<td>HAPs</td>
<td>~0.1</td>
<td>0.051</td>
<td>0.18</td>
<td>0.0082</td>
<td>0.054</td>
<td>0.018</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NOₓ = nitrogen oxides; NNSS = Nevada National Security Site; PM₁₀ = particulate matter with an aerodynamic diameter less than or equal to 10 micrometers; SO₂ = sulfur dioxide; VOC = volatile organic compound.
Table 5–39 Expanded Operations Alternative Construction Emissions of Criteria Pollutants and Hazardous Air Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>NNSS Construction for Work for Others</th>
<th>Nye County</th>
<th>Other NNSS Construction</th>
<th>Commuting by Construction Workers</th>
<th>Nye County</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On-NNSS</td>
<td>On-NNSS</td>
<td>On-NNSS</td>
<td>Clark County</td>
<td>On-NNSS</td>
<td>Off-NNSS</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>11.3 (61% from vehicles)</td>
<td>83.2</td>
<td>34.4 (12% from vehicles)</td>
<td>0.17</td>
<td>0.015</td>
<td>0.035</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>6.7</td>
<td>24.7</td>
<td>4.1</td>
<td>0.096</td>
<td>0.01</td>
<td>0.021</td>
</tr>
<tr>
<td>CO</td>
<td>92.2</td>
<td>125.6</td>
<td>56.6</td>
<td>16.8</td>
<td>1.4</td>
<td>3.9</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>100.9</td>
<td>220.9</td>
<td>62.0</td>
<td>3.6</td>
<td>0.33</td>
<td>0.83</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.09</td>
<td>0.48</td>
<td>0.06</td>
<td>0.041</td>
<td>0.0039</td>
<td>0.0078</td>
</tr>
<tr>
<td>VOCs</td>
<td>10.5*</td>
<td>23.8*</td>
<td>6.4*</td>
<td>0.6</td>
<td>0.044</td>
<td>0.13</td>
</tr>
<tr>
<td>Lead</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>0.00001</td>
<td>0.000012</td>
<td>0.000021</td>
</tr>
<tr>
<td>HAPs</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>0.044</td>
<td>0.0035</td>
<td>0.01</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NO$_x$ = nitrogen oxides; NNSS = Nevada National Security Site; PM$_x$ = particulate matter with an aerodynamic diameter less than or equal to x micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.

* VOC emissions were assumed to be equal to the hydrocarbon emissions.
Table 5–40 Expanded Operations Alternative Annual Average Emissions of Criteria Pollutants and Hazardous Air Pollutants from the Transport of Low-Level and Mixed Low-Level Radioactive Waste to the Nevada National Security Site

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Air Emissions (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low-Level and Mixed Low-Level Radioactive Waste Shipped via Mostly Rail</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>16.3</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>14.8</td>
</tr>
<tr>
<td>CO</td>
<td>50.6</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>229.3</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.5</td>
</tr>
<tr>
<td>VOC$_x$</td>
<td>9.5</td>
</tr>
<tr>
<td>Lead</td>
<td>0.0003</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td>321.1</td>
</tr>
<tr>
<td>HAPs</td>
<td>1.3</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NO$_x$ = nitrogen oxides; PM$_n$ = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.
Construction activities emissions. Short-term emissions are expected during construction of new buildings at the NNSS. A full list of all construction activities under the Expanded Operations Alternative can be found in Appendix D, Section D.2.1.2.1. Construction emissions from onsite activities at the NNSS are presented in Table 5–39. These emissions are for the first year of construction and represent the highest emission rates as construction activity is linear over the multi-year period of construction and mobile source emission factors are highest in the first year. The emissions would be dispersed over numerous locations on the NNSS; however, emissions from the commercial solar power generation facilities would be more concentrated in Area 25 of the NNSS. These emissions would not increase the ambient pollutant concentrations in Nye County above the ambient air quality standards. The construction emissions shown in Table 5–39 include steps to control fugitive dust emissions using best practices, as well as compliance with the requirements for controlling fugitive dust in accordance with the State of Nevada surface disturbance permit. Additional details are presented in Appendix D, Section D.2.1.2.1.

During the period of construction, most of the PM$_{2.5}$ emissions are from combustion of diesel-fueled construction equipment and vehicles. These diesel particulate matter emissions would be widely dispersed over the commercial solar power generation facilities. Screening-level air quality modeling of these emissions found that on an annual basis, the maximum annual average diesel particulate matter concentration on site was 0.57 micrograms per cubic meter. EPA has established an inhalation reference concentration level of 5 micrograms per cubic meter that is designed to protect against chronic noncarcinogenic health effects (EPA 2003). Thus, no adverse noncancer inhalation impacts are expected from the operation of the construction equipment and vehicles. EPA has identified that diesel particulate matter is likely to be a human carcinogen by inhalation, but has not established a carcinogenic unit risk because the exposure response data in human studies are considered too uncertain. Chapter 7, Section 7.8, identifies possible mitigation measures to reduce diesel particulate matter exposure.

Chemical release emissions. Chemical release experiments would be conducted within the same parameters described under the No Action Alternative and would comply with all applicable requirements of the NNSS Air Quality Operating Permit.

5.1.8.2.2 Radiological Air Quality

Except for the depleted uranium and radiotracer experiments, no activities under the Expanded Operations Alternative are expected to produce aboveground radiation via the air pathway beyond that documented for 2008 baseline conditions in Chapter 4, Section 4.1.8.3. Before conducting any activity that is designed to include an atmospheric release of radiological materials, the DOE/NNSA NSO would model the potential releases using CAP-88 (at a minimum, additional models may be used). If the results indicate a potential dose exceeding 0.1 millirem at the nearest boundary, the DOE/NNSA NSO would submit an application to construct to the Nevada Bureau of Air Pollution Control (with a copy to EPA) in compliance with 40 CFR Part 61 Subpart H (Section 61.96). The DOE/NNSA NSO would ensure that the cumulative annual dose to the nearest offsite individual remains within the NESHAPs standard of 10 millirem per year.

Explosive testing using depleted uranium. Radiological air releases are typically assessed using the CAP-88 model; however, that model and other EPA-approved models are designed for a nonexplosive, long-term, continuous release of radioactive material and would not be appropriate for the depleted uranium/high-explosives experiments, which are not continuous and are, by definition, highly explosive. The modeling of these experiments was performed with the MACCS2 computer code, as discussed in Appendix G. The results of the modeling are presented in Appendix G and Section 5.1.12.1. The maximum annual amount of materials allowed is 4,000 pounds of depleted uranium and 12,000 TNT-equivalent pounds of explosives across 20 tests. The typical single test was estimated to use 200 pounds of depleted uranium and 600 pounds of TNT-equivalent explosives. Modeling results from the typical single test and potential health impacts analyses are discussed in Section 5.1.12.1.2.
The modeling results show that no publicly accessible area would receive a radiation dose greater than the NESHAPs effective dose equivalent limit of 10 millirem per year.

Radiotracer experiments. Radiotracer experiments conducted at the NNSS may include up to 3 underground and 12 open-air experiments a year. Up to 4 different experiments may be conducted at the NNSS, including the following scenarios:

- **Explosive release of radioactive and stable gases:** These releases would consist of up to 10^{15} becquerels each of radioactive noble gases (xenon-127, xenon-131m, xenon-133, krypton 85, and argon-37) and 10,000 liters of stable gases (helium-3, sulfur hexafluoride, and stable xenon). The gases would be buried underground with explosive materials. Once detonated, the gases would travel to the surface through various physical processes. Continuous monitoring and sampling of surrounding atmospheric and soil conditions would be conducted.

- **Pressurized release of radioactive and stable gases:** Using the same gases as the explosive experiment, this experiment would pump the gas along with large quantities of air into a pressurized underground cavity and release the gas through various physical processes. The same monitoring and sampling would be conducted as with the explosive experiment.

- **Explosive release of radioactive particulates:** Shallow explosions would release up to 10^{15} becquerels each of short-lived radioactive particulates (rubidium-86, zirconium-95, technetium-99m, molybdenum-99, rubidium-103, cesium-136, barium-140, cerium-141, neodymium-147, and samarium-153). Gamma-ray survey instruments would be used to measure radiation. Contamination from these experiments would be short-lived, as each particulate has a half-life of less than 1 year.

- **Baseline survey of legacy contamination:** No new materials would be released under this experiment. High- and medium-resolution gamma-ray spectra would be measured.

A discussion of the potential radiological dose associated with these tracer experiments can be found in Section 5.1.12.1.

The modeling results show that the no publicly accessible area would receive a cumulative (explosive testing and radiotracer experiments) radiation dose greater than the NESHAPs dose equivalent limit of 10 millirem per year. See Section 5.1.12.1 for a discussion of worker exposure levels.

5.1.8.2.3 Climate Change

See Chapter 4, Section 4.1.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse gas emissions due to NNSS-related activities. Table 5–41 shows greenhouse gas emissions levels for NNSS-related activities under the Expanded Operations Alternative. The color coding in Table 5–41 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117) – blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by the NNSS (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–41 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.
Table 5–41 Expanded Operations Alternative Greenhouse Gas Emissions at the Nevada National Security Site in 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 27,558 Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>22,740</td>
<td>0.83</td>
</tr>
<tr>
<td>Natural gas heating</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other stationary sources, excluding air conditioning/refrigeration, natural gas heating, and sources related to the solar power generation facilities</td>
<td>596</td>
<td>0.02</td>
</tr>
<tr>
<td>Stationary sources related to solar power generation facility operation</td>
<td>18</td>
<td>0.01</td>
</tr>
<tr>
<td>Sulfur hexafluoride from refrigeration/air conditioning</td>
<td>550</td>
<td>0.02</td>
</tr>
<tr>
<td>Hydrofluorocarbons from refrigeration/air conditioning</td>
<td>260</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>24,164</td>
<td>0.88</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onsite government vehicles</td>
<td>6,540</td>
<td>0.24</td>
</tr>
<tr>
<td>Temporary construction vehicles not including solar facility vehicles</td>
<td>3</td>
<td>0.01</td>
</tr>
<tr>
<td>(about 3 years’ duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commuting by regular NNSS employees</td>
<td>11,916</td>
<td>0.43</td>
</tr>
<tr>
<td>Temporary construction vehicles from solar facility vehicles only</td>
<td>19,438</td>
<td>0.71</td>
</tr>
<tr>
<td>(about 3 years’ duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commuting by temporary solar power generation facility construction</td>
<td>1,717</td>
<td>0.06</td>
</tr>
<tr>
<td>employees (about 3 years’ duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous material and waste (nongovernment)</td>
<td>4,987</td>
<td>0.18</td>
</tr>
<tr>
<td>Commercial vendors</td>
<td>1,696</td>
<td>0.06</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES, excluding temporary construction vehicles and non-NNSS employee commuting</td>
<td>25,139</td>
<td>0.91</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES, including temporary construction vehicles and employee commuting</td>
<td>46,297</td>
<td>1.68</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>7,964</td>
<td>0.29</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>22,740</td>
<td>0.83</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>39,757</td>
<td>1.44</td>
</tr>
<tr>
<td>TOTAL, excluding temporary construction employee commuting and construction vehicles</td>
<td>49,303</td>
<td>1.79</td>
</tr>
<tr>
<td>TOTAL, including temporary construction employee commuting and construction vehicles</td>
<td>70,461</td>
<td>2.56</td>
</tr>
</tbody>
</table>

NNSS = Nevada National Security Site.

Overall, NNSS-related activities under the Expand Operations Alternative would create about 49,303 carbon-dioxide-equivalent tons of greenhouse gas emissions per year (70,461 when including temporary construction worker commuting and construction vehicles), which is about 79 percent over the threshold reporting level (155 percent when including temporary construction worker commuting and construction vehicles). This represents a net decrease over current greenhouse gas emissions (50,478 tons in 2008) of about 2 percent (1,175 carbon-dioxide-equivalent tons per year) over the 10-year horizon. Early in the period, it is possible that these greenhouse gas emissions may be slightly higher than current greenhouse gas emissions. Even with this relatively small change from current emission rates, these emissions would continue to contribute to global climate change.
LLW and MLLW may be transported to the NNSS under the Expanded Operations Alternative using either a truck-only or mostly rail scenario. Under the truck-only scenario, about 36,234 carbon-dioxide-equivalent tons of greenhouse gas emissions would be created per year. For the mostly rail scenario, about 4,987 carbon-dioxide-equivalent tons of greenhouse gas emissions would be created per year. This lower rate of greenhouse gas emissions is due to the greater energy efficiency of using rail to transport the waste.

5.1.8.3 Reduced Operations Alternative

5.1.8.3.1 Air Quality

This section addresses air quality impacts from stationary, mobile, and fugitive air pollutant sources that would occur within and outside the NNSS under the Reduced Operations Alternative.

Table 5–42 shows the midpoint (2015) annual air emissions for the criteria pollutants and hazardous air pollutants associated with various NNSS activities under the Reduced Operations Alternative. Most emissions are associated with mobile source activity (e.g., vehicles and portable construction equipment). The stationary source emissions include emissions resulting from the operation of a 100-megawatt commercial solar power generation facility that may be constructed under the Reduced Operations Alternative. Table 5–42 does not show construction-related emissions because these would be temporary. The midpoint year represents the average annual emissions over the 10-year planning period; however, these emissions are expected to continue beyond the 10-year period. The NNSS contribution to the emissions in Clark County would continue to be small and would decrease relative to 2008 emission levels (see Chapter 4, Table 4–41), except for VOCs, which would increase by 0.2 tons per year by 2015 due the widespread use of ethanol blends in southern Nevada. Only a small fraction of the sulfur dioxide and PM$_{10}$ emissions are from mobile sources so these air pollutants show a small overall increase relative to 2008 of 0.02 and 1.1 tons per year, respectively. This is due to the possible increase in activity at the NNSS under the Reduced Operations Alternative relative to low activity levels in 2008. These small increases are not expected to lead to any violations of the air quality standards in Nye County. Nitrogen oxide, carbon monoxide, and PM$_{10}$ emissions would all decrease in Clark County relative to 2008 emission levels by 14.1, 38.5, and 0.28 tons per year, respectively. The small increase in VOC emissions is from mobile sources and would be widely distributed over the Las Vegas Valley. Thus, this action would not contribute to or cause additional violations of the carbon monoxide, ozone, or PM$_{10}$ air quality standards. Appendix D, Section D.2.1.3.1, provides more detail regarding how these emissions were determined, as well as source-type and vehicle-type characterization data for mobile sources.

Under the Reduced Operations Alternative, LLW and MMLW would be transported to the NNSS using either a truck-only or mostly rail scenario. Table 5–43 shows the average annual air emissions for the criteria and hazardous air pollutants under these two scenarios. For all pollutants, the mostly rail scenario has much lower emissions than the truck-only scenario. This is due to the greater energy efficiency of using rail to transport the waste. Further details on the transport scenario can be found in Section 5.1.3.1.2. The majority of these emissions would occur outside of Nevada and would be widely distributed over various routes from the nine origin locations.
Table 5–42 Reduced Operations Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Nevada National Security Site in 2015

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Stationary Sources</th>
<th>Government-Owned Vehicles</th>
<th>NNSS Commuters</th>
<th>Commercial Vendors</th>
<th>Radiological Waste Trucks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>1.8</td>
<td>0.77</td>
<td>0.64</td>
<td>0.036</td>
<td>0.19</td>
<td>0.086</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>0.70</td>
<td>0.61</td>
<td>0.35</td>
<td>0.024</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>CO</td>
<td>1.6</td>
<td>26.3</td>
<td>59.3</td>
<td>3</td>
<td>16.8</td>
<td>0.32</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>3.6</td>
<td>6.7</td>
<td>11.1</td>
<td>0.62</td>
<td>3.1</td>
<td>0.86</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.10</td>
<td>0.071</td>
<td>0.16</td>
<td>0.0098</td>
<td>0.04</td>
<td>0.002</td>
</tr>
<tr>
<td>VOCs</td>
<td>1.1</td>
<td>0.45</td>
<td>1.6</td>
<td>0.57</td>
<td>0.47</td>
<td>0.089</td>
</tr>
<tr>
<td>Lead</td>
<td>0.0023</td>
<td>0.000028</td>
<td>0.000047</td>
<td>0.000003</td>
<td>0.00013</td>
<td>0.0000037</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td>8.9</td>
<td>34.9</td>
<td>73.2</td>
<td>4.3</td>
<td>20.7</td>
<td>1.4</td>
</tr>
<tr>
<td>HAPs</td>
<td>0.090</td>
<td>0.036</td>
<td>0.13</td>
<td>0.0058</td>
<td>0.038</td>
<td>0.013</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NO$_x$ = nitrogen oxides; NNSS = Nevada National Security Site; PM$_x$ = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.
Table 5–43 Reduced Operations Alternative Annual Average Emissions of Criteria Pollutants and Hazardous Air Pollutants from the Transport of Low-Level and Mixed Low-Level Radioactive Waste to the Nevada National Security Site

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Air Emissions (tons per year)</th>
<th>Low-Level and Mixed Low-Level Radioactive Waste Shipped via Mostly Rail</th>
<th>Low-Level and Mixed Low-Level Radioactive Waste Shipped via Truck Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td></td>
<td>4.5</td>
<td>21.5</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td></td>
<td>4.1</td>
<td>19.5</td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td>14.1</td>
<td>66.4</td>
</tr>
<tr>
<td>NO$_x$</td>
<td></td>
<td>63.8</td>
<td>300.6</td>
</tr>
<tr>
<td>SO$_2$</td>
<td></td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>VOCs</td>
<td></td>
<td>2.7</td>
<td>12.5</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td>0.0001</td>
<td>0.000</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td></td>
<td>89.3</td>
<td>421.2</td>
</tr>
<tr>
<td>HAPs</td>
<td></td>
<td>0.4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NO$_x$ = nitrogen oxides; PM$_{n}$ = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.
Construction Activities Emissions. Short-term emissions are expected during the construction of a 100-megawatt commercial solar power generation facility in Area 25 of the NNSS. Table 5–44 summarizes the emissions from the construction activities and from the construction workers commuting to and from the NNSS. These emissions are for the first year of construction and represent the highest emission rates as construction activity is linear over the multi-year period of construction and mobile source emission factors are highest in the first year. The construction emissions in Table 5–44 include steps to control fugitive dust emissions using best practices, as well as compliance with the requirements for controlling fugitive dust in accordance with the State of Nevada surface disturbance permit. Additional details are presented in Appendix D, Section D.2.1.3.1. These results are shown separately from those in Table 5–43 because they would last only a few years and are thus considered temporary.

Table 5–44 Reduced Operations Alternative Construction Emissions of Criteria Pollutants and Hazardous Air Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction on-NNSS</th>
<th>Commuting by Construction Workers</th>
<th>Nye County On-NNSS</th>
<th>Clark County</th>
<th>Nye County Off-NNSS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM\textsubscript{10}</td>
<td>8.3</td>
<td>0.088</td>
<td>0.0078</td>
<td>0.018</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>PM\textsubscript{2.5}</td>
<td>2.5</td>
<td>0.051</td>
<td>0.0054</td>
<td>0.011</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>12.5</td>
<td>9.0</td>
<td>0.77</td>
<td>2.1</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>21.9</td>
<td>1.9</td>
<td>0.18</td>
<td>0.44</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>0.050</td>
<td>0.022</td>
<td>0.0021</td>
<td>0.0042</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>VOCs</td>
<td>2.4</td>
<td>0.32</td>
<td>0.023</td>
<td>0.070</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Not applicable</td>
<td>0.00000054</td>
<td>0.00000062</td>
<td>0.0000011</td>
<td>0.0000071</td>
<td></td>
</tr>
<tr>
<td>HAPs</td>
<td>Not applicable</td>
<td>0.023</td>
<td>0.0018</td>
<td>0.0055</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NO\textsubscript{x} = nitrogen oxides; NNSS = Nevada National Security Site; PM\textsubscript{n} = particulate matter with an aerodynamic diameter less than or equal to \(n \) micrometers; SO\textsubscript{2} = sulfur dioxide; VOC = volatile organic compound.

5.1.8.3.2 Radiological Air Quality

No activities under the Reduced Operations Alternative are expected to produce aboveground radiation via the air pathway beyond that documented for 2008 baseline conditions in Chapter 4, Section 4.1.8.3.

5.1.8.3.3 Climate Change

See Chapter 4, Section 4.1.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse gas emissions due to NNSS-related activities. Table 5–45 shows greenhouse gas emissions levels for NNSS-related activities under the Reduced Operations Alternative. The color coding in Table 5–45 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117); blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by the NNSS (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–45 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.
Table 5–45 Reduced Operations Alternative Greenhouse Gas Emissions at the Nevada National Security Site in 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 27,558 Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>19,106</td>
<td>0.69</td>
</tr>
<tr>
<td>Natural gas heating</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other stationary sources, excluding air conditioning/refrigeration, natural gas heating, and sources related to the solar power generation facility</td>
<td>501</td>
<td>0.02</td>
</tr>
<tr>
<td>Stationary sources related to solar power generation facility operation</td>
<td>4</td>
<td>0.01</td>
</tr>
<tr>
<td>Sulfur hexafluoride from refrigeration/air conditioning</td>
<td>462</td>
<td>0.02</td>
</tr>
<tr>
<td>Hydrofluorocarbons from refrigeration/air conditioning</td>
<td>218</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>20,291</td>
<td>0.74</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onsite government vehicles</td>
<td>4,681</td>
<td>0.17</td>
</tr>
<tr>
<td>Temporary construction vehicles on site related to the solar power generation facility (about 3 years’ duration)</td>
<td>1,934</td>
<td>0.07</td>
</tr>
<tr>
<td>Commuting by regular NNSS employees</td>
<td>8,483</td>
<td>0.31</td>
</tr>
<tr>
<td>Commuting by temporary solar power generation facility construction employees (about 3 years’ duration)</td>
<td>840</td>
<td>0.03</td>
</tr>
<tr>
<td>Hazardous material and waste transport (nongovernment)</td>
<td>2,840</td>
<td>0.10</td>
</tr>
<tr>
<td>Commercial vendors</td>
<td>1,750</td>
<td>0.06</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES, excluding temporary construction vehicles and construction employee commuting</td>
<td>17,754</td>
<td>0.65</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES, including temporary construction vehicles and construction employee commuting</td>
<td>20,528</td>
<td>0.75</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>5,866</td>
<td>0.21</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>19,106</td>
<td>0.69</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>15,847</td>
<td>0.58</td>
</tr>
<tr>
<td>TOTAL, excluding temporary construction employee commuting and construction vehicles</td>
<td>38,045</td>
<td>1.38</td>
</tr>
<tr>
<td>TOTAL, including temporary construction employee commuting and construction vehicles</td>
<td>40,819</td>
<td>1.48</td>
</tr>
</tbody>
</table>

NNSS = Nevada National Security Site.

Overall, NNSS-related activities under the Reduced Operations Alternative would create about 38,045 carbon-dioxide-equivalent tons of greenhouse gas emissions per year (40,819 when including temporary construction worker commuting and construction vehicles), which is about 38 percent over the threshold reporting level (48 percent when including temporary construction worker commuting and construction vehicles). This represents a net reduction over current greenhouse gas emissions (50,478 tons in 2008) of about 25 percent, but these emissions would continue to contribute to global climate change.

LLW and MLLW may be transported to the NNSS under the Reduced Operations Alternative using either a truck-only or mostly rail scenario. Under the truck-only scenario, about 8,078 carbon-dioxide-equivalent tons of greenhouse gas emissions would be created per year. For the mostly rail scenario,
about 1,753 carbon-dioxide-equivalent tons of greenhouse gas emissions would be created per year. This lower rate of greenhouse gas emissions is due to the greater energy efficiency of using rail to transport the waste.

Air Quality and Climate—American Indian Perspective

Indian people know air can be destroyed, causing pockets of dead air. There is only so much alive air that surrounds the world. If you kill the living air, it is gone forever and cannot be restored.

Dead air lacks the spirituality and life necessary to support other life forms. Airplanes crash when they hit dead air. During a previous Consolidated Group of Tribes and Organizations (CGTO) evaluation of the area, one member of the CGTO compared this Indian view of killing air with what happens when a jet flies through the air and consumes all of the oxygen, producing a condition where another jet cannot fly through it.

As one tribal elder noted, “The spiritual journey of the Southern Paiute Salt Songs are affected as the air quality is not the same as in the days of old. This Salt Singer wonders what is going to happen if the situation isn’t corrected. Southern Paiutes need this spiritual journey to ascend their deceased to the next life.”

As people are emitting things into the air that are unnatural, such as radiation from atomic blasts or dust and debris from decontaminating and decommissioning old Nevada National Security Site (NNSS) buildings, climatic changes such as droughts are occurring because the air is being disrespected. As the air continues to be disrespected, it perpetuates and intensifies imbalance throughout the environment. This impacts many resources, including the land, soil, water, plants, and animals.

Dust devils in various forms and sizes are culturally significant to Indian people and known to bring harm. The CGTO knows the frequency and intensity of dust devils have increased within the NNSS and the surrounding area. Dust devils contain negative energy, and can disperse hazardous and radioactive contaminants from the soil at the NNSS. Their spirits can bring harm if the air is disrespected and if you watch it or allow them to come near or pass through you. If this occurs, a person will become ill and must seek cultural intervention to heal.

Some Indian people who were present during aboveground nuclear tests at the Nevada Test Site (now NNSS) believe that the sickness they have come from the radiation. To some of these people, the effects of the radiation were in addition to what happened when the air itself was killed. Some tribal elders believe that even when the plants survived the effects of radiation, the dead air killed many of them or made some lose their spiritual power to heal things.

As noted by tribal elders, “Sheep and other animals are being born out of season, which places them at greater risk from predators and from living full lives. Consequently, their loss adversely impacts our cultural survival, as many of our stories and traditions surround these animals. Weather is out of balance. For example, when it snows, one can also hear thunder. Native people observe the changed nature of the vegetation and blame the atmospheric change on the air quality from the bomb testing on the NNSS.”

The CGTO recognizes that climatic change is occurring and will continue to impact the natural resources of the NNSS and the surrounding region. When rain gauge data are averaged over a decade they can mask the reality that plants and animals are adjusted to regular cycles of rain and snow. Isolated heavy rain events can increase the annual rainfall amounts, but are largely not useful for sustaining life. Plants and animals need the climate to return to its historic, normal annual rainfall that is more evenly dispersed by season.

The CGTO knows that ceremonies have historically helped manage the climate in the NNSS region. Unfortunately, we have not been able to perform these ceremonies since the NNSS area was used for nuclear testing and our Holy Land continues to suffer. To facilitate the healing of this area, DOE must make provisions for the CGTO to access the land and perform these rituals, which are further described below.

See Appendix C for more details.
5.1.9 Visual Resources

This section describes the potential environmental impacts on visual resources under the No Action, Expanded Operations, and Reduced Operations Alternatives. As described in Chapter 4, the threshold for determining impacts are effects on the view from public vantage points, namely local roadways in the project vicinity, factored with viewer sensitivity (see Chapter 4, Figure 4–30). Therefore, only actions that would be visible to the public are discussed. For example, Environmental Restoration Program activities and operations would continue at the NNSS under all alternatives. Restoration efforts would demolish existing structures, restore the landscape to a natural-looking appearance, and improve existing visual resources associated with environmental restoration sites, which would have a beneficial effect. However, all of these activities and operations would occur out of the public viewshed; therefore, they are not discussed below.

An action may have an adverse effect if it alters or degrades the existing visual character, introduces a new source of light or glare, negatively affects a scenic vista or view, or negatively affects a view along a designated scenic route. There are no scenic routes near the NNSS, RSL, NLVF, or TTR.

5.1.9.1 No Action Alternative

Under the No Action Alternative, current activities and operations would continue. None of the current activities and operations would affect existing visual resources associated with the NNSS except construction of a solar power generation facility in Area 25. While viewer sensitivity would change from moderate to high (3,000 or more average annual daily traffic) near Mercury (4,980 average daily trips), views from U.S. Route 95 near Mercury would not be affected because ongoing current activities and operations would not affect existing visual resources. Portions of the study area visible from U.S. Route 95 and Amargosa Valley have a Class B scenic quality rating, as established in the 1996 NTS EIS (DOE 1996c). As described in Chapter 4, Section 4.1.9, Visual Resources, a Class B visual quality means that, “the visual environment is made up of a combination of outstanding natural and manmade physical features and those that are common to the region.”

Under this alternative, as represented by projected traffic volumes for the year 2020 (see Section 5.1.3), viewer sensitivity would remain moderate (1,000 to 2,999 average annual daily traffic) near the Area 25 Renewable Energy Zone (approximately 3,000 average daily trips). While some of this increase in traffic is associated with NNSS activities under this alternative, approximately 2,960 of the projected 3,000 average daily trips near the Renewable Energy Zone would occur without traffic related to NNSS activities and operations, and roadway viewers near Area 25 comprise mostly traffic unrelated to the NNSS.
The solar power generation facility would be composed of mirror solar fields (making up 90 percent of the facility footprint), power blocks, an office and maintenance building, parking area, laydown area, switchyard, stormwater detention basin(s), and an area designated for bioremediation of soil contaminated by heat transfer fluid, petroleum, or other process chemicals. Construction of this 240-megawatt solar power generation facility would introduce considerable infrastructure over approximately 2,400 acres of land in the Area 25 Renewable Energy Zone that would be directly visible in middleground (0.5 to 4 miles) views from U.S. Route 95 and Amargosa Valley. For purposes of this analysis, approximately 10 miles of new 230-kilovolt transmission line were assumed to be required to export power off site. The transmission line structures would likely be tall, single-poled or lattice steel structures. The transmission line would occur within the foreground and middleground of views from U.S. Route 95 or other sensitive viewing areas, resulting in an adverse visual effect because the transmission line would introduce industrial-looking features into a landscape largely absent of such views and where the existing utility lines, if present, are wooden-poled structures. The visibility of new steel poles associated with the transmission lines could be reduced by painting the structures so that they appear to recede into the surrounding environment (BLM 2008a) (refer to Chapter 7, Section 7.9, Visual Resources). Solar facilities also potentially could be seen from key observation points available from higher elevations within Death Valley National Park. Construction and operation of the commercial solar power generation facility would require a separate NEPA review (including a visual impacts analysis) if a specific design were proposed, including analysis of visual impacts on Death Valley National Park. DOE/NNSA would require a proponent for a commercial solar power generation project in Area 25 of the NNSS to work with Death Valley National Park to reduce these visual impacts.

Construction of the solar power generation facility would create temporary changes in views of Area 25. Construction activities would require vegetation removal and grading, have the potential to create dust clouds, and introduce considerable heavy equipment and associated vehicles into middleground views from U.S. Route 95 and Amargosa Valley. Dust control would be implemented during construction. The location of construction staging areas and associated facilities would also be visible in the middleground. Because construction would likely not occur over an extended period, visual changes resulting from construction are considered short-term and temporary. Viewers would not be accustomed to seeing construction in Area 25 because construction operations are not common in this portion of the study area. While construction would be temporary, visual effects would be adverse because viewers are moderately sensitive and construction is not a common visual element.

Operation of any concentrating solar power generation facility of this size would introduce a considerable source of glare from the reflective surfaces of the solar collectors, as well as use of nighttime lighting for security. It would also alter the existing visual character of the landscape, which is largely undeveloped, be visible to moderately sensitive viewers, and reduce the existing visual quality from a Class B to a Class C rating (meaning that, “the visual environment is made up of natural and manmade physical features that are common to the region”) because of the intrusion of manmade elements. There is no mitigation to reduce adverse effects associated with the proposed solar array; therefore, this effect is considered adverse and unavoidable. Visual resources Mitigation Measure 1, “Apply Minimum Lighting Standards” (refer to Chapter 7, Section 7.9, Visual Resources), would reduce the potential for overlighting facilities, but the introduction of nighttime light where none presently exists would be adverse and unavoidable.

5.1.9.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, new facilities would be built or existing facilities would be reconfigured, an existing electrical transmission line would be upgraded, and geothermal and solar renewable energy projects could be implemented at the NNSS. Portions of the study area visible from U.S. Route 95 and Amargosa Valley have a Class B scenic quality rating, as established in the 1996 NTS EIS (DOE 1996c). Under this alternative, as represented by projected traffic volumes for the year 2020 (see Section 5.1.3), viewer sensitivity would change from moderate to high near Mercury (5,310 average daily trips) and near the Area 25 Renewable Energy Zone (3,030 average daily trips). However, while
some of the increase near the Area 25 Renewable Energy Zone is associated with NNSS activities under this alternative, approximately 2,960 of the projected 3,030 average daily trips would occur without traffic related to the Expanded Operations Alternative. In addition, roadway viewers near Area 25 are composed mostly of traffic unrelated to the NNSS.

A new two-story, 85,000-square-foot security facility would be constructed in Area 23, replacing existing, outdated buildings, and would be visible in the background (4+ miles) from U.S. Route 95 near Mercury. Construction activities would not be very visible given the distance and presence of other structures that would screen most construction activities. Once built, this new security building would blend with existing buildings at this location and retain the existing visual character. There would be no adverse effects.

Approximately 200,000 square feet of additional facilities would be added at Desert Rock Airport near Mercury. These changes would include lengthening the existing runway and constructing new hangars and support facilities. Construction of these facilities would require vegetation removal and grading, has the potential to create dust clouds, and would introduce considerable heavy equipment and associated vehicles into midground views from U.S. Route 95. Dust control would be implemented during construction. The location of construction staging areas and associated facilities would also be visible in the midground. Because construction would not likely occur over an extended period, visual changes resulting from construction are considered short-term and temporary. Viewers would not be accustomed to seeing construction at this location because construction operations are not common in this portion of the study area. While construction would be temporary, visual effects would be adverse because viewers are highly sensitive and construction is not a common visual element. Once in operation, these features would be visible in the midground of views from U.S. Route 95, be visible to highly sensitive viewers, introduce nighttime lighting for security, have an adverse effect on visual resources because of the intrusion of manmade elements, and reduce the existing visual quality from a Class B to a Class C rating. This could introduce an adverse effect based on the presence of sensitive receptors and the distance from receptors. Visual resources Mitigation Measure 1, “Apply Minimum Lighting Standards” (refer to Chapter 7, Section 7.9, Visual Resources), would reduce the potential for overlighting facilities, but the introduction of nighttime light where none presently exists would be adverse and unavoidable. The scale and coloring of facilities would play a large part in the visual prominence of the new facilities. The BLM measure of reducing the visibility of new structures (BLM 2008a) would help reduce the visual appearance of such facilities from U.S. Route 95 by painting buildings and structures or using materials to make them appear to recede into the surrounding environment (refer to Chapter 7, Section 7.9, Visual Resources), but the effects would be adverse and unavoidable.

The existing 138-kilovolt electrical transmission line and poles would be upgraded between Mercury and Valley Substation in Area 2, paralleling the existing wooden-poled transmission line with a single steel pole structure. The upgraded transmission line would occur within the background of views from U.S. Route 95. Although a different material is being used, a visual change would not be substantial because a single pole structure similar to the existing structure would be used and the distance would make these changes imperceptible from U.S Route 95. The existing line and poles would be removed and the new line would not alter the existing visual character. Effects would not be adverse.

The existing Mercury would be reconfigured under the Expanded Operations Alternative. Demolition of specific facilities and construction of new facilities would not greatly alter the existing visual character or degrade the existing visual quality because new buildings would blend with the existing buildings at this location and would not create a new, substantial source of nighttime lighting. This would retain the existing visual character. In addition, modifications would be indiscernible due to the distance from U.S. Route 95, which is over 4 miles from the roadway. Effects would not be adverse.

Under the Expanded Operations Alternative, a small 5-megawatt photovoltaic solar power generation facility would be built on 50 acres of land in Area 6, but would not be visible from public vantage points. This small photovoltaic solar power generation facility also would not likely be seen from viewpoints in
Death Valley National Park due to the presence of mountainous terrain in the western portion of the NNSS. In addition, because this facility would use a photovoltaic system instead of mirrors, the level of reflectivity would be substantially less than that of a concentrating solar power generation facility.

Construction and operation of one or more commercial solar power generation facilities with a combined 1,000-megawatt capacity in Area 25 would have adverse visual effects because the facility(ies) would introduce considerable infrastructure over approximately 10,000 acres of land, a large portion of which would be directly visible in middleground views from U.S. Route 95 (see Chapter 3, Figure 3–2). Portions of the study area visible from U.S. Route 95 and Amargosa Valley have a Class B scenic quality rating, and viewer sensitivity is high. Construction and operation of such commercial solar power generation facility(ies) would require a separate NEPA review (including a visual impacts analysis) if a specific design were proposed, including analysis of visual impacts on Death Valley National Park. DOE/NNSA would require a proponent for a commercial solar power generation project on the NNSS to work with Death Valley National Park to reduce these visual impacts.

Construction of the solar power generation facility(ies) would create temporary changes in views of Area 25. Construction activities would require vegetation removal and grading, have the potential to create dust clouds, and introduce considerable heavy equipment and associated vehicles into middleground views from U.S. Route 95 and Amargosa Valley. Dust control would be implemented during construction. The location of construction staging areas and associated facilities would also be visible in the middleground. Because construction would not likely occur over an extended period, visual changes resulting from construction are considered short-term and temporary. Viewers would not be accustomed to seeing construction in Area 25 because construction operations are not common in this portion of the study area. While construction would be temporary, visual effects would be adverse because viewers are highly sensitive and construction is not a common visual element.

Approximately 10 miles of new 500-kilovolt transmission line were assumed to be required to export power off site from commercial solar power generation facilities. The transmission line structures would likely be tall, single-poled or lattice steel structures. The transmission line would occur within the foreground and middleground of views from U.S. Route 95 or other sensitive viewing areas, resulting in an adverse visual effect because the transmission line would introduce industrial-looking features into a landscape largely absent of such views and where the existing utility lines, if present, are wooden-poled structures. The visibility of new steel poles associated with the transmission lines could be reduced by implementing the BLM measure of painting the structures to make them appear to recede into the surrounding environment (BLM 2008a) (refer to Chapter 7, Section 7.9, Visual Resources). The solar facilities also potentially could be seen from key observation points available from higher elevations within Death Valley National Park. As described above, DOE/NNSA would require a proponent for a commercial solar power generation project in Area 25 of the NNSS to work with Death Valley National Park to reduce these visual impacts.

Operation of the concentrating solar power generation facility(ies) would introduce a considerable source of glare from the reflective surfaces of the solar collectors, as well as use of nighttime lighting for security. It would also alter the existing visual character of the landscape, which is largely undeveloped, and reduce the existing visual quality from a Class B to a Class C rating because of the intrusion of manmade elements. Visual resources Mitigation Measure 1, “Apply Minimum Lighting Standards” (refer to Chapter 7, Section 7.9, Visual Resources), would reduce the potential for overlighting facilities, but the introduction of nighttime light where none presently exists would be adverse and unavoidable. There is no mitigation to reduce adverse effects associated with the proposed solar array; therefore, this effect is considered adverse and unavoidable. No mitigation is proposed.

A Geothermal Demonstration Project would introduce facilities associated with capturing, converting, and transferring geothermal power, such as a power plant, transmission lines, and associated infrastructure, that would occur over 30 to 50 acres of land. If facilities were built along U.S. Route 95, they would be visible in the foreground or middleground from U.S. Route 95 and Amargosa Valley and
potentially introduce built features and nighttime lighting into a landscape where none presently exists, altering the existing visual character and reducing visual quality. This could introduce an adverse effect based on the presence of sensitive receptors and distance from receptors. Visual resources Mitigation Measure 1, “Apply Minimum Lighting Standards” (refer to Chapter 7, Section 7.9, Visual Resources) would reduce the potential for overlighting facilities, but the introduction of nighttime light where none presently exists would be adverse and unavoidable. The BLM measure of reducing the visibility of new structures would help reduce the visual appearance of such facilities from U.S. Route 95 by painting buildings and structures or using materials to make them appear to recede into the surrounding environment (BLM 2008a) (refer to Chapter 7, Section 7.9, Visual Resources), but effects would be adverse and unavoidable.

5.1.9.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, while viewer sensitivity would change from moderate to high near Mercury (4,880 average daily trips), there would be no change to existing buildings visible at the NNSS or to the existing visual environment from activities and operations. Under this alternative, as represented by projected traffic volumes for the year 2020 (see Section 5.1.3), viewer sensitivity would remain moderate near the Area 25 Renewable Energy Zone (2,980 average daily trips). Approximately 2,960 of the projected 2,980 average daily trips would occur without traffic related to the Reduced Operations Alternative, and roadway viewers near Area 25 are mostly composed of traffic unrelated to the NNSS. Under the Reduced Operations Alternative, construction of a commercial solar power generation facility in Area 25 may occur and have adverse visual effects because the facility would introduce considerable infrastructure over approximately 1,200 acres of land for a 100-megawatt facility, a large portion of which would be directly visible in middleground views from U.S. Route 95 (see Chapter 3, Figure 3–3). Portions of the study area visible from U.S. Route 95 have a Class B scenic quality rating and viewer sensitivity is moderate. In addition, this solar facility potentially could be seen from key observation points available from higher elevations within Death Valley National Park. Construction of the commercial solar power generation facility would require a separate NEPA review (including a visual impacts analysis) if a specific design were proposed, including analysis of visual impacts on Death Valley National Park. DOE/NNSA would require a proponent for a commercial solar power generation project on the NNSS to work with Death Valley National Park to reduce these visual impacts.

Operation of any concentrating solar power generation facility of this size would introduce a considerable source of glare from the reflective surfaces of the solar collectors, as well as use of nighttime lighting for security. It would also alter the existing visual character of the landscape, which is largely undeveloped, and reduce the existing visual quality from a Class B to a Class C rating because of the intrusion of manmade elements. There is no mitigation to reduce adverse effects associated with the proposed solar array; therefore, this effect is considered adverse and unavoidable. Visual resources Mitigation Measure 1, “Apply Minimum Lighting Standards” (refer to Chapter 7, Section 7.9, Visual Resources), would reduce the potential for overlighting facilities, but the introduction of nighttime light where none presently exists would be adverse and unavoidable.
5.1.10 Cultural Resources

Cultural resources include prehistoric and historic archaeological districts, sites, buildings, structures, or objects created or modified by human activity. Cultural resources also include traditional cultural properties—properties that are eligible for inclusion on the National Register of Historic Places (NRHP) because of their association with cultural practices or beliefs of a living community that are (a) rooted in that community’s history and (b) important in maintaining the continuing cultural identity of the community (Parker and King 1998). Under Federal regulations, a significant cultural resource designated a “historic property” warrants consideration with regard to potential adverse impacts resulting from proposed Federal actions (DOE 2002e). A cultural resource is a historic property if its attributes make it eligible for listing in the NRHP. Federal agencies also are required to consider the effects of their actions on sites, locations, and other resources that are of cultural or religious significance to American Indians, as established under the 1978 American Indian Religious Freedom Act. American Indian graves, associated funerary objects, and objects of cultural patrimony are protected by the 1990 Native American Graves Protection and Repatriation Act (Public Law [P.L.] 101-601).

The ROI for cultural resources is the geographic area or areas within which an undertaking may directly or indirectly cause alterations in the character or use of historic properties, if any such properties exist. Based on current knowledge of cultural resources in the region, all undisturbed areas could potentially contain cultural resources.

Cultural resources impacts in this SWEIS are assessed based on the estimated number of sites that may be affected by land-disturbing activities associated with ongoing and proposed projects at the NNSS, the TTR, and environmental restoration sites on the Nevada Test and Training Range. Estimates are based on the site densities of known cultural resources in each hydrographic basin; these density values were extrapolated to estimate the number of sites that may exist in each hydrographic basin where program facilities and activities may be located. Those impacts would affect cultural resources sites in general (both prehistoric and historic), as well as sites that would be considered eligible for inclusion on the NRHP. An area’s potential for containing cultural resources sites is strongly site-specific and is influenced by factors such as presence of water, a food source, shelter (i.e., caves or rock alcoves), a source of materials for building shelters, and less tangible but equally important factors such as features that may have spiritual value to a culture. While all areas of the NNSS have the potential to possess cultural resources, areas with the highest number of recorded cultural resources are Rainier and Pahute Mesas in the northwest (largely within the Fortymile Canyon–Buckboard Mesa Hydrographic Basin), followed by Jackass Flats in the southwest (within the Fortymile Canyon–Jackass Flats Hydrographic Basin) and Yucca Flat in the east (within the Yucca Flat Hydrographic Basin) (DOE 2010a). In general, any new development on the NNSS would be located near or in similar terrain as existing facilities for which cultural resources surveys have been conducted. Although it is not possible to predict with a high degree of certainty the potential for a particular area to contain cultural resources, the record provided by cultural resources surveys conducted at the NNSS provides a means to estimate site densities and, therefore, the likelihood of encountering a cultural resources site within a given hydrographic basin. By multiplying the acres that would be disturbed within a particular hydrographic basin by the calculated site density for that basin, the number of sites that may be affected was estimated for this SWEIS. There are a number of uncertainties associated with this approach; however, it is adequate for the purpose of estimating potential cultural resources impacts at the NNSS resulting from ongoing and proposed activities addressed in this SWEIS. Table 5–46 provides the site densities (in number of sites per acre) for each hydrographic basin on the NNSS that were used in this analysis.
<table>
<thead>
<tr>
<th>Hydrographic Basin</th>
<th>Acres Surveyed</th>
<th>Number of Prehistoric Sites</th>
<th>Prehistoric Sites per Acre</th>
<th>Number of Historic Sites</th>
<th>Historic Sites per Acre</th>
<th>Untyped Sites</th>
<th>Untyped Sites per Acre</th>
<th>Total Sites</th>
<th>Total Sites per Acre</th>
<th>NRHP-Eligible Sites</th>
<th>NRHP Sites per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury Valley</td>
<td>338</td>
<td>3</td>
<td>0.009</td>
<td>3</td>
<td>0.009</td>
<td>0</td>
<td>0.0</td>
<td>6</td>
<td>0.018</td>
<td>2</td>
<td>0.006</td>
</tr>
<tr>
<td>Rock Valley</td>
<td>445</td>
<td>18</td>
<td>0.040</td>
<td>1</td>
<td>0.002</td>
<td>0</td>
<td>0.0</td>
<td>19</td>
<td>0.043</td>
<td>4</td>
<td>0.009</td>
</tr>
<tr>
<td>Fortymile Canyon–Jackass Flats</td>
<td>575</td>
<td>367</td>
<td>0.640</td>
<td>16</td>
<td>0.055</td>
<td>9</td>
<td>0.031</td>
<td>392</td>
<td>0.680</td>
<td>120</td>
<td>0.210</td>
</tr>
<tr>
<td>Fortymile Canyon–Buckboard Mesa</td>
<td>6,138</td>
<td>445</td>
<td>0.073</td>
<td>3</td>
<td>0.001</td>
<td>54</td>
<td>0.009</td>
<td>502</td>
<td>0.082</td>
<td>346</td>
<td>0.056</td>
</tr>
<tr>
<td>Oasis Valley</td>
<td>3,477</td>
<td>125</td>
<td>0.036</td>
<td>1</td>
<td>0.03</td>
<td>2</td>
<td>0.001</td>
<td>128</td>
<td>0.037</td>
<td>49</td>
<td>0.014</td>
</tr>
<tr>
<td>Gold Flat</td>
<td>6,371</td>
<td>264</td>
<td>0.041</td>
<td>3</td>
<td>0.001</td>
<td>1</td>
<td>0.00001</td>
<td>268</td>
<td>0.042</td>
<td>169</td>
<td>0.027</td>
</tr>
<tr>
<td>Kawich Valley</td>
<td>2,635</td>
<td>72</td>
<td>0.083</td>
<td>2</td>
<td>0.0</td>
<td>8</td>
<td>0.0</td>
<td>82</td>
<td>0.083</td>
<td>58</td>
<td>0.0</td>
</tr>
<tr>
<td>Emigrant Valley/Groom Lake Valley</td>
<td>60</td>
<td>5</td>
<td>0.083</td>
<td>5</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>5</td>
<td>0.083</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Yucca Flat</td>
<td>9,030</td>
<td>309</td>
<td>0.034</td>
<td>69</td>
<td>0.008</td>
<td>17</td>
<td>0.002</td>
<td>395</td>
<td>0.044</td>
<td>176</td>
<td>0.020</td>
</tr>
<tr>
<td>Frenchman Flat</td>
<td>9,047</td>
<td>109</td>
<td>0.012</td>
<td>45</td>
<td>0.005</td>
<td>0</td>
<td>0.0</td>
<td>154</td>
<td>0.017</td>
<td>58</td>
<td>0.006</td>
</tr>
<tr>
<td>Totals</td>
<td>38,116</td>
<td>1,717</td>
<td>0.045</td>
<td>143</td>
<td>0.004</td>
<td>91</td>
<td>0.002</td>
<td>1,951</td>
<td>0.051</td>
<td>982</td>
<td>0.026</td>
</tr>
</tbody>
</table>

NRHP = National Register of Historic Places.

* Source: Chapter 4, Table 4–47.
Cultural resources impacts would potentially occur as a result of activities that involve modification of buildings and ground disturbance in previously undisturbed locations. These impacts would occur through drilling; grading; excavation; fencing; training and exercises in remote areas; cleanup activities; construction of buildings, roads, firebreaks, and utilities; and building modification, decontamination, or demolition. Vehicular and pedestrian access to areas containing cultural resources would increase the potential for vandalism or unauthorized artifact collection to occur that could affect archaeological sites and archaeologically sensitive areas.

Although increased access to areas containing cultural resources could raise the potential for vandalism or unauthorized artifact collection, these are impacts that cannot be reasonably estimated; however, by not disclosing cultural resources site locations and administrative controls, the DOE/NNSA NSO would reduce these kinds of impacts to the maximum extent possible.

The precise number of cultural resources affected by the DOE/NNSA NSO activities will be unknown until cultural resource studies are completed prior to program activities described under the three alternatives. Cultural resource surveys and Section 106 consultations would be completed prior to ground-disturbing activities in previously unsurveyed areas, and impacts on sites eligible for listing in the NRHP would be avoided or mitigated through measures described in Chapter 7. Historic NNSS buildings and structures designated for modification, decommissioning, or demolition would be evaluated for historical significance, and impacts on those buildings and structures eligible for listing in the NRHP would be mitigated through measures described in Chapter 7.

The estimated cultural resources impacts do not take into account that, for many project sites, impacts would be avoided completely by identifying their locations during Section 106 surveys and relocating or redesigning project features. In addition, this analysis does not take into account mitigation measures that may reduce potential impacts on significant cultural resources to a “no adverse effect” level.

In addition to impacts from DOE/NNSA activities, the development of one or more commercial solar power generation facilities within the Fortymile Canyon–Jackass Flats Hydrographic Basin under each of the alternatives and a Geothermal Demonstration Project under the Expanded Operations Alternative would affect additional cultural resources. There is no specific schedule for constructing either solar power generation facilities or a Geothermal Demonstration Project at the NNSS. Under the No Action Alternative, up to 2,650 acres of previously undisturbed land in the Fortymile Canyon–Jackass Flats Hydrographic Basin, would be disturbed for a solar power generation facility, which would affect an estimated 3,511 cultural resources sites, 1,089 of which are eligible for inclusion on the NRHP. Under the Expanded Operations Alternative, up to 10,300 acres of previously undisturbed land would be disturbed for one or more solar power generation facilities, affecting an estimated 13,647 cultural resources sites, 4,233 of which are eligible for inclusion on the NRHP. A Geothermal Demonstration Project would disturb up to 50 acres of land and result in impacts on an estimated two cultural resources sites, one of which would be NRHP-eligible. Under the Reduced Operations Alternative, up to 1,200 acres would be disturbed for a solar power generation facility, affecting an estimated 1,590 cultural resources sites, 493 of which would be eligible for inclusion on the NRHP. This SWEIS addresses the potential impacts of such a project to enable DOE/NNSA to make a decision about whether to make land and infrastructure currently under DOE/NNSA control available for use by a commercial entity.

The following discussion of potential cultural resources impacts resulting from DOE/NNSA activities under each of the three alternatives addressed in this SWEIS evaluates the impacts by mission and program under each of the three alternatives. Most of the above discussion applies to sections of this SWEIS that address cultural resources impacts at RSL, NLVF, the TTR, and environmental restoration sites on the Nevada Test and Training Range.
5.1.10.1 No Action Alternative

Table 5–47 displays the estimated number of cultural resources sites that potentially would be affected by DOE/NNSA activities at the NNSS and environmental restoration sites on the Nevada Test and Training Range under the No Action Alternative. Overall, under the No Action Alternative, 4,460 acres of land would be disturbed, with impacts on an estimated 1,855 cultural resources sites, 575 of which would be eligible for inclusion on the NRHP. This overall total includes both DOE/NNSA activities and a potential 240-megawatt commercial solar power generation facility and associated transmission lines, as discussed below in Section 5.1.10.1.3. DOE/NNSA activities would disturb up to 1,810 acres of land and affect an estimated 53 cultural resources sites. About 18 affected cultural resources sites would be eligible for inclusion on the NRHP. Mission- and program-level impacts on cultural resources under the No Action Alternative are addressed in the following discussion.

5.1.10.1.1 National Security/Defense Mission

National Security/Defense Mission activities occur at a variety of locations on the NNSS, but primarily in the Yucca Flat and Frenchman Flat Hydrographic Basins and, to a lesser extent, in the Fortymile Canyon–Jackass Flats Basin. Under the No Action Alternative, National Security/Defense Mission activities at the NNSS would disturb up to 700 acres of previously undisturbed land. This level of land disturbance would potentially affect an estimated 24 cultural resources sites, 10 of which may be eligible for inclusion on the NRHP.

Stockpile Stewardship and Management Program. Stockpile Stewardship and Management Program activities occur primarily at existing facilities within the Yucca Flat and Frenchman Flat Hydrographic Basins. Although most Stockpile Stewardship and Management Program activities are conducted at existing facilities, some activities have the potential to disturb previously undisturbed areas and affect cultural resources. These include high-explosives experiments at locations other than BEEF, drillback operations, and Office of Secure Transportation training and exercises. These potential Stockpile Stewardship and Management Program activities would disturb up to 685 acres of previously undisturbed land and affect an estimated 21 cultural resources sites. Of those potentially affected cultural resources sites, an estimated 9 would be eligible for inclusion on the NRHP.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. The NNSS would provide research, development, and training in support of the Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs, including arms control and improvised nuclear device dispositioning and forensics activities. Most of these activities would occur at existing facilities. No new facilities would be constructed, but existing buildings likely would be modified. Structural modifications would have the potential to affect potentially historic buildings. Such impacts on historic buildings would be mitigated using the measures identified in Chapter 7.

Releases of chemicals and biological simulants could occur throughout the NNSS, but would most likely occur in areas within the Yucca Flat, Frenchman Flat, and Fortymile Canyon–Jackass Flats Hydrographic Basins. Although many of these activities would be conducted at existing facilities or disturbed areas, for purposes of this analysis, it was assumed that all would occur on previously undisturbed land. These release activities would potentially disturb up to 15 acres of previously undisturbed land and affect an estimated three cultural resources sites, one of which would be eligible for inclusion on the NRHP.

Work for Others Program. Under the No Action Alternative, Work for Others Program activities would not disturb previously undisturbed land areas.
Table 5–47 No Action Alternative – Estimated Number of Potentially Affected Cultural Resources Sites on the Nevada National Security Site and Nevada Test and Training Range (except Tonopah Test Range)

<table>
<thead>
<tr>
<th>Program</th>
<th>Area Disturbed (acres)</th>
<th>Assumed Primary Locations of Activities by Hydrographic Basin</th>
<th>Number of Sites</th>
<th>Number of NRHP- Eligible Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpile Stewardship and Management</td>
<td>343</td>
<td>Frenchman Flat</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>343</td>
<td>Yucca Flat</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Nuclear Emergency Response, Nonproliferation, and Counterterrorism</td>
<td>5</td>
<td>Frenchman Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Yucca Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Fortymile Canyon–Jackass Flats</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Work for Others</td>
<td>None</td>
<td>Frenchman Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yucca Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mercury Valley</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fortymile Canyon–Jackass Flats</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total National Security/Defense Mission</td>
<td>700</td>
<td></td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>Waste Management (Area 5 RWMC)</td>
<td>190</td>
<td>Frenchman Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Environmental Restoration Soils Project</td>
<td>320</td>
<td>Frenchman Flat</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Yucca Flat</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Environmental Restoration Underground Test Area Project</td>
<td>167</td>
<td>Frenchman Flat</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>Yucca Flat</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>Oasis Valley</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Total Environmental Management Mission</td>
<td>1,110</td>
<td></td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td>General Site Support and Infrastructure</td>
<td>None</td>
<td>Frenchman Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yucca Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Renewable Energy (DOE/NNSA)</td>
<td>None</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Nondefense Mission</td>
<td>None</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total DOE/NNSA</td>
<td>1,810</td>
<td></td>
<td>53</td>
<td>18</td>
</tr>
<tr>
<td>240-MW Commercial Solar Power Generation Facility</td>
<td>2,650</td>
<td>Fortymile Canyon–Jackass Flats</td>
<td>1,802</td>
<td>557</td>
</tr>
<tr>
<td>Total Non-DOE/NNSA</td>
<td>2,650</td>
<td></td>
<td>1,802</td>
<td>557</td>
</tr>
<tr>
<td>Total</td>
<td>4,460</td>
<td></td>
<td>1,855</td>
<td>575</td>
</tr>
</tbody>
</table>

MW = megawatts; NRHP = National Register of Historic Places; RWMC = Radioactive Waste Management Complex.

a Where a program could affect multiple hydrographic basins, if the potentially disturbed area for the basin was known, it was used; if not, the total potentially disturbed acres for that program were equally apportioned among the affected basins. Area disturbed for each program may not add up to the total area disturbed for its applicable mission due to rounding.

b The number of sites was calculated by multiplying the number of acres potentially disturbed by the Total Sites Per Acre or NRHP Sites Per Acre columns, as appropriate, from Table 5–46. Where programs could occur in more than one hydrographic basin, the range of numbers of potentially affected cultural resources sites was used.

c Calculated value less than 0.5 sites per acre.

d The 740-acre Area 5 RWMC has been surveyed for cultural resources and no NRHP-eligible sites were found.

e The Small Boy and Project 57 sites are disturbed, but are considered by the DOE/NNSA Nevada Site Office to be historically significant sites.

f The site density for the Underground Test Area Project on the Nevada Test and Training Range was assumed to be the same as the density for the Oasis Valley Hydrographic Basin because most of the groundwater characterization and monitoring wells that would be developed on U.S. Air Force land would be adjacent to the northwestern portions of the Nevada National Security Site.
5.1.10.1.2 Environmental Management Mission

Activities under the Environmental Management Mission would potentially disturb up to 1,110 acres of previously undisturbed land. However, for reasons discussed for the separate programs, the estimated number of potentially affected cultural resources sites would be 29, lower than expected, with 9 of those sites eligible for inclusion on the NRHP.

Waste Management Program. Under the No Action Alternative, waste management facilities would be operated in Areas 5, 6, 9, 11, and 23. The Area 5 RWMC would continue to operate within the 740-acre area set aside for waste management and would be the only waste management facility that would disturb previously undisturbed land at the NNSS. Up to 190 acres of land would be disturbed for disposal of LLW and MLLW. The entire 740-acre Area 5 RWMC has been surveyed for cultural resources and no significant cultural resources were found. Therefore, Waste Management Program activities under the No Action Alternative would not affect significant cultural resources.

Environmental Restoration Program. Drilling of groundwater characterization and monitoring wells would occur on the NNSS and Nevada Test and Training Range. Development of these wells has the potential to disturb up to 500 acres of previously undisturbed land and affect an estimated 16 cultural resources sites, 6 of which would be eligible for inclusion on the NRHP. Ground-disturbing soils remediation project activities would occur at the Small Boy site in the Frenchman Flat area and at the Project 57 site on the Nevada Test and Training Range. The DOE/NNSA NSO considers both of these sites eligible for inclusion on the NRHP, although the State Historic Preservation Office has not been formally consulted. When such consultation occurs, if the State Historic Preservation Office concurs with the DOE/NNSA NSO’s determination, appropriate mitigation measures would be implemented, as discussed in Chapter 7. However, based on calculated site densities in the two affected basins (Frenchman Flat and Emigrant Valley), 13 resources sites may be impacted by Soils Project activities, 2 of which may be eligible for inclusion on the NRHP. The Industrial Sites Project includes identifying and decontaminating and/or decommissioning facilities through clean closure or closure in place. Actions associated with the Industrial Sites Project have the potential to cause the alteration or neglect of a historic building, thereby affecting the character-defining features that make the building eligible for listing in the NRHP. Before performing any actions that would adversely affect these buildings, the DOE/NNSA NSO would conduct appropriate surveys and consultations pursuant to Section 106 of the National Historic Preservation Act (NHPA) (16 U.S.C. 470 et seq.) and take mitigative actions, as discussed in Chapter 7.

5.1.10.1.3 Nondefense Mission

DOE/NNSA activities under the Nondefense Mission are not expected to impact cultural resources; however, development of up to 240 megawatts of solar energy generation by commercial interests would impact cultural resources, as discussed below, under the Conservation and Renewable Energy Program.

General Site Support and Infrastructure Program. Under the No Action Alternative, small projects to maintain and repair NNSS facilities would occur at existing facilities in previously disturbed areas and would not affect archaeological resources. However, modification of potentially historic buildings would affect potentially historic structures that are not yet evaluated for eligibility for the NRHP.

Conservation and Renewable Energy Program. DOE/NNSA would undertake measures to increase energy efficiency, fuel efficiency, and water conservation. These actions would occur on existing facilities, some of which may be considered historic properties.

In addition to improving energy efficiency, fuel efficiency, and water conservation at existing facilities, under the No Action Alternative, DOE/NNSA would also consider allowing development of a commercial 240-megawatt solar power generation facility in Area 25 of the NNSS. Such a facility would also require an additional electrical transmission line to interconnect with the existing main transmission system to the south of the NNSS. A total of about 10 miles of new transmission line, disturbing about
250 acres of previously undisturbed land off the NNSS, was assumed in this analysis. The commercial solar power generation facility and associated transmission line would disturb a total of about 2,650 acres of land and affect an estimated 1,802 cultural resources sites, of which 557 would be considered eligible for inclusion on the NRHP.

Other Research and Development Programs. The Nevada National Environmental Research Park in Area 5 contains two existing facilities used to support outside scientific research on long-term environmental health. Future research programs could include activities, such as habitat reclamation and remediation, that have the potential to affect cultural resources because of ground disturbance and increased access to previously undisturbed land. There are no such projects proposed at this time; if there were, they would be evaluated on a case-by-case basis, and all appropriate steps would be taken pursuant to Section 106 of the NHPA.

5.1.10.2 Expanded Operations Alternative

As shown in Table 5–48, under the Expanded Operations Alternative, DOE/NNSA activities at the NNSS and environmental restoration sites on the Nevada Test and Training Range would disturb up to 25,877 acres of previously undisturbed land, including about 10,300 acres for one or more commercial solar power generation facilities and associated transmission lines (discussed in Section 5.1.10.2.3). This would affect an estimated 7,688 cultural resources sites, 2,447 of which would be eligible for inclusion on the NRHP. DOE/NNSA activities would potentially affect 682 cultural resources sites, 283 of which would be eligible for inclusion on the NRHP. Mission- and program-level impacts on cultural resources are addressed in the following discussion.

5.1.10.2.1 National Security/Defense Mission

National Security/Defense Mission activities occur at a variety of locations on the NNSS, but primarily in the Yucca Flat and Frenchman Flat Hydrographic Basins and, to a lesser extent, in the Fortymile Canyon–Jackass Flats Basin. Under the Expanded Operations Alternative, National Security/Defense Mission activities at the NNSS would disturb up to 13,455 acres of previously undisturbed land. This land disturbance would potentially affect an estimated 624 cultural resources sites. Of those sites, 265 would be eligible for inclusion on the NRHP.

Stockpile Stewardship and Management Program. As under the No Action Alternative, Stockpile Stewardship and Management Program activities under the Expanded Operations Alternative would occur primarily at existing facilities within the Yucca Flat and Frenchman Flat Hydrographic Basins. Although most Stockpile Stewardship and Management Program activities would be conducted at existing facilities, some activities could potentially disturb previously undisturbed areas and affect cultural resources. These include high-explosives experiments at locations other than BEEF, drillback operations, and Office of Secure Transportation training and exercises along NNSS roads. By far, the largest single land-disturbing activity would be development of a new Office of Secure Transportation training facility in Area 17, which would disturb up to 10,000 acres. Overall, these potential Stockpile Stewardship and Management Program activities would disturb up to 12,805 acres of previously undisturbed land and affect an estimated 525 cultural resources sites (440 at the proposed training facility in Area 17), of which about 236 would be eligible for inclusion on the NRHP.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Proposed activities under the Expanded Operations Alternative would disturb 15 acres for conducting releases of chemicals and biological simulants, as well as 100 acres each for an Arms Control Treaty Verification Test Bed and a Mock Urban Complex. This disturbance of 215 acres of previously undisturbed land would affect an estimated 16 cultural resources sites, of which 6 would be eligible for inclusion on the NRHP.
Table 5–48 Expanded Operations Alternative – Estimated Numbers of Potentially Affected Cultural Resources Sites on the Nevada National Security Site and Nevada Test and Training Range (except Tonopah Test Range)

<table>
<thead>
<tr>
<th>Program</th>
<th>Area Disturbed (acres) *</th>
<th>Assumed Primary Locations of Activities by Hydrographic Basin</th>
<th>Number of Sites b</th>
<th>Number of NRHP-Eligible Sites b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpile Stewardship and Management</td>
<td>1,403</td>
<td>Frenchman Flat</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>11,403</td>
<td>Yucca Flat</td>
<td>501</td>
<td>228</td>
</tr>
<tr>
<td>Nuclear Emergency Response, Nonproliferation and Counterterrorism</td>
<td>100</td>
<td>Frenchman Flat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Yucca Flat</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Fortymile Canyon–Jackass Flats</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Work for Others</td>
<td>109</td>
<td>Frenchman Flat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>Yucca Flat</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>Mercury Valley</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>Fortymile Canyon–Jackass Flats</td>
<td>74</td>
<td>23</td>
</tr>
<tr>
<td>Total National Security/Defense Mission</td>
<td>13,455</td>
<td></td>
<td>624</td>
<td>265</td>
</tr>
<tr>
<td>Waste Management (Area 5 RWMC)</td>
<td>600</td>
<td>Frenchman Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waste Management Sanitary Landfill Facility (Area 23)</td>
<td>15</td>
<td>Mercury Valley</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waste Management Landfill Facility (Area 25)</td>
<td>20</td>
<td>Fortymile Canyon–Jackass Flats</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Restoration Soils Project</td>
<td>320</td>
<td>Frenchman Flat</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Emigrant Valley</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Environmental Restoration Underground Test Area Project</td>
<td>167</td>
<td>Frenchman Flat</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>Yucca Flat</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>Oasis Valley</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Total Environmental Management Mission</td>
<td>1,555</td>
<td></td>
<td>43</td>
<td>12</td>
</tr>
<tr>
<td>General Site Support and Infrastructure</td>
<td>156</td>
<td>Frenchman Flat</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>156</td>
<td>Mercury Valley</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>156</td>
<td>Yucca Flat</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Renewable Energy (DOE/NNSA)</td>
<td>50</td>
<td>Yucca Flat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total Nondefense Mission</td>
<td>517</td>
<td></td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Total DOE/NNSA</td>
<td>15,527</td>
<td></td>
<td>682</td>
<td>283</td>
</tr>
<tr>
<td>1,000 Megawatts of Commercial Solar Power Generation Facilities</td>
<td>10,300</td>
<td>Fortymile Canyon–Jackass Flats</td>
<td>7,004</td>
<td>2,163</td>
</tr>
<tr>
<td>Geothermal Demonstration Project</td>
<td>50</td>
<td>Yucca Flat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total Non-DOE/NNSA</td>
<td>10,350</td>
<td></td>
<td>7,006</td>
<td>2,164</td>
</tr>
<tr>
<td>Total</td>
<td>25,877</td>
<td></td>
<td>7,688</td>
<td>2,447</td>
</tr>
</tbody>
</table>

NRHP = National Register of Historic Places; RWMC = Radioactive Waste Management Complex.

* Where a program could affect multiple hydrographic basins, if the potentially disturbed area for the basin was known, it was used; if not, the total potentially disturbed acres for that program were equally apportioned among the affected basins. The area disturbed for each program may not add up to the total area disturbed for its applicable mission due to rounding.

b The number of sites was calculated by multiplying the number of acres potentially disturbed by the Total Sites Per Acre or NRHP Sites Per Acre columns, as appropriate, from Table 5–46. Where programs could occur in more than one hydrographic basin, the range of numbers of potentially affected cultural resources sites was used.

c The 740-acre Area 5 RWMC has been surveyed for cultural resources and no NRHP-eligible sites were found.

d The calculated value is less than 0.5 sites.

e The Small Boy and Project 57 sites are disturbed, but are considered by the DOE/NNSA Nevada Site Office to be historically significant sites.

f The site density for the Underground Test Area Project on the Nevada Test and Training Range was assumed to be the same as the density for the Oasis Valley Hydrographic Basin because most of the groundwater characterization and monitoring wells that would be developed on U.S. Air Force land would be adjacent to the northwestern portions of the Nevada National Security Site.
Work for Others Program. Construction of various new test beds and additional aviation-related facilities at various locations on the NNSS, as well as establishment of an area to conduct radioactive tracer experiments, would disturb an estimated 435 acres of land. This disturbance would result in impacts on an estimated 83 cultural resources sites, of which 27 would be eligible for inclusion on the NRHP.

5.1.10.2.2 Environmental Management Mission

Activities under the Environmental Management Mission would potentially disturb up to 1,555 acres of previously undisturbed land. However, for reasons discussed for the separate programs, the number of potentially affected cultural resources sites was estimated to be 43, of which 12 would be eligible for inclusion on the NRHP.

Waste Management Program. Under the Expanded Operations Alternative, waste management facilities would be operated in Areas 5, 6, 9, 11, and 23. The Area 5 RWMC would continue to operate within the 740-acre area set aside for waste management and would use up to 600 acres of land for disposal of LLW and MLLW. The entire 740-acre Area 5 RWMC has been surveyed for cultural resources and no significant cultural resources were found. Sanitary waste disposal facilities would be developed in Areas 23 (15 acres) and 25 (20 acres). Development of these sanitary waste disposal sites would affect an estimated 14 cultural resources sites, 4 of which would be eligible for inclusion on the NRHP. All other operations would continue within their current capacities.

Environmental Restoration Program. Activities under the Environmental Restoration Program would be the same as those described under the No Action Alternative. Therefore, impacts on cultural resources would be the same as those described under the No Action Alternative.

5.1.10.2.3 Nondefense Mission

DOE/NNSA activities under the Nondefense Mission would potentially affect up to 15 cultural resources sites, 6 of which may be considered eligible for inclusion on the NRHP. Development of up to 1,000 megawatts of solar energy generation by commercial interests would impact cultural resources, as discussed below, under the Conservation and Renewable Energy Program.

General Site Support and Infrastructure Program. In addition to ongoing maintenance, repair, and replacement activities to support NNSS facilities, the DOE/NNSA NSO would modify facilities as needed to support NNSS programs. In addition, several infrastructure additions would be completed, including construction of a new security building on previously disturbed land in Area 23 (2 acres), replacement of the existing 138-kilovolt electrical transmission system, expansion of the cellular telecommunication system, and reconfiguration of Mercury in Area 23. Cultural resources impacts include damage to cultural resources resulting from construction of facilities, access roads, transmission lines, and cell towers; increased off-road vehicular and pedestrian access; expansion of facilities; and modification, relocation, or demolition of historic buildings. Historic period buildings at Mercury that are proposed for modifications, rebuilding, or demolition would be evaluated for listing in the NRHP, and eligible buildings would require mitigation. It was estimated that a total of 467 acres of previously undisturbed land would be affected by infrastructure projects under the Expanded Operations Alternative. This amount of land disturbance would affect an estimated 13 cultural resources sites, 5 of which would be NRHP-eligible. A proposed 5-megawatt photovoltaic solar power generation facility, while considered infrastructure, is addressed under the Conservation and Renewable Energy Program.

Conservation and Renewable Energy Program. The DOE/NNSA NSO would continue current energy efficiency measures, water conservation measures, fleet management improvements, and sustainable building practices. Cultural resources impacts from implementation of conservation measures would be the same as those described under the No Action Alternative.
DOE/NNSA would build a renewable energy facility consisting of a 5-megawatt photovoltaic solar power generation facility in Area 6 that would require about 50 acres of land. This would affect an estimated two cultural resources sites in the Yucca Flat Hydrographic Basin. One of those sites would be eligible for inclusion on the NRHP.

Under the Expanded Operations Alternative, DOE/NNSA would consider allowing one or more commercial solar power generation facilities with a combined capacity of up to 1,000 megawatts to be built in Area 25 in the Fortymile Canyon–Jackass Flats Hydrographic Basin. This development, including an estimated 10 miles of new transmission lines, would introduce considerable infrastructure over approximately 10,300 acres of land, affecting up to an estimated 7,004 cultural resources sites, up to 2,163 of which might be eligible for the NRHP. If DOE/NNSA allowed it, construction of commercial solar power generation facilities would require separate NEPA reviews (including cultural resources analyses). However, any solar power generation facility would require a considerable amount of clearing and grading that would directly and permanently impact all archaeological resources, built environment resources, and historic landscapes by damaging, displacing, or destroying artifacts, features, sites, and buildings in the project footprint. Proposed projects would be evaluated on a case-by-case basis and all appropriate steps would be taken pursuant to Section 106 of the NHPA.

DOE/NNSA would develop a Geothermal Demonstration Project on the NNSS under the Expanded Operations Alternative. This project would disturb an estimated 50 acres of previously undisturbed land impacting an estimated two cultural resources sites, one of which would be considered eligible for inclusion on the NRHP. Implementation of a Geothermal Demonstration Project would require a project-specific NEPA review and cultural resources analysis.

Other Research and Development Programs. Under the Expanded Operations Alternative, current programs would continue, but DOE/NNSA would actively promote and expand the National Environmental Research Park Program. Potential cultural resources impacts would be the same as those described under the No Action Alternative. No such projects are proposed at this time, but if there were, they would be evaluated on a case-by-case basis and all appropriate steps would be taken pursuant to Section 106 of the NHPA.

5.1.10.3 Reduced Operations Alternative

As shown in Table 5–49, under the Reduced Operations Alternative, DOE/NNSA activities at the NNSS and environmental restoration sites on the Nevada Test and Training Range would disturb up to 1,540 acres of previously undisturbed land, which would affect an estimated 45 cultural resources sites, 14 of which are eligible for listing on the NRHP. Overall, under the Reduced Operations Alternative, 2,170 acres of previously undisturbed land would be disturbed, including about 1,200 acres of disturbance for construction of a commercial solar power generation facility (discussed in Section 5.1.10.3.3). The total estimated number of cultural resources sites potentially affected is 861, 266 of which are eligible for inclusion on the NRHP. Mission- and program-level impacts on cultural resources are addressed in the following discussion.
Table 5–49 Reduced Operations Alternative – Estimated Number of Potentially Affected Cultural Resources Sites on the Nevada National Security Site and Nevada Test and Training Range

<table>
<thead>
<tr>
<th>Program</th>
<th>Area Disturbed (acres) a</th>
<th>Assumed Primary Locations of Activities by Hydrographic Basin</th>
<th>Number of Sites b</th>
<th>Number of NRHP-Eligible Sites b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpile Stewardship and Management</td>
<td>208</td>
<td>Frenchman Flat, Yucca Flat</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td></td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Nuclear Emergency Response, Nonproliferation, and Counterterrorism</td>
<td>5</td>
<td>Frenchman Flat, Yucca Flat</td>
<td>0 c</td>
<td>0 c</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>0 c</td>
<td>0 c</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Fortymile Canyon–Jackass Flats</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Work for Others</td>
<td>None</td>
<td>Frenchman Flat, Yucca Flat, Mercury Valley, Fortymile Canyon–Jackass Flats</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total National Security/Defense Mission</td>
<td>430</td>
<td></td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Waste Management (Area 5 RWMC) d</td>
<td>190</td>
<td>Frenchman Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Environmental Restoration Soils Project e</td>
<td>320</td>
<td>Frenchman Flat, Emigrant Valley</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>8</td>
<td>0 f</td>
</tr>
<tr>
<td>Environmental Restoration Underground Test Area Project</td>
<td>167</td>
<td>Frenchman Flat, Yucca Flat, Oasis Valley f</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td></td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td></td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Total Environmental Management Mission</td>
<td>1,110</td>
<td></td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>General Site Support and Infrastructure</td>
<td>None</td>
<td>Frenchman Flat, Mercury Valley, Yucca Flat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Renewable Energy (DOE/NNSA)</td>
<td>None</td>
<td>None</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Nondefense Mission</td>
<td>None</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total DOE/NNSA</td>
<td>1,540</td>
<td></td>
<td>45</td>
<td>14</td>
</tr>
<tr>
<td>100-MW Commercial Solar Power Generation Facility</td>
<td>1,200</td>
<td>Fortymile Canyon–Jackass Flats</td>
<td>816</td>
<td>252</td>
</tr>
<tr>
<td>Total Non-DOE/NNSA</td>
<td>1,200</td>
<td></td>
<td>816</td>
<td>252</td>
</tr>
<tr>
<td>Total</td>
<td>2,170</td>
<td></td>
<td>861</td>
<td>266</td>
</tr>
</tbody>
</table>

MW = megawatts; NRHP = National Register of Historic Places; RWMC = Radioactive Waste Management Complex.

a Where a program could affect multiple hydrographic basins, if the potentially disturbed area for the basin was known, it was used; if not, the total potentially disturbed acres for that program were equally apportioned among the affected basins.

b The number of sites was calculated by multiplying the number of acres potentially disturbed by the Total Sites Per Acre or NRHP Sites Per Acre columns, as appropriate, from Table 5–46. Where programs could occur in more than one hydrographic basin, the range of numbers of potentially affected cultural resources sites was used. The area disturbed for each program may not add up to the total area disturbed for its applicable mission due to rounding.

c The calculated value is less than 0.5 sites.

d The 740-acre Area 5 RWMC has been surveyed for cultural resources and no NRHP-eligible sites were found.

e The Small Boy and Project 57 sites are disturbed, but are considered by the DOE/NNSA Nevada Site Office to be historically significant sites.

f The site density for the Underground Test Area Project on the Nevada Test and Training Range was assumed to be the same as the density for the Oasis Valley Hydrographic Basin because most of the groundwater characterization and monitoring wells that would be developed on U.S. Air Force land would be adjacent to the northwestern portions of the Nevada National Security Site.
5.1.10.3.1 National Security/Defense Mission

Under the Reduced Operations Alternative, National Security/Defense Mission activities would continue to occur in the locations described under the No Action Alternative. National Security/Defense Mission activities at the NNSS would disturb up to 430 acres of previously undisturbed land. This land disturbance would potentially affect an estimated 16 cultural resources sites, of which 6 would be eligible for inclusion on the NRHP.

Stockpile Stewardship and Management Program. Under the Reduced Operations Alternative, Stockpile Stewardship and Management Program activities would be the same as under current conditions, except that some high-explosives testing would be curtailed, and the number of dynamic experiments, conventional high-explosives testing, shock physics testing, and nuclear weapons staging would be reduced relative to the No Action Alternative. A reduction in these activities would reduce the potential for ground-disturbing activities and increased access, resulting in fewer potential impacts on cultural resources. Up to 415 acres of previously undisturbed land would be disturbed by Stockpile Stewardship and Management Program activities, resulting in impacts on an estimated 13 cultural resources sites. An estimated 5 of those sites would be eligible for inclusion on the NRHP.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Under the Reduced Operations Alternative, activities under these programs would continue and cultural resources impacts would be the same as those described under the No Action Alternative.

Work for Others Program. Under the Reduced Operations Alternative, large-scale explosive tests and experiments would not be conducted. No Work for Others Program activities, except for military training and exercises, would be conducted in Areas 18, 19, 20, 29, and 30 of the NNSS. Cultural resources impacts would be the same as those under the No Action Alternative.

5.1.10.3.2 Environmental Management Mission

Activities under the Environmental Management Mission would be the same as those described under the No Action Alternative. Therefore, cultural resources impacts would be the same as those described under the No Action Alternative.

5.1.10.3.3 Nondefense Mission

General Site Support and Infrastructure Program. There would be no infrastructure projects conducted beyond maintenance of critical elements in Areas 18, 19, 20, 29, and 30. Otherwise, all other maintenance and replacement projects would be the same as those described under the No Action Alternative.

Conservation and Renewable Energy Program. The NNSS would continue current energy efficiency measures, water conservation measures, fleet management improvements, and sustainable building practices. Cultural resources impacts would be the same as those described under the No Action Alternative.

Under the Reduced Operations Alternative, DOE/NNSA would consider allowing development of a solar power generation facility with up to 100 megawatts of capacity in Area 25 in the Fortymile Canyon–Jackass Flats Hydrographic Basin. This development would introduce considerable infrastructure over approximately 1,200 acres of land, affecting up to an estimated 816 cultural resources sites, up to 252 of which might be eligible for the NRHP. If DOE/NNSA allowed it, construction of a commercial solar power generation facility would require separate NEPA review (including cultural resources analyses). However, any solar power generation facility would require a considerable amount of clearing and grading that would directly and permanently impact all archaeological resources, built environment resources, and historic landscapes by damaging, displacing, or destroying artifacts, features, sites, and buildings in the project footprint. Proposed projects would be evaluated on a case-by-case basis, and all appropriate steps would be taken pursuant to Section 106 of the NHPA.
Other Research and Development Programs. Under the Reduced Operations Alternative, current programs would continue as described under the No Action Alternative, but no programs would be conducted in Area 18, 19, 20, 29, or 30. There would be fewer cultural resources impacts relative to those described under the No Action Alternative because ground-disturbing activity would be less likely. There are no such projects proposed at this time, but if there were, they would be evaluated on a case-by-case basis, and all appropriate steps would be taken pursuant to Section 106 of the NHPA.

5.1.11 Waste Management

DOE/NNSA operations, environmental restoration, and D&D activities at the NNSS would generate LLW and MLLW; TRU waste; hazardous waste (including waste regulated under the Toxic Substances Control Act and other statutes); explosive waste; and nonhazardous wastes, including sanitary solid waste, hydrocarbon-contaminated soil and debris, and construction and demolition debris.

Waste management impacts are assessed by comparing the projected waste volumes generated or disposed under each SWEIS alternative to current waste management practices and/or the availability of onsite or offsite waste management capacity. Adverse impacts on waste management would occur if any of the different types of wastes lacked appropriate management capacity. For example, adverse impacts on LLW and MLLW management could occur if the projected volumes for disposal at the NNSS exceeded the available NNSS disposal capacity.

Section 5.1.12.1.4 addresses the potential long-term (over thousands of years) public and environmental impacts that could occur after closure of the NNSS LLW and MLLW disposal facilities.

Tables 5–50 and **5–51**, respectively, summarize the projected types and volumes of radioactive and nonradioactive wastes generated and disposed at the NNSS under the three SWEIS alternatives. The top portion of Table 5–50 addresses LLW, MLLW, and TRU waste projected to be generated at the NNSS, while the bottom portion addresses LLW and MLLW projected to be disposed at the NNSS from all authorized in-state and out-of-state generators.

Under all alternatives, up to 1 percent of the total projected LLW volume disposed could consist of nonradioactive, classified waste forms that require disposal at the Area 5 RWMC in a manner similar to LLW. To provide a conservative analysis of potential human health impacts, DOE/NNSA assumed that the entire volume of waste was composed of only LLW.

The top portion of Table 5–51 addresses hazardous and solid wastes projected to be generated by all DOE/NNSA Nevada facilities, as well as hazardous and solid wastes projected to be generated by a commercial solar power generation facility located at the NNSS. The bottom portion of Table 5–51 addresses solid waste projected to be disposed at the NNSS from DOE/NNSA Nevada generators, as well as from a commercial solar power generation facility located at the NNSS. NNSS landfill disposal of solid wastes from a commercial solar power generation facility would require revisions to the NNSS landfill operating permits; this waste would most likely be disposed off site.
Table 5–50 Projected 10-Year Volumes of Radioactive Wastes Generated and Disposed at the Nevada National Security Site

<table>
<thead>
<tr>
<th>Waste Stream a</th>
<th>No Action (cubic feet)</th>
<th>Expanded Operations (cubic feet)</th>
<th>Reduced Operations (cubic feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-level radioactive waste</td>
<td>1,000,000</td>
<td>1,300,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Mixed low-level radioactive waste</td>
<td>520,000</td>
<td>520,000</td>
<td>520,000</td>
</tr>
<tr>
<td>Transuranic waste b</td>
<td>9,600</td>
<td>19,000</td>
<td>7,100</td>
</tr>
</tbody>
</table>

Waste Volumes Disposed at the NNSS c

<table>
<thead>
<tr>
<th>Waste Stream a</th>
<th>No Action (cubic feet)</th>
<th>Expanded Operations (cubic feet)</th>
<th>Reduced Operations (cubic feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-level radioactive waste</td>
<td>15,000,000 d</td>
<td>48,000,000 e</td>
<td>15,000,000 d</td>
</tr>
<tr>
<td>Mixed low-level radioactive waste f</td>
<td>900,000 g</td>
<td>4,000,000 h</td>
<td>900,000</td>
</tr>
</tbody>
</table>

Notes:
- NNSS = Nevada National Security Site.
- a Tritiated liquids would also be generated and disposed (see text).
- b TRU waste (including mixed TRU waste) includes TRU waste projected for storage at the Area 5 RWMC through the end of 2010, TRU waste generated by NNSS operations and in-state environmental restoration activities over the next 10 years, and two 3-foot-diameter legacy spheres containing plutonium. All TRU waste was assumed to be shipped in standard waste boxes, and the listed volumes reflect the approximate disposal (external) volumes of these boxes.
- c Comprises all LLW and MLLW projected for NNSS disposal as received from all authorized in-state and out-of-state generators. Up to 1 percent of the total projected LLW volume could consist of nonradioactive, classified waste forms that require disposal in a manner similar to LLW.
- d Includes approximately 1.0 million cubic feet of LLW generated by NNSS operations, environmental restoration, and facility decontamination and decommissioning (D&D). Some of the LLW from environmental restoration could be MLLW.
- e Includes approximately 1.3 million cubic feet of LLW generated by NNSS operations, environmental restoration, and facility D&D, plus approximately 11 million cubic feet of LLW generated by environmental restoration at in-state locations outside the NNSS, for a total of approximately 12 million cubic feet of LLW from all in-state waste generators. Some of the LLW from environmental restoration could be MLLW.
- f Includes approximately 520,000 cubic feet of MLLW generated by operations, environmental restoration, and facility D&D at the NNSS and other in-state locations.
- g The actual permitted volume of MLLW that may be disposed in Cell 18 is 899,996 cubic feet.
- h Expanded MLLW disposal in excess of Cell 18 capacity (899,996 cubic feet) would require new Resource Conservation and Recovery Act permit(s) from the Nevada Division of Environmental Protection prior to construction of any additional disposal cells.

Note: Totals may not equal the sum of individual values because of rounding.

There are differences between the volumes generated and disposed at the NNSS because some wastes generated at the NNSS are sent off site for disposition (e.g., all TRU and hazardous wastes), while others are dispositioned on site (e.g., all LLW). In addition, the NNSS receives for disposal LLW and MLLW from in-state generators from locations other than the NNSS (e.g., the TTR), as well as numerous authorized out-of-state generators. Some solid wastes generated at the NNSS are recycled off site, while other solid wastes, such as sanitary solid waste or construction debris, are disposed on site. DOE/NNSA also receives solid wastes at the NNSS for disposition from other authorized in-state generators, such as the RSL.

Wastes generated by ongoing operations at the NNSS (e.g., experiments at JASPER) and the other DOE/NNSA Nevada facilities would continue to be generated and disposed beyond the next 10 years. Other wastes would be generated on an episodic, project-specific basis. These episodic wastes would include those generated from specific projects such as facility construction, facility D&D, and specific environmental restoration projects that would take place over a finite period. The start and completion dates for many projects that could generate waste are uncertain (e.g., because of possible funding fluctuations or revised program needs). In addition, the timing and quantity of waste generation from environmental restoration activities are subject to future agreements or regulatory determinations. For similar reasons, the timing and quantity of wastes received from out-of-state generators are also uncertain. Due to these uncertainties, Tables 5–50 and 5–51 list total waste volumes projected over the next 10 years, rather than average or peak waste volumes that may be projected on an annual basis. After 10 years, waste generation and as-permitted or authorized waste disposal at the NNSS would continue.
Table 5–51 Projected 10-Year Volumes of Nonradioactive Wastes Generated and Disposed at the Nevada National Security Site

| Waste Stream a | Alternatives | | | |
|----------------|-------------|-------------|-------------|
| Waste Volumes Generated at the NNSS | No Action (cubic feet) | Expanded Operations (cubic feet) | Reduced Operations (cubic feet) |
| Hazardous waste b | | | |
| From NNSS generators | 170,000 | 170,000 | 170,000 |
| From commercial solar power generation facility(ies) | 42,000 | 170,000 | 17,000 |
| Total hazardous waste | 210,000 | 340,000 | 190,000 |
| Solid waste c | | | |
| From NNSS generators | 3,700,000 | 9,400,000 | 3,600,000 |
| From commercial solar power generation facility(ies) | 160,000 | 630,000 | 77,000 |
| Total solid waste | 3,800,000 | 10,000,000 | 3,700,000 |
| Waste Volumes Disposed at the NNSS | | | |
| Solid waste c | | | |
| From DOE/NNSA Nevada generators d | 3,400,000 | 8,500,000 | 3,300,000 |
| From commercial solar power generation facility(ies) e | 160,000 | 630,000 | 77,000 |
| Total solid waste | 3,500,000 | 9,200,000 | 3,400,000 |

NNSS = Nevada National Security Site.

a Explosive wastes would also be generated (see text).
b Includes wastes containing constituents regulated under the Toxic Substances Control Act or other applicable statutes. All hazardous waste would be sent to offsite recycle or treatment, storage, and disposal facilities.
c Includes sanitary solid waste, as well as construction and demolition debris. Offsite recycling, rather than landfill disposal, was projected for about 370,000 cubic feet of solid waste under the No Action Alternative, 970,000 cubic feet under the Expanded Operations Alternative, and 360,000 cubic feet under the Reduced Operations Alternative. It was assumed the remaining solid waste would be disposed.
d Includes solid waste generated at the NNSS, the North Las Vegas Facility, the Remote Sensing Laboratory, and the Tonopah Test Range.
e Disposal of solid waste from one or more commercial solar power generation facilities at NNSS landfills would require modifications to the landfill permits. This waste most likely would be disposed at an offsite landfill. Estimates in this table assume the commercial solar power generation facility(ies) for all alternatives would operate for 5 years during the 10-year planning period.

Note: Totals may not equal the sum of individual values because of rounding.

The following subsections address waste management consequences in detail under each alternative. The impacts of managing LLW and MLLW at the NNSS are discussed simultaneously because operational and disposal practices are similar for both types of waste.

5.1.11.1 No Action Alternative

5.1.11.1.1 DOE/NNSA Activities

Adequate disposal capacity is available at the NNSS for the volumes of LLW and MLLW projected under this alternative. Adequate TRU waste disposal capacity at WIPP is expected. Adequate recycle or treatment, storage, or disposal (TSD) capacity is expected for the hazardous and nonhazardous wastes projected under this alternative because of the large number of available offsite recycle or TSD facilities for hazardous waste, the availability of NNSS disposal capacity for nonhazardous solid waste, and the availability of extensive offsite solid waste recycle and disposal capacity.
Low-level and mixed low-level radioactive wastes. LLW and MLLW would continue to be generated at the NNSS as part of operations, environmental restoration, and D&D of excess facilities and structures. Consistent with current practice, some MLLW would be repackaged before disposal at the Area 5 RWMC (see Chapter 4, Section 4.1.11.1.2). MLLW that does not meet the EPA Resource Conservation and Recovery Act (RCRA) (P.L. 94-580) Land Disposal Restrictions would be sent to offsite TSD facilities for treatment. Treated waste would then be disposed at a permitted non-NNSS facility or returned to the NNSS for disposal. Because several permitted TSD facilities exist in the United States for MLLW (e.g., in Florida, Tennessee, Texas, Washington, and Utah), and additional facilities may be used as they are available and appropriate for the waste content or characteristics, adequate offsite treatment capacity exists for the quantity of MLLW projected under this alternative.

LLW and MLLW generated at the NNSS or received from authorized in-state and out-of-state waste generators would be disposed at the Area 5 RWMC. Up to 15,000,000 cubic feet of LLW and 900,000 cubic feet of MLLW would be accepted for disposal from all in-state and out-of-state generators, or a total over 10 years of about 15,900,000 cubic feet of combined LLW and MLLW. The combined waste volume would include approximately 1,200,000 cubic feet of LLW from all in-state operations, environmental restoration activities, and facility D&D (see Table 5–50, footnote d). It would also include approximately 520,000 cubic feet of MLLW from all NNSS operations, environmental restoration activities, and D&D (see Table 5–50, footnote f).

LLW and MLLW disposal operations would take place at the Area 5 RWMC. Waste management and disposal operations at this facility would be comparable to current annual levels based on the projected waste volumes. The average annual level of effort, however, would be lower than 2003 and 2004 levels. Disposal units, including pits and trenches, would continue to be designed and sized to reflect operational needs.

Assuming that disposal practices would be similar to past practices, the disposal units required for disposal of 15,900,000 cubic feet of LLW and MLLW would commit about 190 acres of the Area 5 RWMC, in addition to the approximately 160 acres thus far committed to waste disposal. The total quantity of land dedicated to waste disposal at the Area 5 RWMC since it opened would amount to about 350 acres, or about 50 percent of the Area 5 RWMC disposal capacity.

At the Area 5 RWMC, DOE/NNSA would continue to conduct MLLW management support activities such as real-time radiography, operation of a permitted MLLW storage area, and repackaging before disposal of some in-state-generated MLLW.

Transuranic waste. TRU and mixed TRU wastes generated by NNSS operations or environmental restoration activities would continue to be stored at the Area 5 RWMC. Storage would be temporary pending shipment off site, either directly to WIPP for disposal or to INL for additional characterization and preparation before its eventual shipment to WIPP for disposal.

Assuming storage of 20 standard waste boxes\(^2\) through the end of 2010, annual generation of approximately 12 standard waste boxes from JASPER, projected generation of about 2,000 cubic feet of waste from environmental restoration activities, and storage of two 3-foot-diameter legacy spheres, the total volume of stored and newly generated TRU waste over the next 10 years would be about 9,600 cubic feet. It was further assumed that this waste would be shipped off site to INL and/or WIPP (see Section 5.1.3.1).

\(^2\) A standard waste box is a steel box, with a capacity of about 63 cubic feet, that can be placed in TRUPACT-II or HalfPACT transport packages.
The TRU waste volume projected under this alternative would account for only about 0.2 percent of the 6.3 million cubic feet of authorized waste disposal capacity at WIPP under the WIPP Land Withdrawal Act (P.L. 102-579). The WIPP disposal capacity is sufficient for disposal of all NNSS TRU waste generated under this alternative.

Tritiated liquids. Tritiated liquids would continue to be treated on site by evaporation into the air from ponds, open tanks, and sewage lagoons (see Chapter 4, Section 4.1.11.1.4). Existing procedures would not be changed, and treatment capacity would be adequate. The potential impacts of the release of tritium to the atmosphere through evaporation are addressed in Sections 5.1.8 and 5.1.12.

Hazardous waste. Hazardous waste and wastes regulated under the Toxic Substances Control Act (P.L. 94-469) or other statutes would be collected and temporarily stored at the source of generation as needed in compliance with applicable regulations or, if packaged, at the Area 5 Hazardous Waste Storage Unit before being sent off site for disposition. Bulk hazardous waste generated by activities such as environmental restoration would generally be shipped directly from the source of generation to an offsite location for disposition. Disposition options would depend on waste characteristics. To the extent reasonably achievable, materials such as used oil, batteries, computer equipment, fluorescent light bulbs, scrap lead materials, or unused hazardous chemicals would be sold or sent to permitted offsite recycle facilities. These activities would be conducted in accordance with DOE’s ongoing Pollution Prevention and Waste Minimization Program. Some materials could be directed to new onsite users. Otherwise, hazardous waste would be shipped to offsite TSD facilities. (This does not include solid wastes containing PCBs in concentrations less than 50 parts per million, which generally may be disposed in permitted solid waste facilities at the NNSS or elsewhere.)

Over the next 10 years, approximately 170,000 cubic feet of hazardous waste would be generated by NNSS generators. Additionally, about 42,000 cubic feet would be generated from construction and operation of a commercial solar power generation facility (see Section 5.1.11.1.2). Most of this waste would be dispositioned by offsite recycling or reuse rather than offsite disposal. Adequate offsite capacity exists for this waste because of the large number of permitted hazardous waste recycle or TSD facilities that exist in Nevada and neighboring states. As of 2009, for example, 10 facilities were permitted in Nevada for recycle of used oil, antifreeze, and photographic solutions (NDEP 2009b); as of 2010, several dozen facilities in Nevada were permitted for recycle of batteries, electronic equipment, fluorescent lamps, and other materials (NDEP 2010a). In California, as of 2007, 26 facilities were permitted for recycle of batteries, 24 for fluorescent lighting, 20 for solvent recovery, and 37 for used oil and antifreeze (DTSC 2007). As of 2009, 4 hazardous waste TSD facilities were permitted in Nevada (NDEP 2009c). Additional facilities in neighboring states include 3 permitted landfills in California as of 2007 (DTSC 2007), 13 permitted TSD facilities in Utah as of 2005 (UTDEQ 2006), and 10 permitted TSD facilities in New Mexico as of 2008 (NMED 2008). As of March 2010, EPA identified 39 permitted companies in the United States that are capable of performing treatment or disposal of PCBs using chemical dechlorination, incineration, physical separation or decontamination, landfill, and other technologies (EPA 2010d).

Explosive waste. Nonradioactive explosive waste generated by tunnel operations, the NNSS Security Firing Range, resident national laboratories, or other DOE/NNSA activities would continue to be treated by open detonation at the Area 11 Explosives Ordnance Disposal Unit in accordance with the following permit conditions: no more than 100 pounds of approved explosive waste would be detonated at one time; there would be no more than one detonation event per hour; and the maximum quantity treated each year would be 4,100 pounds. There would be no lack of capacity at the NNSS for explosive waste.
Nonhazardous waste. To the extent reasonably achievable, nonhazardous solid waste generated at the NNSS would be recycled under the NNSS Pollution Prevention and Waste Minimization Program. Materials recycled under this program include scrap metals, mixed paper and cardboard, shipping materials, spent toner cartridges, cafeteria food wastes, and aluminum cans. Surplus chemicals, equipment, and supplies would be preferentially directed to appropriate new users rather than being disposed as waste. These recycling operations would not consume waste disposal capacity and would only result in temporary staging activities at the NNSS, pending shipment to recycling facilities capable of accepting the materials.

It was projected that approximately 3,700,000 cubic feet of nonhazardous solid waste would be generated by authorized NNSS generators over the next 10 years. About 370,000 cubic feet of nonhazardous solid waste would be recycled (see Table 5–51, footnote c). Adequate offsite recycle capacity exists due to the large number of available recycle facilities. In Nevada, several dozen recycle facilities existed as of 2010 for nonhazardous material, including aluminum, glass bottles and jars, paper, cardboard, food waste, scrap metal, and wood (NDEP 2010a). Additional nonhazardous material recycle facilities exist in neighboring states (e.g., see DTSC 2007).

Wastes that are not reused or recycled would be disposed in permitted NNSS or offsite landfills. Solid wastes disposed at the NNSS would be received from NNSS generators and, as needed, from authorized in-state generators such as the TTR, RSL, or NLVF. Sanitary solid waste generated by these sites is usually managed by means other than shipment to the NNSS. Nonetheless, for security reasons, there may be an occasional need to ship some solid wastes from these facilities to the NNSS for landfill disposal. In addition, construction and demolition debris generated by DOE/NNSA at the TTR, RSL, or NLVF could be sent to NNSS landfills or permitted commercial landfills.

About 3,500,000 cubic feet of sanitary solid waste and construction and demolition debris from DOE/NNSA Nevada facilities was projected for disposal at the NNSS over the next 10 years. As of 2008, the estimated remaining waste capacities for the three NNSS landfills were as follows: 2,800,000 cubic feet at Area 6, hydrocarbon landfill; 15,000,000 cubic feet at Area 9, U10c landfill; and 13,000,000 cubic feet at Area 23 landfill (see Chapter 4, Section 4.1.11.2.3). The projected waste volumes under the No Action Alternative are significantly smaller than the remaining landfill capacity; thus, available solid waste disposal capacity at the NNSS would not be exceeded. Adequate waste disposal capacity would also be available in the event that solid waste from a commercial solar power generation facility is disposed at permitted NNSS landfills (see Section 5.1.11.1.2).

5.1.11.1.2 Commercial Solar Power Generation Facility

Hazardous and nonhazardous solid wastes would be generated by construction and operation of a commercially operated solar power generation facility at Area 25. Waste quantities would vary depending on the electrical power capacity of the power plant, which differs under each SWEIS alternative. Construction of a 240-megawatt power plant under the No Action Alternative was projected to generate approximately 6,500 cubic feet of hazardous waste and 140,000 cubic feet of construction debris and sanitary solid waste. Operation of this same plant was projected to annually generate approximately 7,100 cubic feet of hazardous waste and 4,100 cubic feet of sanitary solid waste. Operational waste would be generated throughout the life of the facility (likely 30 years or more).

3 Recyclable material such as scrap metal would continue to be shipped from DOE/NNSA Nevada facilities (e.g., RSL, NLVF) to the NNSS for consolidation pending offsite shipment (e.g., to be sold or recycled).

4 NNSS solid waste disposal facilities are permitted to receive waste only from sources specified in the facility permits (e.g., FFACO sites), and other waste as approved on a case-by-case basis by the Nevada Division of Environmental Protection.
Construction of a 240-megawatt commercial solar power generation facility would take approximately 35 months. The commercial solar power generation facility would begin operations after construction and was assumed to operate for 5 years during the 10-year planning period. Under these assumptions, about 42,000 cubic feet of hazardous waste and 160,000 cubic feet of sanitary solid waste and construction debris would be generated during the 10-year planning period.

There is no specific schedule for constructing a commercial solar power generation facility at the NNSS; the waste projections are included in this SWEIS to assist DOE/NNSA in determining whether to make land and infrastructure now under DOE/NNSA control available for another, future use by a commercial entity. Any hazardous or nonhazardous waste generated by construction or operation of the solar power generation facility would be managed by the commercial operator of the facility, who would be required to comply with applicable laws and regulations related to recycling, treatment, and/or disposal of wastes. Because numerous hazardous waste recycle or TSD facilities exist in Nevada and nearby states, as well as numerous landfills for industrial and sanitary solid waste, offsite disposal capacity would be adequate for the waste projected from a commercial solar power generation facility (see Section 5.1.11.1.1).

If permitted by NDEP, the projected solid waste may be disposed in NNSS landfills. Assuming an additional 160,000 cubic feet of solid waste from the commercial solar power generation facility, the total volume of solid waste to be disposed at NNSS landfills over the next 10 years would increase to 3,500,000 cubic feet. Because this volume would still be significantly smaller than the projected remaining NNSS disposal capacity (see Section 5.1.11.1.1), adequate solid waste management capacity at the NNSS would be available. Solid waste from a commercial solar generation facility most likely would be disposed off site.

5.1.11.2 Expanded Operations Alternative

5.1.11.2.1 DOE/NNSA Activities

Adequate disposal capacity exists at the NNSS for the volumes of LLW and MLLW conservatively projected under this alternative, provided the Area 3 RWMS is reopened for in-state-generated waste. Adequate disposal capacity also exists if the Area 5 RWMC is expanded or operational disposal practices at the Area 5 RWMC are modified to allow more-efficient use of available disposal space (e.g., construction of larger and/or deeper disposal units). Adequate TRU waste disposal capacity at WIPP is available. Adequate recycle or TSD capacity exists for the hazardous and nonhazardous wastes projected under this alternative because of the large number of available offsite recycle or TSD facilities for hazardous waste, the availability of NNSS disposal capacity for nonhazardous solid waste, and the availability of extensive offsite solid waste recycle and disposal capacity.

Low-level and mixed low-level radioactive wastes. LLW and MLLW would continue to be generated at the NNSS as part of operations, environmental restoration, and D&D of excess facilities and structures. MLLW treatment capability would be developed at the Area 5 RWMC to enable permitted treatment of MLLW received from all authorized generators. In-state-generated MLLW that does not meet the EPA RCRA Land Disposal Restrictions would be sent to offsite TSD facilities for treatment, then be disposed off site or returned to the NNSS for disposal. As under the No Action Alternative (see Section 5.1.11.1.1), adequate offsite TSD capacity is available for the NNSS-generated MLLW projected under this alternative.

LLW generated at the NNSS or received from authorized in-state and out-of-state waste generators would be disposed at the Area 5 RWMC or the Area 3 RWMS if the latter disposal facility is reopened. As the large volume of LLW considered for disposal under the Expanded Operations Alternative is a conservative estimate, it is more likely that the Area 5 RWMC would provide sufficient disposal capacity for the next 10 years. However, should DOE/NNSA need to activate the Area 3 RWMS, it would first

5 Under all alternatives it was assumed that one or more commercial solar power generation facilities would operate over 5 of the next 10 years.
undergo detailed consultation with the State of Nevada, and would limit disposal at the Area 3 RWMS to in-state generated LLW. MLLW generated at the NNSS or received for disposal from authorized in-state and out-of-state waste generators would be disposed at the Area 5 RWMC. All waste disposed at the Area 5 RWMC or the Area 3 RWMS would meet the NNSS waste acceptance criteria.

Up to about 48,000,000 cubic feet of LLW and 4,000,000 cubic feet of MLLW would be accepted for disposal from all in-state and out-of-state generators over the next 10 years, or a total of approximately 52,000,000 cubic feet of combined LLW and MLLW. The combined volume of LLW and MLLW from in-state generators alone would include approximately 12,000,000 cubic feet of LLW (see Table 5–50, footnote e) and 520,000 cubic feet of MLLW. The combined total volumes of LLW and MLLW that would be disposed at the NNSS under the Expanded Operations Alternative would be about three times as much as those disposed at the NNSS under the No Action Alternative. Disposal units, including pits and trenches, would be designed and sized to reflect operational needs.

Assuming that disposal practices would be similar to past practices, the disposal units required for disposal of approximately 52,000,000 cubic feet of LLW and MLLW would require about 600 acres of the Area 5 RWMC. Therefore, the land area used for LLW/MLLW disposal at the Area 5 RWMC would exceed by about 20 acres the Area 5 RWMC acreage available for waste disposal. To accept the projected volumes of LLW and MLLW, DOE/NNSA would need to modify disposal operations to allow construction of larger and/or deeper disposal units.

To preclude the need to expand the Area 5 RWMC or modify operations, the Area 3 RWMS could be opened to receive in-state-generated LLW from DOE/NNSA site environmental restoration and other activities. The currently developed capacity of the Area 3 RWMS is about 1.9 million cubic feet. Two currently undeveloped disposal cells (U-3az and/or U-3bg) would be opened, leading to a total of approximately 9,100,000 cubic feet of disposal capacity at the Area 3 RWMS.

The commitment of disposal capacity at the Area 5 RWMC may also be affected by decisions made as part of the Environmental Restoration Program under the FFACO, primarily for sites managed by the Soils Project. The projected 11,000,000 cubic feet of LLW generated from in-state environmental restoration at locations outside of the NNSS (see Table 5–50, footnote e) would consist of low-activity soil and debris (a portion may be MLLW). Rather than removing this environmental restoration waste and transporting it to the NNSS for disposal, NDEP, DOE/NNSA, and the USAF (on the TTR and Nevada Test and Training Range sites only) may determine that the safest and most effective management strategy for some sites would be to close the contamination in place or open dedicated disposal facilities that are proximal to the contamination sources. Either option would reduce the amount of disposal space at the Area 5 RWMC that is committed to this environmental restoration waste, thereby extending the availability of the Area 5 RWMC for waste disposal, reducing the need to reopen the Area 3 RWMS, and reducing the costs and impacts associated with transporting the waste to the NNSS for disposal. Impacts from transporting this waste to the NNSS are addressed in Section 5.1.3.1.

In addition, the projections of LLW and MLLW volumes from NNSS and out-of-state generators are considered upper-bound estimates, and their generation would depend on programmatic and regulatory decisions, funding, and other considerations. Although for purposes of analysis it was assumed that the projected waste volumes would be disposed at the NNSS, there may be other cost-effective options for disposing the wastes, such as use of commercial disposal capacity.

The DOE/NNSA NSO would continue to conduct MLLW support activities, including real-time radiography, operation of a permitted MLLW storage area, and repackaging activities. MLLW treatment capacity at the Area 5 RWMC would be developed. This treatment capability would allow acceptance of MLLW from across the DOE complex for treatment, pursuant to EPA’s land disposal restriction requirements, before disposal at the Area 5 RWMC. It is expected that treatment methods would include technologies such as macroencapsulation, microencapsulation, sorting and segregation, repackaging,
neutralization, and amalgamation. DOE/NNSA would obtain the appropriate RCRA permit from NDEP before developing or implementing any MLLW treatment capability.

MLLW treatment and storage capacity would be housed in appropriately modified and permitted existing buildings at the Area 5 RWMC (e.g., the Visual Reexamination and Repackaging Building or TRU Pad Cover Building) to the extent feasible. A modular panel containment/confinedment system structure with HEPA (high-efficiency particulate air) exhaust filtration could be constructed as needed within the TRU Pad Cover Building. If existing buildings are not adequate to house the MLLW treatment and storage capacity, DOE/NNSA would construct new facilities within the Area 5 RWMC.

Transuranic waste. The 10-year volume of TRU (including mixed TRU) waste projected under the Expanded Operations Alternative is about twice as large as that under the No Action Alternative because of the increased number of annual tests projected at JASPER. Annual generation of TRU waste would increase from 12 to 24 standard waste boxes, and the total quantity of TRU waste would increase to about 19,000 cubic feet. Similar to the No Action Alternative, it was assumed that this waste would be shipped off site to INL and/or WIPP (see Section 5.1.3).

Similar to the No Action Alternative (see Section 5.1.11.1.1), the projected volume of TRU waste under the Expanded Operations Alternative is modest. The projected volume would account for only about 0.3 percent of the 6.3 million cubic feet of waste authorized for disposal at WIPP under the WIPP Land Withdrawal Act. The WIPP disposal capacity would be sufficient for disposal of all TRU waste generated under this alternative.

Tritiated liquids. Under the Expanded Operations Alternative, the impacts of treating liquid tritium waste by evaporation would be the same as those described under the No Action Alternative (see Section 5.1.11.1.1).

Hazardous waste. Hazardous waste generation and management activities would be similar to those under the No Action Alternative (see Section 5.1.11.1.1). Under the Expanded Operations Alternative, approximately 170,000 cubic feet of hazardous waste would be generated by NNSS generators over the next 10 years. Additionally, about 170,000 cubic feet would be generated from construction and operation of one or more commercial solar power generation facilities (see Section 5.1.11.2.2). Most of this waste would be dispositioned by offsite recycling or reuse rather than offsite disposal. Because numerous permitted hazardous waste recycle or TSD facilities are in operation in Nevada or neighboring states, adequate offsite waste management capacity is expected for the hazardous waste projected under this alternative.

Explosive waste. The impacts of disposing nonradioactive explosive waste by detonation would be the same under the Expanded Operations Alternative as those under the No Action Alternative (see Section 5.1.11.1.1).

Nonhazardous waste. The volumes of nonhazardous solid wastes from NNSS generators would be larger than those under the No Action Alternative, principally because of additional personnel requirements and the generation of debris from new construction activities at the NNSS. As under the No Action Alternative, it was projected that about 930,000 cubic feet of this waste would be recycled. Because dozens of solid waste recycle facilities are in operation in Nevada and neighboring states (see Section 5.1.11.1.1), the projected level of nonhazardous waste generation under this alternative would not strain waste management capacity at these facilities.
About 8,500,000 cubic feet of sanitary solid waste and construction and demolition debris was projected for disposal from all DOE/NNSA Nevada generators over the next 10 years. The projected volume of solid waste would not exceed the available disposal capacity at the NNSS; however, assuming all construction and demolition debris would be disposed at the U10C Landfill in Area 9, about 53 percent of the capacity of that disposal facility would be used. Adequate waste disposal capacity would also be available in the event that solid waste from one or more commercial solar power generation facilities is disposed at permitted NNSS landfills (see Section 5.1.11.2.2).

Packaging, staging, and maintenance support. DOE/NNSA proposes to establish staging and maintenance support capacity at the Area 5 RWMC for radioactive material shipping packages. DOE/NNSA would temporarily stage, inspect, and perform maintenance on DOE/NNSA-certified (and possibly commercial) and U.S.DOT-authorized transport packagings for transport of radioactive material. The transport packages would be emptied of radioactive material before inspection, maintenance, or staging. This proposed capability would allow consolidation of specialty packagings at a centralized location that is convenient to DOE sites in the western United States. The proposed capability would be located in a fenced area within the Area 5 RWMC on approximately 1 acre of previously disturbed land. The area would be graded and covered with a gravel or asphalt pad. No more than 15 transport packagings would be staged within the area at any time. Operation of the area would use a small amount of electrical power and require only two to three workers on an as-needed basis to perform radiation surveys, container maintenance, or pre-use inspections. Minimal waste generation is expected.

New construction. New construction may occur at the NNSS under the Expanded Operations Alternative to enable expanded MLLW storage and treatment capacity, as well as packaging, staging, and maintenance support activities at the Area 5 RWMC. Construction would principally occur within existing structures, with minimal generation of construction waste. In addition, a waste offloading and staging area would be constructed as needed within a previously disturbed area at the Area 5 RWMC.

New or expanded solid waste landfills would be constructed as needed at the NNSS. An expansion of the Area 23 landfill would affect approximately 15 acres of land. In addition, a new landfill for construction and demolition debris may be constructed in Area 25, which would disturb up to 25 acres. Development of these landfills would reduce the risk and expense of transporting construction and demolition debris from Area 25 (or other areas) to the U10C Landfill, as well as extend the operational lifetimes of both the U10C and Area 23 Landfills. The DOE/NNSA NSO would seek appropriate permits from NDEP for the new or expanded landfills.

5.1.11.2.2 Commercial Solar Power Generation Facility

Construction of commercial solar power generation facilities with up to 1,000 megawatts of generating capacity under this alternative would take about 42 months and was projected to generate approximately 27,000 cubic feet of hazardous waste and 600,000 cubic feet of construction debris and sanitary solid waste. Operation of these facilities was projected to generate approximately 30,000 cubic feet of hazardous waste and 5,400 cubic feet of sanitary solid waste each year throughout the lives of the facilities (likely 30 years or more).

The commercial solar power generation facilities would begin operations after construction, and were assumed to operate for 5 years during the 10-year planning period. Under these assumptions, about 170,000 cubic feet of hazardous waste and 630,000 cubic feet of sanitary solid waste and construction debris would be generated during the 10-year planning period.
As under the No Action Alternative (see Section 5.1.11.1.2), these waste projections are included in this SWEIS to assist DOE/NNSA in determining whether to make land and infrastructure now under DOE/NNSA control available for another use by a commercial entity. Any waste generated by construction and operation of commercial solar power generation facilities would be managed by the operator(s) of the facility. Because numerous hazardous waste recycle or TSD facilities exist in Nevada and nearby states, as well as numerous landfills for industrial and sanitary solid waste, it is expected that offsite disposal capacity would be adequate for the waste projected from the commercial solar power generation facilities (see Section 5.1.11.1.1).

If permitted by NDEP, another option may be to dispose of the projected sanitary solid waste and construction debris in NNSS landfills. The total volume of sanitary solid waste and construction and demolition debris, including waste from DOE/NNSA activities and commercial solar power generation facilities, would increase to 9,200,000 cubic feet over the next 10 years. The projected volume of sanitary waste would not exceed the projected remaining NNSS disposal capacity at the Area 23 landfill (see Section 5.1.11.1.1); thus, it is expected that adequate sanitary solid waste management capacity would be available. The projected volume of construction and demolition debris would not exceed the projected available capacity at the U10C Landfill in Area 9, although approximately 57 percent of the capacity of that disposal facility would be used. As noted in Section 5.1.11.2.1, development of a new landfill for construction and demolition debris in Area 25, as well as the expanded sanitary waste landfill proposed for Area 23, would reduce the risk and expense of transporting construction and demolition debris to the existing U10C Landfill and extend the operational lifetimes of both the U10C and Area 23 Landfills. The DOE/NNSA NSO would seek appropriate permits from NDEP for the new or expanded landfills. Most likely solid waste from commercial solar generation facilities would be disposed off site.

5.1.11.3 Reduced Operations Alternative
5.1.11.3.1 DOE/NNSA Activities

Under this alternative, DOE/NNSA would manage the same quantities of LLW and MLLW as those described under the No Action Alternative and would treat the same quantities of tritiated liquids by evaporation and explosive waste by detonation. Impacts resulting from management of these waste types would be the same as those under the No Action Alternative (see Section 5.1.11.1.1).

TRU (and mixed TRU) waste volumes generated under this alternative are expected to be about 26 percent smaller than those under the No Action Alternative because of the reduced number of annual experiments projected at JASPER. Annual generation of TRU waste would decrease to six standard waste boxes, and the total 10-year volume of TRU waste under this alternative would decrease to about 7,100 cubic feet. Similar to the No Action Alternative, it was assumed that this waste would be shipped off site to INL and/or WIPP (see Section 5.1.3).

The volume of TRU waste projected under this alternative would account for only about 0.1 percent of the 6,300,000 cubic feet of waste authorized for disposal at WIPP under the WIPP Land Withdrawal Act. The WIPP disposal capacity would be sufficient for disposal of all TRU waste generated under this alternative.

Hazardous waste generation and management activities are expected to be similar to those under the No Action Alternative (see Section 5.1.11.1.1). Under the Reduced Operations Alternative, approximately 170,000 cubic feet of hazardous waste would be generated by NNSS generators over the next 10 years. Additionally, about 17,000 cubic feet would be generated from construction and operation of a commercial solar power generation facility (see Section 5.1.11.3.2). Most of this waste would be dispositioned by offsite recycling or reuse rather than offsite disposal. Because numerous permitted hazardous waste recycle or TSD facilities are in operation in Nevada or neighboring states, adequate offsite waste management capacity is expected for the hazardous waste projected under this alternative.
Compared to the No Action Alternative, a smaller quantity of sanitary solid waste would be generated because of reduced personnel requirements, as well as a smaller quantity of construction and demolition debris. About 3,600,000 cubic feet of sanitary solid waste and construction and demolition debris would be generated by authorized NNSS generators over the next 10 years. About 360,000 cubic feet of nonhazardous waste would be recycled. Because dozens of solid waste recycle facilities are in operation in Nevada and neighboring states (see Section 5.1.11.1.1), the projected level of nonhazardous waste generation under this alternative would not strain waste management capacity at these facilities.

About 3,300,000 cubic feet of combined sanitary solid waste and construction and demolition debris from DOE/NNSA Nevada generators would be disposed at NNSS landfills over the next 10 years. These projected waste volumes would not exceed the solid waste disposal capacity at the NNSS. Adequate waste disposal capacity would also be available in the event that solid waste from a commercial solar power generation facility is disposed at permitted NNSS landfills (see Section 5.1.11.3.2).

5.1.11.3.2 Commercial Solar Power Generation Facility

Construction of a 100-megawatt commercial solar power generation facility under the Reduced Operations Alternative was projected to generate approximately 2,700 cubic feet of hazardous waste and 60,000 cubic feet of construction debris and sanitary solid waste. Operation of this plant was projected to generate approximately 3,000 cubic feet of hazardous waste and 3,400 cubic feet of sanitary solid waste each year. Operational waste would be generated throughout the life of the facility (likely 30 years or more).

Construction of a 100-megawatt commercial solar power generation facility would take approximately 32 months. The commercial solar power generation facility would begin operations after construction, and was assumed to operate for 5 years during the 10-year planning period. Under these assumptions, about 17,000 cubic feet of hazardous waste and 77,000 cubic feet of sanitary solid waste and construction debris would be generated during the 10-year planning period.

As under the No Action Alternative (see Section 5.1.11.1.2), these waste projections are included in this SWEIS to assist DOE/NNSA in determining whether to make land and infrastructure currently under DOE/NNSA control available for another use by a commercial entity. Any waste generated by construction and operation of the power plant would be managed by the commercial operator of the facility. Because numerous hazardous waste recycle or TSD facilities exist in Nevada and nearby states, as well as numerous landfills for industrial and sanitary solid waste, it is expected that offsite disposal capacity would be adequate for the waste projected from the solar power generation facility (see Section 5.1.11.1.1).

If permitted by NDEP, another option may be to dispose the projected sanitary solid waste and construction debris in NNSS landfills. The total volume of sanitary solid waste and construction and demolition debris, including waste from a commercial solar power generation facility, would increase to 3,400,000 cubic feet over the next 10 years. Because this volume would be significantly smaller than the projected remaining NNSS disposal capacity (see Section 5.1.11.1.1), adequate solid waste management capacity at the NNSS would be available. Most likely solid waste from a commercial solar generation facility would be disposed off site.
Chapter 5
Environmental Consequences

Waste Management—American Indian Perspective

The Consolidated Group of Tribes and Organizations (CGTO) continues to strongly oppose the transportation, storage and disposal of radioactive waste at the Nevada National Security Site (NNSS); however, Indian people must continue to fulfill our birth-rite obligation to care for our Holy Land and do what we can to try to restore balance to Area 5 and other contaminated locations.

The CGTO knows the NNSS is used to dispose of low-level radioactive waste and low-level mixed radioactive waste (i.e., containing certain hazardous wastes) in Area 5, and non-hazardous waste and debris. Indian people hold traditional and scientific views of radioactive materials and waste. As an example, the former builds on the view that all resources—including the rocks—are alive. Radioactive rocks are powerful, but they can become “angry rocks” if they are removed without proper ceremony, used in a culturally inappropriate way, disposed of without ceremony, or placed where they do not want to be. The practice of dealing with “bad medicine” or neutralizing negative forces is a part of our traditional culture. Indian knowledge and use of radioactive rocks, or minerals, in the western United States goes back for thousands of years. Areas with high concentrations of these minerals are called dead zones. Such areas contain places of power or energy and can only be visited or certain minerals used under the supervision of specially-trained Indian people, who are sometimes referred to in the English language as a shaman or medicine man. Therefore, the U.S. Department of Energy (DOE) would benefit from this knowledge if applied correctly.

A head Salt Song singer and religious leader for the Cheyenne Paiutes once explained the impacts of radiation as follows:

“Our spirits will paint their faces and become angry because they are disturbed by the presence of angry rocks. When we are out there now it is still and peaceful; It is like being in a church chamber. Radiation will disturb the harmony. . . . It will no longer be the same. It will be violated. All the previous songs stories that have been shared in the area will be disturbed. Once a song is sung it continues to be there. When you sing a song you are on the trail – your spirit is making that trip. You are describing where you are at and what is happening. You tell in the song where you are and what you are doing. When people go to these areas today a person can get a song. Prehious songs live in the mountains in the canyons. If you were a gifted person that was meant to be an owner of the song you can actually hear it. There are still areas today where you can go and hear the song. Some people hear the songs and it scares them because they do not know what it is. Young people need to be told what it is they are hearing. The places need to be protected from damage so the songs continue to be there for future generations. It is like a delayed echo that never goes away and can come again and again to new people.”

We are very concerned about the tritiated liquids disposed at the NNSS and treated by evaporation into the air from ponds, open tanks, and sewage lagoons. The CGTO is concerned about the ponds drying up and the airborne residue adversely impacting the environment.

According to tribal elders, “Evaporating tritium like this is not a natural process: The natural environment is altered. The wildlife could drink this contaminated water, birds could land on the ponds, insects and vegetation can become contaminated. This contamination would then adversely impact the food chain. We are concerned the animals will become contaminated or sick if they ingest other contaminated species in the food chain. How can they clean themselves to survive? How can DOE contain this contamination?”

We are also concerned about adverse impacts to the land, animals, plants, water, air, and insects from the waste and noise generated during explosive waste detonation at the Area 11 Explosives Ordnance Disposal Unit. Indian people have witnessed the destructive force of explosive detonations and the resulting destruction to the environment. For example, animals relocate to unfamiliar habitats, which adversely impact their survival rate. Air is adversely impacted, increasing the occurrence of dead air. Noise and vibration from the detonations impact the insects, and disrupt vegetation growth.

Indian people know if the earth and environment are being disrespected, such as in Areas 5 and 11, the spirits that protect and watch over these can become upset and respond negatively. This can result in the characteristics of the environment changing, causing animals to leave their natural habitats, reducing the native vegetation, further reducing water resources, and increasing occurrences of perceived mishaps.

For additional information on dead air, see Appendix C.2.8.

Reducing the natural vegetation may result in the introduction of noxious weeds.
5.1.12 Human Health

Continued operations at the NNSS present potential health impacts associated with radioactive materials, hazardous chemicals, industrial accidents, and noise. This section presents an assessment of the potential radiological, chemical, industrial accident, and noise impacts on workers and the general public associated with normal operations and hypothetical accident conditions. Specific details of the methodologies employed for determining radiological, chemical, and industrial impacts are presented in Appendix G.

Radiological impacts are presented for two public receptors: the general population living within 50 miles of a radioactive materials release location and an MEI. The MEI was assumed to be at the offsite location that would result in the maximum radiological impact. General population impacts were evaluated for a residential scenario whereby people are exposed to radioactive materials emitted from operational facilities, as well as other locations where experiments are to be performed or legacy testing areas that emit tritium or are contaminated with particulate radioactive materials. Radiation exposure can occur through inhalation, direct exposure to a radioactive plume or radioactive material deposited on the ground, or ingestion of contaminated food products from animals raised locally and fruits and vegetables grown in a family garden. Impacts on the MEI were evaluated for a scenario that includes the same exposure pathways assumed for the general population, but assumes an increased amount of time spent outdoors and a higher rate of contaminated food consumption.

Potential impacts are also presented for two categories of workers: workers directly involved in activities associated with assigned missions and nearby noninvolved workers.

In the event of an accident, involved workers could receive a radiation dose or be exposed to hazardous chemicals. Potential impacts on workers at a facility at which an accident was assumed to occur could range from minor to lethal. The impacts on these workers would depend on a number of factors, including the nature of the accident-initiating event, their proximity to the accident, and conditions in the vicinity of the accident (e.g., meteorological conditions or localized airflow). In this SWEIS, LCFs were not calculated for involved workers as a result of a fatal accident.
A noninvolved worker is a person working at the site who is incidentally exposed to radiological or chemical emissions, either during normal operations or as a result of an accident. The location of a noninvolved worker could be a facility or nearby locale that is expected to be staffed on a daily basis. Because the various areas at which activities occur are widely separated, it is unlikely that there would be a noninvolved worker nearby. Additionally, because the sources of normal operations emissions are widely separated, no single noninvolved worker would receive significant exposures from multiple locations. For purposes of accident analyses, the noninvolved worker was generally assumed to be 110 yards downwind of the emission point, except for those instances where the presence of a noninvolved worker is not logical (e.g., inside the exclusion zone of a high-explosives experiment).

Potential radiological impacts are presented in terms of dose and increased risk of an LCF.

For normal operations, the following criteria were used to evaluate the radiological impacts on an MEI:

- NESHAPs annual dose limit of 10 millirem per year for air emissions from a DOE site (40 CFR Part 61 Subpart H)
- Increased risk of an LCF

For a radiation worker, under normal operations, the following criteria were used to evaluate the radiological impacts:

- DOE’s radiation worker protection requirement of 5 rem per year
- DOE guidance for maintaining doses below 2 rem per year
- The DOE/NNSA NSO guidance for maintaining doses below 0.5 rem per year
- Increased risk of an LCF

For the public, the MEI, and a noninvolved worker, there are no established standards for doses associated with an accident; however, DOE uses an offsite individual dose of 25 rem in its safety analysis as an evaluation guideline as to whether safety class or safety significant controls are required. In this SWEIS, the following criteria were used to evaluate the impacts of a facility accident:

- Dose and increased risk of an LCF if the accident were to occur and
- Overall risk of an LCF when the probability of the accident is considered
For all workers, including construction workers, the following criteria were used to evaluate the impacts from industrial accidents:

- Number of total recordable cases and the cases resulting in days away, restricted, or transferred (DART)
- Number of fatal accidents from construction across the worker population

For chemicals, measures were derived from comparisons with standards or guidelines for chemical exposure, such as the American Industrial Hygiene Association’s Emergency Response Planning Guidelines.

Noise from most activities at the NNSS or any offsite location would not propagate beyond the site’s boundaries at discernible levels. In general, noise levels associated with activities for each of the alternatives would have the greatest impacts on onsite workers. Activities that would generate the greatest onsite noise levels would include construction, military training, and high-explosives experiments. Activities evaluated for potential noise impacts on onsite workers included high-explosives experiments under the Stockpile Stewardship and Management and Work for Others Programs and the use of aircraft under the Work for Others Program.

Principal noise sources with the largest potential to create an impact in long-term baseline noise conditions to offsite receptors include vehicles transporting workers and materials to the sites. Thus, potential noise impacts on offsite receptors were assessed by estimating the number of employees using privately owned vehicles and the number of shipments to and from the site (primarily under the Waste Management Program).

5.1.12.1 Normal Operations

Under all alternatives, existing sources of radiation exposure would continue to result in a potential radiation dose to the public. These existing sources include tritium from evaporation or evaporotranspiration of water and resuspension of radioactive particulates in surface soils; both of these sources are from past nuclear weapons testing performed at the NNSS. Potential radiation doses from these activities are discussed in Chapter 4, Section 4.1.12. For this SWEIS analysis, these sources were estimated to result in a dose of about 0.47 person-rem per year to the population of about 43,000 and a dose of 2.6 millirem per year (5-year average) to the MEI. Incremental doses from operational activities performed under each of the alternatives could add to these baseline doses.

5.1.12.1.1 No Action Alternative

Under the No Action Alternative, radioactive materials would be released as a result of some of the proposed activities. National Security/Defense Mission experiments would be performed with radioactive materials at JASPER and the U1a Complex, but the design of the facilities and experiments would not allow releases to the environment. Similarly, activities performed in the Device Assembly Facility (DAF) would not release radioactive materials that could affect receptors outside of the facility. Activities that could result in additional radioactive emissions include experiments at the Dense Plasma Focus Facility. Waste management activities performed as part of the Environmental Management Mission would not result in radioactive air emissions that would be distinguishable from the tritium and particulate emissions from legacy contamination in the vicinities of the Area 3 RWMS and the Area 5 RWMC. Activities related to D&D and environmental restoration could result in additional radioactive air emissions from the resuspension of radioactive materials previously deposited on building surfaces or the ground. Nondefense Mission activities are not expected to result in radioactive emission.
Table 5–52 presents the estimated annual doses to an MEI and to the population within 50 miles of projected emissions, and the associated annual risks of an LCF. As shown in Table 5–52, the incremental doses to the public from proposed activities at the site would be small compared to doses from baseline sources. The annual risk of an LCF to the MEI from the total dose of 2.8 millirem would be 2×10^{-6} (1 chance in 500,000 of an LCF). The calculated risk of 0.0003 LCFs to the surrounding population of approximately 54,000 means that the most likely outcome would be no additional LCFs in that population resulting from the estimated annual total population dose of 0.5 person-rem. Based on the premise that there is some risk associated with any radiation dose, the population risk of 0.0003 implies that there would be an annual risk of 1 in 3,300 of a single LCF in the population.

Table 5–52 Nevada National Security Site Annual Radiological Impacts of Normal Operations – No Action Alternative

<table>
<thead>
<tr>
<th>Release Location</th>
<th>MEI</th>
<th>Offsite Population within 50 Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose (millirem)</td>
<td>LCF Risk</td>
</tr>
<tr>
<td>Baseline from diffuse sources b</td>
<td>2.6</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>National Security/Defense Mission</td>
<td>Dense Plasma Focus Facility (Area 11)</td>
<td>0.14</td>
</tr>
<tr>
<td>Environmental Management Mission</td>
<td>Environmental restoration/D&D c</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Total Offsite Impact</td>
<td>2.8</td>
<td>2×10^{-6}</td>
</tr>
</tbody>
</table>

a The approximate population within 50 miles of the Dense Plasma Focus Facility is 54,000.

b The baseline for the MEI is based on the dose reported in annual site environmental reports; the population dose is based on an historical calculation from a National Emission Standards for Hazardous Air Pollutants report (DOE/NV 2005a, 2005f, 2006a, 2007d, 2008a, 2009d).

c Estimates based on projections for D&D of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); the Engine Maintenance, Assembly, and Disassembly (E-MAD); the Pluto Facility, Building 26-2106; and environmental restoration of corrective action units 300 and 543. The annual doses to the MEI associated with any of these activities were less than 0.01 millirem. The population dose is based on the population-to-MEI dose ratio for the baseline for diffuse sources, which was assumed to have similar resuspension and dispersion/deposition characteristics.

A portion of the workers at the NNSS would receive a radiation dose in the course of performing their jobs. Under the No Action Alternative, activities would continue at approximately the same level as they have over the last few years. Therefore, it is expected that the number of workers receiving a measurable radiation dose and the average annual dose would continue at about the same level. About 75 workers are expected to receive a measurable dose, with a collective worker dose of about 5.2 person-rem. The average annual dose would be about 70 millirem per worker.

The potential for occupational injury and illness was estimated for DOE/NNSA activities at the NNSS using rates based on DOE experience (DOE 2010e) and for activities associated with the construction and operation of a commercial solar power facility using general industrial experience (DOL 2010b, 2010c) (see Appendix G for details). The number of total recordable cases (TRCs) and DART cases were projected based on the number of FTEs estimated for this alternative. Under this alternative, a total of 32 TRCs and 14 DART cases were projected annually for all activities being performed at the NNSS. DOE/NNSA operations at the NNSS were estimated to result in 26 TRCs and 11 DART cases annually. Under this alternative, a commercial solar power generation facility could be constructed. Solar power facility operations would result in 6.2 TRCs and 3.2 DART cases annually. Construction of the solar

6 Differences in exposed populations are because different locations are used as the center of the 50-mile population, depending on the source of the emission.
power facility by 500 FTEs over a 35-month period was projected to result in 60 TRCs and 31 DART cases. The estimated annual risk of a fatality during the construction period is 0.019.

Subsistence Consumer. A special receptor analysis was performed to evaluate the potential radiological impacts on an individual who derives all of his or her sustenance from the land. The assumption that all of the subsistence consumer’s food comes from the land is conservative because even those who rely on game animals, local crops, or both for a portion of their diet generally get some of their food from commercial sources that would not be affected by the NNSS. This hypothetical individual was assumed to live near the NNSS at a location where there is soil contamination as a result of radioactive releases from past NNSS operations. A portion of the individual’s diet was assumed to be derived from crops raised on a farm. The balance of the receptor’s diet was assumed to come from wildlife that has become contaminated on the NNSS and was harvested through hunting at an offsite location. The estimated dose to a person living a subsistence lifestyle is about 10 millirem per year; the increased risk of an LCF from this dose is about 6×10^{-6} or 1 chance in 170,000. A more detailed description of the scenario and the results of the analysis are provided in Appendix G, Section G.2.4. Because this receptor’s dose would be dominated by existing radioactive materials in the soil or in wildlife, it would be nominally the same for all of the alternatives. If this receptor also received the same dose from airborne releases as the MEI, his or her total dose would be 13 millirem per year; the incremental LCF risk from this dose would be 8×10^{-6} or 1 chance in 130,000.

Noise Impacts. Under the No Action Alternative, construction of a new solar power generation facility would involve movement of workers and equipment and would result in localized, intermittent, and temporary increases in noise levels near the construction site. DOE/NNSA would implement appropriate hearing protection programs to minimize noise impacts on workers during construction, including the use of administrative controls to ensure adherence to appropriate Occupational Safety and Health Act standards (29 CFR 1926.52), engineering controls, and personal hearing protective equipment.

High-explosives experiments under the Stockpile Stewardship and Management and Work for Others Programs would be conducted at BEEF and other locations in the Nuclear and High Explosives Test Zone (Areas 1, 2, 3, 4, 12, and 16). To protect onsite workers and visitors, an exclusion zone would be established around an experiment based on the size of the explosion and the predicted noise levels. During preparations, only authorized personnel would be allowed in the vicinity of the experiment and would be required to wear personal protective equipment. All personnel would be prevented from entering the exclusion zone during the performance of the experiment. Under the No Action Alternative, up to 30 conventional high-explosives experiments (using up to 70,000 pounds of TNT-equivalent explosives) per year would occur at BEEF or other locations within the Nuclear and High Explosives Test Zone at the NNSS. These detonations would be conducted both underground and in the open air. It was estimated that a detonation of a 70,000-pound TNT-equivalent explosive could result in noise levels of 160 decibels (dB) at 1 mile from a blast site (DTRA 1981). At this noise level, a human without hearing protection could experience tinnitus (or “ringing” of the ears); however, it is expected that this level would decrease substantially to barely audible levels at distances beyond the NNSS boundary. Potential noise impacts on residents in areas adjacent to the NNSS would be minimal because the NNSS is in a remote area and is buffered by the Nevada Test and Training Range to the north and east and partially on the west. The distances from the closest location of high-explosives experiments (within the Nuclear and High Explosives Test Zone) to the NNSS site boundary (not buffered by the Nevada Test and Training Range) and to the nearest community (Amargosa Valley) are approximately 15 and 25 miles, respectively.

Periodic military training exercises at the NNSS under the Work for Others Program would include the operation of manned and unmanned aerial systems, including fixed-wing aircraft (airplanes) and helicopters, which would result in local noise levels ranging from 80 to 90 decibels A-weighted (dBA) (DOE 2001a). Flights associated with NNSS activities originate off site at various airports and military airfields and land at the Aerial Operations Facility (Area 6), Desert Rock Airport, and Yucca Lake
Airstrip. The majority of flight activities occur within the NNSS boundary. Aerial vehicles would fly at altitudes and on flight paths approved by the Federal Aviation Administration (FAA) or military controllers. Noise impacts associated with use of these aerial vehicles would generally be limited to within the NNSS boundary or may be detected on U.S. Route 95, the closest publicly available area. Increases in noise levels from these activities would be intermittent and temporary and are not expected to result in any appreciable noise level increases to offsite receptors near the NNSS boundary. Worker hearing protection for these activities would be required, as necessary.

Potential noise impacts on offsite receptors from NNSS activities under the No Action Alternative would primarily result from traffic noise generated by privately owned vehicles of commuting employees (regular operations and construction); by trucks transporting waste and materials; and by vehicles associated with the construction of the commercial solar power generation facility. As discussed in Section 5.1.3.2, regional daily traffic volumes projected under this alternative would increase by up to approximately 35 percent from future baseline conditions on roadways analyzed (not including Mercury Highway, which mainly serves the NNSS and does not include any private residential areas) (see Tables 5–18 and 5–19). The increase in daily vehicle trips by privately owned vehicles from construction workers related to a commercial solar power generation facility would increase baseline noise conditions along the main commuter routes to the NNSS; however, increases in traffic noise would generally occur during the morning and afternoon commuting hours. The increase in daily truck trips is not expected to increase baseline noise levels substantially along the primary highways leading to the NNSS because the truck transports would be distributed throughout the day.

5.1.12.1.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, the baseline dose from legacy source emissions would be the same as under the No Action Alternative. A higher level of activities would occur to support the National Security/Defense Mission, which would increase the release of radioactive materials. A larger number of experiments with high explosives would be performed at BEEF and other locations in the Nuclear and High Explosives Test Zone; some of these experiments would use a larger quantity of explosives than that used under the No Action Alternative. Additionally, 20 uncontained experiments would be conducted using depleted uranium. A larger number of experiments would also be performed at the Dense Plasma Focus Facility. Weapons maintenance, weapons disassembly, or both would be performed at DAF under the Expanded Operations Alternative; these activities, however, are not expected to result in the release of radioactivity to the environment.

Studies using radioactive tracers in the open environment would be conducted under this alternative. These studies would use short-lived noble gas and particulate radionuclides that would be released above or below ground. The largest potential for offsite radiological impacts from typical tracer experiments is associated with the underground release of radioactive gases or particulates and their transport to the surface because larger quantities of radionuclides would be used for subsurface experiments. Because these experiments are still at the conceptual stage, the actual amounts of radioactive materials that might reach the surface and be available for transport to the public are unknown. For purposes of this SWEIS, it was assumed that the tracer experiments would comply with project-specific safety and environmental goals established to prevent exceeding the overall NNSS NESHAPs airborne radiation standard of 10 millirem per year to the MEI. For this SWEIS, it was assumed that the MEI annual dose limit goal from tracer studies would be 1 millirem per year for all experiments conducted.
Table 5–53 shows the calculated offsite doses that could occur under the Expanded Operations Alternative. As shown in Table 5–53, the incremental doses to the public from proposed activities at the site would be small compared to doses from baseline sources. The annual risk of an LCF to the MEI from the total dose of 4.8 millirem would be 3×10^{-6} (1 chance in 330,000 of an LCF). The calculated risk of 0.0005 LCFs to the surrounding population of approximately 54,000 means that the most likely outcome would be no additional LCFs in that population resulting from the estimated annual total population dose of 0.89 person-rem. Based on the premise that there is some risk associated with any radiation dose, the population risk of 0.0005 implies there would be an annual risk of 1 in 2,000 of a single LCF in the population.

Under the Expanded Operations Alternative, the level of activity associated with experiments using radioactive materials would increase. There would also be new activities performed at DAF involving limited-life component exchanges in nuclear weapons or weapons disassembly that would result in worker doses. The number of workers receiving a radiation dose under this alternative was assumed to increase proportionally to the increase in the overall workforce (see Section 5.1.4). Therefore, the number of workers receiving a measurable radiation dose would increase from 75 to about 94. Use of work practices and procedures to maintain exposures as low as reasonably achievable would continue; assuming the average dose remains at recent levels, the collective dose to the worker population would be about 6.6 person-rem.

Table 5–53 Nevada National Security Site Annual Radiological Impacts of Normal Operations – Expanded Operations Alternative

<table>
<thead>
<tr>
<th>Release Location</th>
<th>MEI</th>
<th>Population within 50 Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose (millirem)</td>
<td>LCF Risk</td>
</tr>
<tr>
<td>Baseline from diffuse sources</td>
<td>2.6</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>National Security/Defense Mission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEEF high-explosives experiments (Area 4)</td>
<td>0.62</td>
<td>4×10^{-7}</td>
</tr>
<tr>
<td>DPFF (Area 11)</td>
<td>0.6</td>
<td>4×10^{-7}</td>
</tr>
<tr>
<td>Tracer experiments</td>
<td>< 1.0</td>
<td>$< 6 \times 10^{-7}$</td>
</tr>
<tr>
<td>Environmental Management Mission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental restoration/D&D</td>
<td>< 0.01</td>
<td>$< 6 \times 10^{-9}$</td>
</tr>
<tr>
<td>Total Offsite Impact</td>
<td>4.8</td>
<td>3×10^{-6}</td>
</tr>
</tbody>
</table>

< = less than; BEEF = Big Explosives Experimental Facility; D&D = decontamination and decommissioning; DPFF = Dense Plasma Focus Facility; LCF = latent cancer fatality; MEI = maximally exposed individual; rem = roentgen equivalent man.

* The approximate populations within 50 miles of facilities are: BEEF – 10,500; DPFF – 54,000; and Area 5 (assumed location of tracer experiments) – 54,000.

* The baseline for the MEI is based on the dose reported in annual site environmental reports; the population dose is based on an historical calculation from a National Emission Standards for Hazardous Air Pollutants report (DOE/NV 2005a, 2005f, 2006a, 2007d, 2008a, 2009d).

* The annual MEI dose for the tracer experiments is a proposed environmental goal.

* Values were modeled using the MACCS2 computer code. For conservatism in modeling population dose impacts, tracer experiments were assumed to be conducted in Area 5 because it is closer to population centers. For the MEI calculation, the receptor was conservatively assumed to be at the closest BEEF site boundary location (9 miles east of BEEF).

* Estimates based on projections for D&D of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); the Engine Maintenance, Assembly, and Disassembly (E-MAD); the Pluto Facility, Building 26-2106; and environmental restoration of corrective action units 300 and 543. The annual doses to the MEI associated with any of these activities were less than 0.01 millirem. The population dose is based upon the population-to-MEI dose ratio for the baseline for diffuse sources, which was assumed to have similar resuspension and dispersion/deposition characteristics.

* Note that derivation of this dose is based on highly conservative modeling assumptions and that mitigation measures and/or reductions in testing quantities, frequencies, or both, would be invoked to ensure the 10 millirem annual dose limit would not be exceeded.
The potential for occupational injury and illness was estimated for DOE/NNSA activities at the NNSS using rates based on DOE experience (DOE 2010e) and for activities associated with the construction and operation of one or more commercial solar power generation facilities using general industrial experience (DOL 2010b, 2010c) (see Appendix G for details). Under this alternative, a total of 44 TRCs and 20 DART cases were projected annually for all activities being performed at the NNSS. DOE/NNSA operations at the NNSS were estimated to result in 32 TRCs and 14 DART cases annually. In addition, DOE/NNSA construction activities involving 250 FTEs per year would result in 3.8 TRCs and 1.7 DART cases annually. Under this alternative, one or more commercial solar power facilities could be constructed. Solar power facility operations would result in 8.3 TRCs and 4.2 DART cases annually. Construction of the solar power facilities by 750 FTEs over a 42-month period was projected to result in 110 TRCs and 31 DART cases. The highest estimated annual risk of a fatality for all construction activities is 0.031. The estimated risk of a fatality from DOE/NNSA construction activities at the NNSS would be 0.0029 per year; the estimated annual risk of a fatality during construction of the commercial solar power facility is 0.029.

Subsistence Consumer. As discussed in Section 5.1.12.1.1, a special receptor analysis was performed to evaluate the potential radiological impacts on an individual who derives all of his or her sustenance from the land. The estimated dose to a person living a subsistence lifestyle is about 10 millirem per year; the increased risk of an LCF from this dose is about 6×10^{-6} or 1 chance in 170,000. If this receptor also received the same dose from airborne releases as the MEI, the total dose would be 15 millirem per year; the incremental LCF risk from this dose would be 9×10^{-6} or 1 chance in 110,000.

Noise Impacts. Under the Expanded Operations Alternative, potential onsite noise impacts would be similar to those described under the No Action Alternative; however, the frequency of increased noise levels would increase because the number of personnel and activities would be higher under this alternative. For example, as under the No Action Alternative, aerial vehicles would be used for periodic military training exercises under the Work for Others Program; however, usage rates would increase under the Expanded Operations Alternative. Under the Stockpile Stewardship and Management and Work for Others Programs, up to 100 conventional high-explosives experiments per year would occur at BEEF and other locations within the Nuclear and High Explosives Test Zone at the NNSS. Although the experiments would still be limited to 70,000 pounds TNT-equivalent explosives at BEEF, up to 120,000 pounds TNT-equivalent explosives would be the maximum limit for experiments within the Nuclear and High Explosives Test Zone (Areas 1, 2, 3, 4, 12, or 16). It was estimated that a detonation of a 120,000-pound TNT-equivalent explosive could result in a noise level of 160 dB at 1.2 miles from the blast site (DTRA 1981). Similar to the No Action Alternative, potential noise impacts on residents in areas adjacent to the NNSS would be minimal, as this noise level would substantially decrease with distance. Depending on meteorological conditions, a temporary rumbling sound, similar to distant thunder, may be detected in nearby communities (DTRA 1981).

Potential noise impacts on offsite receptors under the Expanded Operations Alternative would primarily result from traffic noise generated by privately owned vehicles of commuting employees and by trucks transporting waste and materials to and from the NNSS. As discussed in Section 5.1.3.2, regional daily traffic volumes projected for this alternative would increase by approximately 25 percent from future baseline conditions (see Tables 5–18 and 5–19). The increase in daily vehicle trips by personnel vehicles would primarily increase baseline noise conditions along the main roadways leading to these sites; however, this would be limited to the morning and afternoon commuting hours. The increase in daily truck trips would moderately increase baseline noise levels along the primary highways leading to the NNSS.
5.12.1.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, the baseline dose from existing sources at the NNSS would be the same as under the No Action Alternative. The number of experiments conducted in support of the National Security/Defense Mission at the Dense Plasma Focus Facility would be half of the number proposed under the No Action Alternative. Environmental restoration activities under the Environmental Management Mission would be performed at about the same level as those under the No Action Alternative. Table 5–54 presents the estimated doses from normal operations for the Reduced Operations Alternative. As shown in Table 5–54, the incremental doses to the public from proposed activities at the site would be small compared to doses from baseline sources. The annual risk of an LCF to the MEI from the total dose of 2.7 millirem would be 2×10^{-6} (1 chance in 500,000 of an LCF). The calculated risk of 0.0003 LCFs to the surrounding population of approximately 54,000 means that the most likely outcome would be no additional LCFs in that population resulting from the estimated annual total population dose of 0.48 person-rem. Based on the premise that there is some risk associated with any radiation dose, the population risk of 0.0003 implies that there would be an annual risk of 1 in 3,300 of a single LCF in the population.

Table 5–54 Nevada National Security Site Annual Radiological Impacts of Normal Operations – Reduced Operations Alternative

<table>
<thead>
<tr>
<th>Release Location</th>
<th>MEI</th>
<th>Offsite Population within 50 Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose (millirem)</td>
<td>LCF Risk</td>
</tr>
<tr>
<td>Baseline from diffuse sources</td>
<td>2.6</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>National Security/Defense Mission</td>
<td>0.07</td>
<td>2×10^{-8}</td>
</tr>
<tr>
<td>Environmental restoration</td>
<td>< 0.01</td>
<td>6×10^{-11}</td>
</tr>
<tr>
<td>Total Offsite Impact</td>
<td>2.7</td>
<td>2×10^{-4}</td>
</tr>
</tbody>
</table>

DPFF = Dense Plasma Focus Facility; LCF = latent cancer fatality; MEI = maximally exposed individual; rem = roentgen equivalent man.

a The approximate population within 50 miles of DPFF is 54,000.

b The baseline for the MEI is based on the dose reported in annual site environmental reports; the population dose is based on an historical calculation from a National Emission Standards for Hazardous Air Pollutants report (DOE/NV 2005a, 2005f, 2006a, 2007d, 2008a, 2009d).

c Estimates based on projections for D&D of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); the Engine Maintenance, Assembly, and Disassembly (E-MAD); the Pluto Facility, Building 26-2106; and environmental restoration of corrective action units 300 and 543. The annual doses to the MEI associated with any of these activities were less than 0.01 millirem. The population dose is based on the population-to-MEI dose ratio for the baseline for diffuse sources, which was assumed to have similar resuspension and dispersion/deposition characteristics.

Under the Reduced Operations Alternative, the level of activity associated with experiments using radioactive materials would decrease compared to the No Action Alternative. The number of workers receiving a radiation dose under this alternative was assumed to decrease slightly, proportional to the decrease in the overall workforce (see Section 5.1.4). The number of workers receiving a measurable radiation dose would decrease from 75 to about 68. Use of work practices and procedures to maintain exposures as low as reasonably achievable would continue; assuming the average dose remains at recent levels, the collective dose to the worker population would be about 4.8 person-rem.
The potential for occupational injury and illness was estimated for DOE/NNSA activities at the NNSS using rates based on DOE experience (DOE 2010e) and for activities associated with the construction and operation of a commercial solar power facility using general industrial experience (DOL 2010b, 2010c) (see Appendix G for details). Under this alternative, a total of 28 TRCs and 13 DART cases were projected annually for all activities performed at the NNSS. DOE/NNSA operations at the NNSS were estimated to result in 23 TRCs and 10 DART cases annually. Under this alternative, a commercial solar power facility could be constructed. Solar power facility operations would result in 5.2 TRCs and 2.7 DART cases annually. Construction of the solar power facility by 400 FTEs over a 32-month period was projected to result in 44 TRCs and 23 DART cases. The estimated annual risk of a fatality during the construction period is 0.015.

Subsistence Consumer. As discussed in Section 5.1.12.1.1, a special receptor analysis was performed to evaluate the potential radiological impacts on an individual who derives all of his or her sustenance from the land. The estimated dose to a person living a subsistence lifestyle is about 10 millirem per year; the increased risk of an LCF from this dose is about 6×10^{-6} or 1 chance in 170,000. If this receptor also received the same dose from airborne releases as the MEI, the total dose would be 13 millirem per year; the incremental LCF risk from this dose would be 8×10^{-6} or 1 chance in 130,000.

Noise Impacts. Under the Reduced Operations Alternative, potential noise impacts would be similar to those described under the No Action Alternative; however, the frequency of increased noise levels would decrease because the number of personnel and activities would be reduced under this alternative. Similar to the No Action Alternative, high-explosives experiments under the Stockpile Stewardship and Management and Work for Others Programs would be conducted at BEEF and other locations in the Nuclear and High Explosives Test Zone. Up to 10 conventional high-explosives experiments per year would occur at BEEF and up to 6 per year would occur at other locations at the NNSS under the Reduced Operations Alternative. The frequency of aerial vehicle usage for periodic military training exercises under the Work for Others Program would decrease compared to the No Action Alternative.

Potential noise impacts on offsite receptors under the Reduced Operations Alternative would primarily result from traffic noise generated by vehicles associated with the construction of the commercial solar power generation facility and trucks transporting waste and materials to and from the NNSS. As discussed in Section 5.1.3.2, regional daily volumes projected for this alternative would increase by up to approximately 10 percent from future baseline conditions (see Tables 5–18 and 5–19). The increase in daily vehicle trips by privately owned vehicles from construction workers related to the commercial solar power generation facility would increase baseline noise conditions along the main commuter routes to the NNSS; however, increases in traffic noise would generally occur during the morning and afternoon commuting hours. The increase in daily truck trips is not expected to increase baseline noise levels substantially along the primary highways leading to the NNSS because the truck transports would be distributed throughout the day.
5.1.12.1.4 Waste Disposal Facilities Performance Assessments

As addressed in Chapter 4, Section 4.1.11.1.1.3, radioactive waste disposal occurs at the NNSS in accordance with authorizations issued by DOE/NNSA that consider analyses of possible long-term (over thousands of years) impacts on the public and the environment after the disposal facilities are closed. For disposal of LLW (and the radioactive component of MLLW), DOE requires preparation and maintenance of site-specific performance assessments and composite analyses in compliance with DOE Order 435.1. For disposal of TRU waste, DOE requires analyses in accordance with the requirements of “Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes” (40 CFR Part 191).

LLW management performance. A combined Area 3 RWMS performance assessment and composite analysis was completed in July 2000. The Area 5 RWMC performance assessment was completed in 1998, and the Area 5 RWMC composite analysis was completed in 2001. The analyses determined that, because of the great excess of evapotranspiration over precipitation and other site-specific factors, there was little to no potential for transport of disposed radionuclides to groundwater. Further, the Intergovernmental Panel on Climate Change, in its Fourth Assessment Report estimates that, although increases in precipitation extremes (such as storms associated with “El Niño” events) are possible for the Great Basin, annual-mean precipitation is projected to decrease in the southwest United States (IPCC 2007b). This would tend to make it even more unlikely that a path to groundwater would develop in the future.

The analyses also concluded that all performance objectives would be met. The results of the initial performance assessments are summarized in Table 5–55 for the air pathway, all pathways, groundwater protection, radon gas, and intruder performance objectives. The results of the initial composite analyses were well below the 30-millirem-per-year decision criterion for both the Area 3 RWMS and Area 5 RWMC.7

Subsequently, the performance assessment and composite analyses have been amended and updated annually to reflect new information such as revised estimates of disposed waste inventories or modifications to waste disposal operations (see Chapter 4, Section 4.1.11.1.1.3). The updates have included enhanced probabilistic modeling techniques. Recent reviews and updates of the Area 3 and 5 performance assessments and composite analyses concluded that the results and conclusions of the performance assessments and composite analyses remained valid (NSTec 2010f, 2011a, 2012).

7 The Area 5 composite analysis also considered the possible long-term impacts of TRU waste and other waste in the greater confinement disposal boreholes and TRU waste in the Area 5 trench.
Table 5–55 Summary of Low-Level Radioactive Waste Disposal Facility Performance Assessments Results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Performance Objective</th>
<th>Area 5 RWMC</th>
<th>Scenario</th>
<th>PA Result</th>
<th>Area 3 RWMS</th>
<th>Scenario</th>
<th>PA Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pathway</td>
<td>10 millirem in a year</td>
<td>Transient occupancy</td>
<td>0.17</td>
<td>U-3ah/at Community with agriculture</td>
<td>2 × 10⁻³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resident farmer</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open rangeland/ Cane Spring</td>
<td>4 × 10⁻⁴</td>
<td>U-3bh Community with agriculture</td>
<td>5 × 10⁻³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All pathways</td>
<td>25 millirem in a year</td>
<td>Transient occupancy</td>
<td>0.59</td>
<td>U-3ah/at Community with agriculture</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resident farmer</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open rangeland/ Cane Spring</td>
<td>0.17</td>
<td>U-3bh Community with agriculture</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intruder protection</td>
<td>100 millirem in a year</td>
<td>SLB intruder agriculture</td>
<td>160</td>
<td>U-3ah/at Intruder agriculture</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SLB postdrilling intruder</td>
<td>0.71</td>
<td>U-3bh Intruder agriculture</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pit 6 postdrilling intruder</td>
<td>0.90</td>
<td>U-3bh Postdrilling intruder</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radon-222 flux density</td>
<td>20 pCi/m²/second</td>
<td>SLB units</td>
<td>5.7</td>
<td>U-3ah/at</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pit 6</td>
<td>5.7</td>
<td>U-3bh</td>
<td>6 × 10⁻³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater protection</td>
<td>40 CFR Part 141</td>
<td>No groundwater pathway during compliance period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CFR = Code of Federal Regulations; PA = performance assessment; pCi/m²/second = picocuries per square meter per second; RWMC = Radioactive Waste Management Complex; RWMS = Radioactive Waste Management Site; SLB = shallow land burial.

- Analysis over a 10,000-year period of compliance.
- Analysis over a 1,000-year period of compliance.
- Exposure scenario where receptors visit the closed site, but do not reside at it.
- Exposure scenario involving receptor consumption of products from range-fed cattle that have access to the closed site.
- Exposure scenario where receptors live at a ranch established at the closed site boundary.
- Exposure scenario where an intruder lives in a house (with garden) constructed on top of a disposal unit, assuming a temporary disruption in institutional controls following disposal site closure.
- Exposure scenario where an intruder lives in a house (with garden) on an area contaminated with cuttings from a well drilled through a disposal unit, assuming a temporary disruption in institutional controls following disposal site closure.
- Exposure scenario where receptors live, garden, and manage livestock in a small community established at the site boundary; exposure occurs from radionuclides released to the air from Pit U-3ah/at.
- Exposure scenario where receptors live, garden, and manage livestock in a small community established at the site boundary; exposure occurs from radionuclides released to the air from Pit U-3bh.
- Calculated assuming continuation of the operational disposal unit cap. Installation of a thicker cap as part of closure of the Area 5 RWMC would reduce doses to levels in compliance with the performance objective limits (Bechtel Nevada 2000a).

Source: Bechtel Nevada 2006.

Transuranic waste management performance. As discussed in Chapter 4, Section 4.1.11.1.1.3, DOE/NNSA conducted analyses of compliance with EPA’s TRU waste disposal requirements in 40 CFR Part 191 for the TRU waste disposed both intentionally in greater confinement disposal (GCD) boreholes and inadvertently in an Area 5 RWMC trench. The EPA regulations were first promulgated in 1985 and revised in 1993; they include assurance requirements and three sets of quantitative safety requirements: (1) a containment requirement limiting the quantities of specific radionuclides that may be released over 10,000 years, (2) an individual protection requirement limiting the annual dose to be received by a member of the public, and (3) a groundwater protection requirement.

8 Unclassified records accompanying a shipment of about 1,100 cubic feet of classified waste indicated the shipment contained LLW. Subsequent investigation revealed the shipment contained TRU waste (NSTec 2008a).
It was determined that disposal of TRU waste in the GCD boreholes and disposal trench would meet all applicable EPA containment, individual protection, and groundwater protection requirements. For both analyses, it was determined that the projected cumulative releases would meet the probabilities specified in the EPA standard of exceeding specified quantities of radionuclides. Regarding the EPA individual protection requirement, the mean annual dose to a member of the public from all waste in the boreholes over 1,000 years would be about 0.0062 millirem to the whole body and 0.12 millirem to bone. For the TRU waste inadvertently disposed in the trench, the mean of the maximum total effective dose equivalent for a member of the public over 10,000 years would be about 5.5 millirem in a year; 97 percent of this calculated dose was from external radiation from lead-214 and bismuth-214, which are progeny of radon-222 diffusing from LLW disposed in the same trench, and assumed to be deposited in the soil covering the trench. The results of both assessments indicated compliance with applicable EPA requirements. Regarding the EPA groundwater protection requirement, it was determined that the 1983 EPA standard did not specifically apply to the boreholes; for the TRU waste inadvertently disposed in the trench site, characterization and hydrologic processes modeling supported a conclusion that no groundwater pathway would exist within 10,000 years (SNL 2001; Shott et al. 2008).9

5.1.12.2 Facility Accidents

This section presents the estimated impacts of potential accidents. The analysis considered a range of accidents associated with the activities performed in support of the National Security/Defense, Environmental Management, and Nondefense Missions. The accidents for which detailed analyses were performed were those with the highest potential for offsite impacts. For each accident, the offsite population includes residents living within 50 miles of the accident location; the MEI, a hypothetical individual living along the site boundary in the direction of largest impact; and the noninvolved worker, a hypothetical individual assumed to be 110 yards from the accident location. Using the site boundary of the NNSS as the location of the MEI results in a conservative estimate of impacts because, for most of the site boundary, the Nevada Test and Training Range provides a buffer area between the NNSS and areas accessible to the general public. As many accidents result in ground-level releases, a nominal distance of 100 meters (110 yards) was selected to provide a conservative indication of the dose a potential noninvolved worker might receive. In reality, any worker not directly involved in an activity or facility would likely be much further away. Operational safety practices, including emergency preparedness and training, would make it very unlikely that any worker would receive the high doses often associated with this nearby receptor location. Additional accident analysis details are included in Appendix G.

Public and worker radiological consequences and risks of hypothesized accidents at the NNSS under the No Action, Expanded Operations, and Reduced Operations Alternatives are presented in Tables 5–56 and 5–57. Because the same types of activities occur at the facilities under all of the alternatives, the accident scenarios and consequences would be the same across the alternatives. Differences in accident frequencies due to the level of operations would fall within the frequency ranges of the accident events. Table 5–56 presents the potential consequences of an accident—that is, the dose and corresponding LCF risk (for an individual) or number of LCFs (for the population), assuming the accident occurs. Table 5–57 combines the estimated frequency of the postulated accidents with the potential consequences to present the estimated annual risk of an LCF due to the accidents.

9Although the groundwater protection requirement in the 1983 EPA standard did not strictly apply to the TRU waste in the boreholes (SNL 2001), the conclusion reached in 2008 regarding the lack of a groundwater pathway for TRU waste inadvertently disposed in the trench (Shott et al. 2008) is expected to apply to the boreholes as well.
Table 5–56 Nevada National Security Site Facility Accident Radiological Consequences – No Action, Expanded Operations, and Reduced Operations Alternatives

<table>
<thead>
<tr>
<th>Accident Scenario</th>
<th>Dose (rem)</th>
<th>LCF Risk (^a)</th>
<th>Dose (person-rem)</th>
<th>Number of LCFs (^b)</th>
<th>Dose (rem)</th>
<th>LCF Risk (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Security/Defense Mission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAF explosion involving 55 pounds of high explosives and 1 kilogram of plutonium</td>
<td>0.18</td>
<td>(1 \times 10^{-4})</td>
<td>23</td>
<td>(0 \left(1 \times 10^{-1}\right))</td>
<td>6.5</td>
<td>(4 \times 10^{-3})</td>
</tr>
<tr>
<td>DAF design-basis earthquake</td>
<td>0.86</td>
<td>(5 \times 10^{-4})</td>
<td>113</td>
<td>(0 \left(7 \times 10^{-3}\right))</td>
<td>2,800</td>
<td>(1 \times 10^{-4})</td>
</tr>
<tr>
<td>National Criticality Experiments Research Center</td>
<td>0.00045</td>
<td>(3 \times 10^{-7})</td>
<td>0.059</td>
<td>(0 \left(4 \times 10^{-5}\right))</td>
<td>1.5</td>
<td>(9 \times 10^{-4})</td>
</tr>
<tr>
<td>Godiva – burst reactivity induced accident</td>
<td>0.022</td>
<td>(1 \times 10^{-5})</td>
<td>2.9</td>
<td>(0 \left(2 \times 10^{-3}\right))</td>
<td>74</td>
<td>(9 \times 10^{-2})</td>
</tr>
<tr>
<td>National Criticality Experiments Research Center</td>
<td>0.048</td>
<td>(3 \times 10^{-5})</td>
<td>6.3</td>
<td>(0 \left(4 \times 10^{-3}\right))</td>
<td>130</td>
<td>(2 \times 10^{-1})</td>
</tr>
<tr>
<td>beyond-design-basis vault fire – unmitigated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Criticality Experiments Research Center</td>
<td>0.022</td>
<td>(1 \times 10^{-5})</td>
<td>2.9</td>
<td>(0 \left(2 \times 10^{-3}\right))</td>
<td>74</td>
<td>(9 \times 10^{-2})</td>
</tr>
<tr>
<td>beyond-design-basis Godiva excess reactivity insertion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JASPER</td>
<td>2.9 \times 10^{-7}</td>
<td>(2 \times 10^{-10})</td>
<td>9.9 \times 10^{-5}</td>
<td>(0 \left(6 \times 10^{-3}\right))</td>
<td>0.00091</td>
<td>(5 \times 10^{-7})</td>
</tr>
<tr>
<td>UCVS failure</td>
<td>8.0 \times 10^{-9}</td>
<td>(5 \times 10^{-12})</td>
<td>2.8 \times 10^{-6}</td>
<td>(0 \left(2 \times 10^{-9}\right))</td>
<td>2.5 \times 10^{-3}</td>
<td>(2 \times 10^{-8})</td>
</tr>
<tr>
<td>JASPER Target Building Fire</td>
<td>4.5 \times 10^{-4}</td>
<td>(3 \times 10^{-12})</td>
<td>0.81</td>
<td>(0 \left(5 \times 10^{-4}\right))</td>
<td>6.7</td>
<td>(8 \times 10^{-3})</td>
</tr>
<tr>
<td>Tracer surface explosion of short-lived particulates (Expanded Operations Alternative only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Management Mission – Waste Management Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 5 – transuranic waste container – vehicle impact and fire</td>
<td>0.36</td>
<td>(2 \times 10^{-4})</td>
<td>0.65</td>
<td>(0 \left(4 \times 10^{-4}\right))</td>
<td>7.9</td>
<td>(5 \times 10^{-3})</td>
</tr>
<tr>
<td>Area 5 – classified transuranic material container – vehicle impact and fire</td>
<td>0.83</td>
<td>(5 \times 10^{-4})</td>
<td>1.8</td>
<td>(0 \left(1 \times 10^{-3}\right))</td>
<td>20.5</td>
<td>(2 \times 10^{-2})</td>
</tr>
<tr>
<td>Area 5 design-basis earthquake</td>
<td>0.020</td>
<td>(1 \times 10^{-5})</td>
<td>0.043</td>
<td>(0 \left(3 \times 10^{-5}\right))</td>
<td>0.49</td>
<td>(3 \times 10^{-4})</td>
</tr>
<tr>
<td>Area 5 TRUPACT Type A container drop, breach, and fire</td>
<td>1.6</td>
<td>(1 \times 10^{-5})</td>
<td>3.4</td>
<td>(0 \left(2 \times 10^{-5}\right))</td>
<td>39</td>
<td>(5 \times 10^{-2})</td>
</tr>
<tr>
<td>Environmental Management Mission – Environmental Restoration Program (^d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-container spill</td>
<td>4.8 \times 10^{-7}</td>
<td>(3 \times 10^{-10})</td>
<td>8.7 \times 10^{-7}</td>
<td>(5 \times 10^{-10})</td>
<td>1.0 \times 10^{-5}</td>
<td>(6 \times 10^{-9})</td>
</tr>
<tr>
<td>Three-container fire</td>
<td>3.6 \times 10^{-9}</td>
<td>(2 \times 10^{-9})</td>
<td>7.8 \times 10^{-6}</td>
<td>(5 \times 10^{-9})</td>
<td>8.8 \times 10^{-5}</td>
<td>(5 \times 10^{-3})</td>
</tr>
<tr>
<td>Aircraft crash and fire</td>
<td>0.047</td>
<td>(3 \times 10^{-5})</td>
<td>0.090</td>
<td>(5 \times 10^{-5})</td>
<td>1.0</td>
<td>(6 \times 10^{-4})</td>
</tr>
</tbody>
</table>

DAF = Device Assembly Facility; JASPER = Joint Actinide Shock Physics Experimental Research; LCF = latent cancer fatality; rem = roentgen equivalent man; TRUPACT = Transuranic Packaging Transporter; UCVS = ultrafast closure valve system.

\(^a\) Increased risk of an LCF to an individual, assuming the accident occurs. The risk value is doubled for individual doses exceeding 20 rem (NCRP 1993).

\(^b\) The reported value is the projected number of LCFs in the population, assuming the accident occurs, and is therefore presented as a whole number. The result calculated by multiplying the collective population dose by the risk factor (0.0006 LCFs per person-rem) is shown in parentheses.

\(^c\) Because this represents the increased likelihood of an individual developing an LCF, a value of 1 indicates that the person would likely develop a cancer if prompt death did not occur from acute exposure. The value cannot exceed 1.

\(^d\) Environmental restoration accidents assumed to occur at the Area 5 RWMC.
Table 5–57 Nevada National Security Site Facility Accident Radiological Risks a– No Action, Expanded Operations, and Reduced Operations Alternatives

<table>
<thead>
<tr>
<th>Accident</th>
<th>Frequency b</th>
<th>Offsite Population</th>
<th>Onsite Noninvolved Worker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Maximally Exposed</td>
<td>Population</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Individual</td>
<td>within 50 Miles</td>
</tr>
<tr>
<td>National Security/Defense Mission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAF explosion involving 55 pounds of high explosives and 1 kilogram of plutonium</td>
<td>8×10^{-4}</td>
<td>9×10^{-8}</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>DAF design-basis earthquake</td>
<td>10^{-6} to 10^{-7}</td>
<td>5×10^{-10}</td>
<td>7×10^{-8}</td>
</tr>
<tr>
<td>National Criticality Experiments Research Center Godiva – burst reactivity induced accident</td>
<td>10^{-2} to 10^{-3}</td>
<td>3×10^{-9}</td>
<td>4×10^{-7}</td>
</tr>
<tr>
<td>National Criticality Experiments Research Center beyond-design-basis vault fire – unmitigated</td>
<td>$< 10^{-6}$</td>
<td>1×10^{-11}</td>
<td>2×10^{-9}</td>
</tr>
<tr>
<td>National Criticality Experiments Research Center beyond-design-basis Godiva excess reactivity insertion</td>
<td>$< 10^{-6}$</td>
<td>3×10^{-11}</td>
<td>4×10^{-9}</td>
</tr>
<tr>
<td>JASPER UCVS failure</td>
<td>10^{-1} to 10^{-2}</td>
<td>2×10^{-11}</td>
<td>6×10^{-9}</td>
</tr>
<tr>
<td>JASPER Target Building fire</td>
<td>10^{-4} to 10^{-5}</td>
<td>5×10^{-16}</td>
<td>2×10^{-13}</td>
</tr>
<tr>
<td>Tracer surface explosion of short-lived particulates (Expanded Operations Alternative only)</td>
<td>10^{-4} to 10^{-6} per test</td>
<td>3×10^{-8}</td>
<td>5×10^{-8}</td>
</tr>
<tr>
<td>Environmental Management Mission – Waste Management Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 5 – transuranic waste container - vehicle impact and fire</td>
<td>10^{-4} to 10^{-6}</td>
<td>2×10^{-8}</td>
<td>4×10^{-8}</td>
</tr>
<tr>
<td>Area 5 – classified transuranic material container - vehicle impact and fire</td>
<td>10^{-4} to 10^{-6}</td>
<td>5×10^{-8}</td>
<td>1×10^{-7}</td>
</tr>
<tr>
<td>Area 5 design-basis earthquake</td>
<td>5×10^{-4}</td>
<td>5×10^{-9}</td>
<td>2×10^{-8}</td>
</tr>
<tr>
<td>Area 5 TRUPACT Type A container drop, breach and fire</td>
<td>10^{-4} to 10^{-6}</td>
<td>1×10^{-7}</td>
<td>2×10^{-7}</td>
</tr>
<tr>
<td>Environmental Management Mission – Environmental Restoration Program c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-container spill</td>
<td>3×10^{-2}</td>
<td>9×10^{-12}</td>
<td>2×10^{-11}</td>
</tr>
<tr>
<td>Three-container fire</td>
<td>4×10^{-6}</td>
<td>8×10^{-15}</td>
<td>2×10^{-14}</td>
</tr>
<tr>
<td>Aircraft crash and fire</td>
<td>1.2×10^{-6}</td>
<td>4×10^{-11}</td>
<td>6×10^{-11}</td>
</tr>
</tbody>
</table>

< = less than; DAF = Device Assembly Facility; JASPER = Joint Actinide Shock Physics Experimental Research; TRUPACT = Transuranic Packaging Transporter; UCVS = ultrafast closure valve system.

a The risk is the annual increased likelihood of an LCF in the MEI or noninvolved worker and the increased likelihood of a single LCF occurring in the offsite population, accounting for the estimated probability (frequency) of the accident occurring.

b The estimated frequency is on an annual basis unless noted otherwise.

c Environmental restoration accidents assumed to occur at the Area 5 RWMC.
Chapter 5
Environmental Consequences

5.1.12.2.1 No Action Alternative

As part of its National Security/Defense Mission, the NNSS retains an ongoing role in stockpile stewardship and management activities. Activities that would result in the largest offsite radiological consequences and highest radiological risk include accidents at DAF that might result in the explosive dispersal of plutonium from the building. Other experimental activities, such as those at BEEF, JASPER, and the U1a Complex, involve smaller quantities of radioactive material with limited potential for accidental dispersal in quantities that would have impacts on persons other than involved workers. The accident risks for many of the activities under the Stockpile Stewardship and Management Program are small and have no reasonably foreseeable accident scenarios that would likely result in exposure to noninvolved workers or the public.

The accidents with the highest potential consequences and highest radiological risks are shown in Tables 5–56 and 5–57. The highest consequence and risk accidents are those associated with accidents at DAF. At DAF, there are both large quantities of radioactive materials and explosives in close proximity, so there is a potential mechanism to disperse the radioactive material and release it to the atmosphere. Because DAF is designed for these activities, all of the accidents that would result in release of radioactive material to the environment would require extremely unlikely failure of multiple safety systems. The maximum reasonably foreseeable accidents at DAF could result in the explosive dispersal of 1 to 5 kilograms of plutonium and have estimated probabilities in the range of 1×10^{-6} to 8×10^{-4} per year of operation. The highest consequence accident would be an earthquake-initiated accident. If the accident were to occur, the MEI would receive a dose of 0.86 rem, corresponding to an LCF risk of 0.0005 (1 chance in 2,000). The offsite population of about 42,100 within 50 miles of DAF would receive a dose of 113 person-rem; the calculated number of LCFs associated with this dose is 0.07, implying that the most likely outcome would be no additional LCFs in the exposed population. An involved worker within DAF could be fatally injured in the seismically induced explosion. A noninvolved worker outside of DAF could receive a dose of 2,800 rem, resulting in an acute fatality due to receipt of a lethal dose. When the annual probability of the accident occurring is taken into account, the increased risk of an LCF to the MEI would be 5×10^{-10} (1 chance in 2 billion); the increased risk of a single LCF in the exposed population would be 7×10^{-8} (1 chance in 14 million); and the increased risk of an LCF to a noninvolved worker would be 1×10^{-6} (1 chance in 1 million).

The DAF accident that presents the highest risk to the public, that is, when the probability of the accident occurring is considered in conjunction with the consequences of the accident, would be an explosion in DAF followed by the release of a kilogram of plutonium. As shown in Table 5–56, the consequences of this accident would be less than those of the earthquake accident discussed previously. However, because this accident was estimated to be more likely to occur, the overall risk to the public is higher. The explosion followed by a plutonium release accident represents an LCF risk to the MEI of 9×10^{-8} (1 chance in 11 million), the risk of a single LCF in the population of 1×10^{-5} (1 chance in 100,000), and an LCF risk to a noninvolved worker of 3×10^{-6} (1 chance in 300,000).

More-severe accidents at DAF would have much lower probabilities than the explosions that result in dispersion of plutonium. The highest potential consequence accident that has been postulated in DAF safety analyses is an inadvertent nuclear detonation. The physical conditions that would be required to get the plutonium and explosive materials in a configuration that might result in a nuclear yield are extraordinarily unlikely. It is much more likely that accidents involving both high explosives and plutonium would just result in explosive dispersal of plutonium with no nuclear yield. An inadvertent nuclear yield accident is considered in the DAF safety analyses as a beyond-design-basis accident and safety controls are in place to prevent such an accident. The safety controls that prevent the explosive dispersal of plutonium would also prevent the conditions that might result in an inadvertent detonation.
The DAF safety analyses indicate that “this event has a vanishingly small likelihood (i.e., below 10 –6 per year)” and at least two orders of magnitude less likely than a high-explosive dispersal accident. When the mitigation controls are considered, the likelihood of an inadvertent nuclear yield occurring as a result of an accident is expected to be far below the 10 –6 to 10 –7 per year range and is not considered further in this SWEIS.

The Stockpile Stewardship and Management Program also includes the disposition of a damaged U.S. nuclear weapon at existing facilities. U.S. nuclear weapons are designed with multiple layers of safeguards to prevent the accidental detonation of a weapon, even a damaged weapon. These safeguards and the design knowledge that would be available to personnel handling the weapon are expected to prevent an inadvertent detonation. Therefore, the potential radiological impacts associated with managing a damaged U.S. nuclear weapon are expected to be comparable to the accident scenarios identified for DAF.

No reasonably foreseeable major accident scenarios different than those evaluated for the Stockpile Stewardship and Management Program would occur under the Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. A number of activities would involve experiments using radioactive materials in the form of sealed sources or well-packaged, unopened materials, for which substantial radiological accidents are not expected.

The activities included in this program include disposition of an improvised nuclear devise. If the need arose for the disposition of one or more improvised nuclear devices, the impacts of an accident would be comparable to those resulting from intentional destructive acts, which are discussed in Section 5.1.12.3 and are analyzed in a classified appendix.

No reasonably foreseeable major accident scenarios different than those evaluated for the Stockpile Stewardship and Management Program that could result in public or noninvolved workers exposure were identified for the Work for Others Program. All activities at shared facilities, such as BEEF, NPTEC, RNCTEC, and the T-1 Training Area, present extremely low risks to the public and noninvolved workers.

Under the Environmental Management Mission, Waste Management Program, activities that have the potential for accidents that might result in offsite radiological consequences all involve impact and a subsequent fire involving containers with large quantities of radioactive material. In all cases, these containers are designed and maintained in such a configuration that vehicle impacts are very unlikely and rupture of a container and a subsequent fire are even less likely. All of the accidents that might result in a substantial release of radioactive materials from the container are classified as “extremely unlikely,” with an estimated probability of occurrence of 10 –6 to 10 –4 (1 chance in 10,000 to 1 million) per year. Because wastes are typically stored in containers that would be appropriate for over-the-road transportation, the likelihood that an onsite impact would substantially damage one or more containers is low.

Many of the activities under the Waste Management Program have no reasonably foreseeable accident scenarios that could result in public or noninvolved workers exposure.

The accidents with the highest potential consequences, as shown in Table 5–56, are those associated with the breach of a waste container in conjunction with a fire at the Area 5 RWMC. In these cases, there are both radioactive materials and combustible materials within waste packages, so there is a potential mechanism to disperse the radioactive material and release it to the atmosphere if the waste package is breached and ignition occurs. Because the waste packages and waste handling and storage practices are designed to protect waste while in storage, all of the accidents that would result in release of radioactive material to the environment would require a failure of multiple safety systems. The maximum reasonably foreseeable accident at the Area 5 RWMC is a container rupture due to impact and a subsequent fire that results in dispersal of up to 126 grams of plutonium. The estimated probability of this type of event is in the range of 10 –6 to 10 –4 (1 chance in 10,000 to 1 million) per year of operation. If this accident were to occur, the MEI would receive a dose of 1.6 rem, which corresponds to an LCF risk of 0.001 (1 chance in 1,000). The offsite population of about 54,000 within 50 miles would receive a dose of 3.4 person-rem;
the calculated number of LCFs associated with this dose is 0.002, implying that the most likely outcome would be no additional LCFs in the exposed population. A noninvolved worker within Area 5 could receive a dose of 39 rem. This dose could result in radiological injury without prompt medical treatment and represents an LCF risk of 0.05 (1 chance in 20). When the annual probability of the accident occurring is taken into account, the increased risk of an LCF to the MEI would be 1×10^{-7} (1 chance in 10 million); the increased risk of a single LCF in the exposed population would be 2×10^{-7} (1 chance in 5 million); and the increased risk of an LCF to a noninvolved worker would be 5×10^{-6} (1 chance in 200,000).

For Environmental Restoration Program activities at the NNSS, the analyzed accident would involve the release of radioactive material due to a single container spill, a multiple container fire, or an aircraft crash into multiple containers. These accidents could occur any place on the NNSS where environmental remediation is performed. For purposes of analysis, these accidents were modeled as occurring at the Area 5 RWMC; because this location is toward the southern end of the site and near the site boundary, the population and MEI doses would be conservative. The preceding paragraph discusses accidents associated with the Waste Management Program at the Area 5 RWMC that have a higher estimated frequency than an airplane crash. Only small quantities of radiological materials would be involved and potentially released. The maximum reasonably foreseeable accident for the NNSS Environmental Restoration Program activities is a military aircraft crash that results in a large fire in which a large quantity of contaminated soil is involved in the fire. The estimated probability of this type of event is 1.2×10^{-6} (1 chance in 800,000) per year of operation. If this accident were to occur, the MEI would receive a dose of 0.047 rem, with a corresponding LCF risk of 3×10^{-5} (1 chance in 33,000). The offsite population of 54,000 within 50 miles would receive a dose of 0.09 person-rem; the calculated number of LCFs associated with this dose is 5×10^{-5}, implying that the most likely outcome would be no additional LCFs in the exposed population. A noninvolved worker outside the immediate area of the crash could receive a dose of 1.0 rem, with an associated LCF risk of 6×10^{-4} (1 chance in 1,700). When the probability of the accident is taken into consideration, the risk to the offsite public or a noninvolved worker would be essentially zero (7×10^{-10} [1 chance in 1 billion] or less).

No accidents specific to the Nondefense Mission were identified that would present any relevant accident scenarios other than those already addressed for other missions.

Accidents involving hazardous chemicals. The potential for accidents involving hazardous chemicals to affect noninvolved workers or the public is quite limited. The potential for hazardous chemical impacts on the public was evaluated in the *1996 NTS EIS* (DOE 1996c) and no substantial impacts were found. Consistent with current practice, inventories of hazardous chemicals would be maintained and reported annually to the State of Nevada. Those inventories imply that only small quantities of most types of hazardous chemicals are used at the NNSS and that these chemicals present accident risks primarily to workers directly handling the chemicals. DOE safety programs are in place to minimize the risks to workers from both routine operations and accidents involving these materials. The larger quantities of hazardous materials that would be unique to NNSS-type activities include large quantities of lead metal typically used for shielding, but these materials do not present an accident risk.

Regarding risks from handling toxic or hazardous chemicals, worker safety programs at the NNSS are enforced via required adherence to Federal and state laws, DOE Orders, Occupational Safety and Health Administration (OSHA) and EPA guidelines, and plans and procedures for performing work, including training, monitoring, use of personal protective equipment, and administrative controls. Although chemical inventories have varied to a limited extent over recent years, administrative controls continually ensure that quantities do not approach those levels that pose undue risk due to storage, concentration, bulk quantity, or logistical factors. Any amount(s) that potentially exceed threshold planning quantities require reporting under Federal regulations (40 CFR Part 355, 40 CFR Part 370). Over the last 4 years, no hazardous chemicals have been stored on site in quantities sufficient to exceed the threshold planning...
quantities for that chemical and trigger the need to implement OSHA Process Safety Management requirements to prevent or mitigate accidental releases.

Because of the NNSS’s remote location and large size, there is limited risk of chemical exposure to the surrounding public population resulting from normal site operations or accidents. Nevertheless, monitoring efforts and baseline studies are regularly performed. However, certain workers at the NNSS are at risk of chemical exposure, depending on their job function and proximity to various sources.

Some experiments proposed under the alternatives would involve use of hazardous chemicals and their intentional release to the atmosphere. For purposes of this analysis, the releases of these chemicals were treated as sporadic, planned releases rather than accidental releases. For example, small quantities of beryllium and lithium may be released to the atmosphere by experiments involving nuclear explosive-like devices. These proposed experiments would have specific job safety hazards analysis, as required by DOE rules, that would minimize potential impacts.

At NPTEC, future experimental activities could include evaluating the potential impacts of releasing larger quantities of chemicals; inadvertent release of a large quantity of chlorine has been identified as the expected limiting chemical accident. Proposed experiments would undergo thorough environmental and safety reviews prior to authorization; these reviews would include determining and performing the appropriate level of NEPA review and ensuring adequate controls are in place to protect workers, the public, and the environment. In most cases, an accident involving such hazardous materials would release the materials in an unplanned and uncontrolled manner. In the event of an accident, a release would occur that was not in accordance with proper experimental procedures. Workers may not be properly sheltered and weather conditions may not be the same as those for planned experiments. As such, accidents involving the hazardous materials have the potential to affect both involved and noninvolved workers, and to release the materials at a higher rate than planned in the controlled experiment.

To evaluate the potential environmental impacts of an accident related to future experiments at the NNSS involving hazardous chemicals, a large, accidental chlorine gas release from a railcar at the Nonproliferation Test and Evaluation Complex was postulated. This hypothetical accident is expected to be in the “extremely unlikely” to “beyond extremely unlikely” frequency category, i.e., in the 10^{-4} to 10^{-6} per year or lower frequency range. Catastrophic accidents involving a full, 90-ton railcar of chlorine have resulted in fatalities, including the January 6, 2005, accident that resulted in puncture of a 90-ton chlorine railcar in Graniteville, South Carolina. In that accident, about 60 tons of chlorine escaped through a fist-sized hole in one of the railcars and nine people were killed (NTSB 2005).

Modeling results with Areal Locations of Hazardous Atmospheres (ALOHA), assuming the release occurs quickly over 1 hour, indicate that potentially fatal concentrations (exceeding Emergency Response Planning Guideline level 3 concentrations [ERPG-3]) could extend downwind a few miles under typical daytime conditions and for 5 to 6 miles or more under stable nighttime conditions. Concentrations that could lead to potentially serious impacts (exceeding ERPG-2) could extend downwind even further, as could concentrations that could lead to odor and irritation (exceeding ERPG-1). In real-world accidents, the releases have occurred over many hours and resulted in lower concentrations than predicted in the models. Because of the nature of chlorine, the complexities of trying to model such a complex accident, and the dispersion of the heavier-than-air gas, these results have a high degree of uncertainty. If such an accident were to occur at the NNSS, it would likely not affect members of the public because of the long distances to publicly accessible locations. The remote location of the facility on the NNSS and the additional buffer provided by the Nevada Test and Training Range would keep members of the public at least 8 miles away. Involved or noninvolved workers could be exposed to fatal concentrations of the gas at the outset of the accident. Once an accident condition was recognized, in accordance with procedures and training, workers would take actions to protect themselves and emergency response teams would intervene and evacuate personnel and implement measures to reduce or stop the leak.
For the Area 5 hazardous waste storage area, the maximum reasonably foreseeable accidents identified in the 1996 NTS EIS still represent a reasonable upper range of accidents, although those quantities of hazardous materials have not typically been present and are not expected under any of the alternatives. Table 5–58 presents the results of the chemical accident analysis for all alternatives.

<table>
<thead>
<tr>
<th>Accident</th>
<th>Frequency</th>
<th>Offsite Population</th>
<th>Onsite Noninvolved Worker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 5 Chemical Area WMH2: explosion/fire in multiple hazardous waste containers.</td>
<td>8×10^{-5}</td>
<td>None</td>
<td>ERPG-3 *</td>
</tr>
<tr>
<td>Area 5 Chemical Area WMH3: airplane crash into hazardous waste storage unit.</td>
<td>$< 1 \times 10^{-7}$</td>
<td>None</td>
<td>ERPG-3 *</td>
</tr>
<tr>
<td>WMH1, Area 5</td>
<td>2.96×10^{-7}</td>
<td>None</td>
<td>ERPG-3 *</td>
</tr>
<tr>
<td>NDRDH1, Area 5</td>
<td>1.7×10^{-2}</td>
<td>None</td>
<td>ERPG-3 *</td>
</tr>
<tr>
<td>NDRDH2, Area 5</td>
<td>1×10^{-4}</td>
<td>None</td>
<td>ERPG-3 *</td>
</tr>
<tr>
<td>NDRDH3, Area 5</td>
<td>1.7×10^{-7}</td>
<td>ERPG-1</td>
<td>ERPG-3 *</td>
</tr>
<tr>
<td>Nonproliferation Test and Evaluation Complex</td>
<td>1×10^{-4} to 1×10^{-6}</td>
<td>ERPG-1</td>
<td>ERPG-3 *</td>
</tr>
</tbody>
</table>

ERPG = Emergency Response Planning Guideline.

* The concentration at the location of the onsite noninvolved worker (110 yards away) would exceed the American Industrial Hygiene Association’s Emergency Response Planning Guideline level 3 (ERPG-3).

5.1.12.2.2 Expanded Operations Alternative

The potential accident impacts under the Expanded Operations Alternative at the NNSS would be similar to those under the No Action Alternative. Although some activities would expand under this alternative and some new activities would occur, the radiological and hazardous chemical accident impacts would be the same as for the accidents identified under the No Action Alternative. New activities would include assessing the performance of limited-life component exchanges on nuclear weapons, dismantling nuclear weapons removed from the stockpile, and disposing of radiological dispersion devices, as needed, in addition to improvised nuclear devices. These activities would occur in DAF, which was designed and constructed specifically to safely perform them. The largest credible accident at DAF, an earthquake that involves the release of 5 kilograms of plutonium-equivalent material, would result in the most conservative impacts of any credible accident at DAF.

Under the Expanded Operations Alternative, the level of some activities would increase. Given the uncertainty in accident frequency estimation for accidents that are not expected to happen within the operating lifetime of a facility or activity, the overall accident frequencies would remain within the broad frequency categories, such as “extremely unlikely” (10^{-6} to 10^{-4} [1 chance in 10,000 to 1 million] per year). Because more experiments would be performed, the risk of an accident would increase slightly under the Expanded Operations Alternative.

Under the Expanded Operations Alternative, tracer experiments would be performed. These studies would use short-lived noble gas and particulate radionuclides that would be released above or below ground. Because these experiments are still at the conceptual stage, the actual amounts of radioactive materials that might be used are unknown. For purposes of this SWEIS, it was assumed that a container with the maximum quantity of each of the short-lived radioactive particulates was accidentally explosively released on the surface rather than underground. The accident consequences and risks for the Expanded Operations Alternative would be similar to those under the No Action Alternative and are presented in Tables 5–56, 5–57, and 5–58.
5.1.12.2.3 Reduced Operations Alternative

The potential accident impacts under the Reduced Operations Alternative would be similar to those under the No Action Alternative. Although some activities would be reduced and others eliminated, all of the radiological and hazardous chemical accident scenarios that exist under the No Action Alternative would still be relevant. Accidents at the NNSS that could potentially affect noninvolved workers or the public would be the same under this alternative as the accidents identified under the No Action Alternative. None of the reduced activities was found to make more than negligible changes in the radiological or chemical impacts on noninvolved workers, the public, or the environment.

With reduced activities, the frequencies of some hazardous activities that might lead to accidents could change. Even with these changes, given the uncertainty in accident frequency estimation for very rare accidents not expected to happen within the operating lifetime of a facility or activity, the overall accident frequencies would still remain within the broad frequency categories, such as “extremely unlikely” (10^{-4} to 10^{-6} per year).

The accident risks for the Reduced Operations Alternative at the NNSS would be similar to those under the No Action Alternative, which are presented in Tables 5–56, 5–57, and 5–58. No accidents were identified under the Reduced Operations Alternative that would represent a change in accident risks.

5.1.12.2.4 Wildland Fires

An average of 11.5 wildland fires per year has occurred at the NNSS between 1978 and 2010 (NSTec 2011b). These fires burned about 76,144 acres, averaging just over 200 acres each. Most wildland fires do not occur randomly across the NNSS; they occur more often in particular vegetation types that have sufficient fuels (woody and fine fuels) that are conducive to ignition and spread of the fire (Hansen and Ostler 2004). Further, as shown in Figure 5–6, the most large wildfires at the NNSS have occurred in the west-central portion of the site (i.e., Areas 14, 25, 29, and 30) in areas that do not contain significant radioactive contamination sites (see Chapter 4, Figure 4–11). DOE/NNSA’s Ecological Compliance and Monitoring Program conducted an evaluation of the causes of 120 wildland fires that occurred on the NNSS between 1998 and 2005 and found the following fire initiators: (1) lightning – 52 percent; (2) undetermined – 30 percent; (3) ordnance (military training and exercises at NNSS shooting ranges) – 12 percent; (4) electrical – 2 percent; (5) vehicle exhaust systems – 2 percent; (6) improperly discarded cigarette butt – 1 percent; and (7) generator malfunction – 1 percent (NSTec 2009a).

Because wildland fires can threaten human life and safety, infrastructure, and wildlife habitat and because they tend to occur more often in certain vegetation types, DOE/NNSA NSO conducts annual surveys each spring to assess wildland fire hazards on the NNSS, as noted in Chapter 4, Section 4.1.7. Annual wildland fire hazards are published to provide timely information that enables managers to assess the ecological risks and perform the necessary management practices to control wildland fires on the NNSS in a cost-effective and environmentally sound manner. Wildland fire mitigation measures are discussed in Chapter 7, Section 7.7, of this NNSS SWEIS.

In a 2011 report regarding soil particulate emissions during a controlled burn in a predominantly pinyon-juniper plant community in the Upper Gleason Watershed near Ely, Nevada, scientists from the Desert Research Institute found that, within the limitations of the study: (1) soil-derived dust is responsible for about 10 percent of the aerosol emitted during the first 2 hours of a prescribed burn and (2) qualitative comparison of chemical profiles suggests that the contribution of soil-derived dust to measured PM$_{10}$ diminishes significantly starting 2 hours after the beginning of the fire (Etyemezian et al. 2011). This suggests that, if radioactive soils were present in the burn area, some portion of the soil-derived dust created by the fire would include radioactive particles.
Figure 5–6 Areas Burned During Major Wildland Fires on the Nevada National Security Site from 2002 through 2011
The potential for resuspension of radionuclides has been a concern expressed by stakeholders of the NNSS for many years. For this reason, during some wildfires that occur on the NNSS, DOE/NNSA deploys high-volume air samplers to supplement data from the routine sampling network. These supplemental air samplers were deployed during fires in 2002, 2005, 2006, and 2011. It should be noted that, when used, these supplemental air samplers are located on the NNSS in relatively close proximity to the fire (albeit at a safe distance away). None of these sampling activities has indicated substantially elevated levels of manmade radionuclides as a result of the fires. For example, results of sampling during a 2002 fire indicated the presence of cesium-137, plutonium-239 and -240, and americium-241, but in concentrations that were less than 4 percent of the concentration that would result in a dose of 10 millirem per year (DOE/NV 2003a).

In 2005, there was a series of 31 lightning-caused wildfires, none of which resulted in samples with activity higher than normally observed. None of the fires occurred in areas with the highest levels of legacy radioactivity in soil, but DOE/NNSA conducted a special evaluation of the onsite and offsite radiation doses that may have occurred if a fire had spread into an area with high surface contamination, such as the SMOKY site in Area 8 of the NNSS. That evaluation found that the radiation dose 2.5 miles downwind of the SMOKY site would be 1 millirem and the highest offsite dose would be around 0.1 millirem at 24.8 miles from the SMOKY site (DOE/NV 2006a). As noted in the cited report, “[t]his finding helps confirm that radioactivity released from wild fires on the NTS would not result in hazards offsite.”

The Milford Flat Fire, the largest wildland fire in the history of the state of Utah, burned over 363,046 acres in July 2007 (BLM 2011b). The southern edge of the fire was within about 2 miles of Milford, Utah, and it extended about 49 miles to the north-northeast. Delta, Utah, is located about 75 miles north and generally downwind of Milford. Filters collected from low-volume air samplers at the Milford and Delta Community Environmental Monitoring Program (CEMP) stations during the weeks ending July 2 and 9, 2007 (the weeks preceding and following the onset of the fire), were analyzed to evaluate the possibility of resuspension of contaminants from past testing at the NNSS. The Desert Research Institute conducted spectroscopic analyses of gamma activity on all of the collected filters; in addition, the filters collected from the Milford CEMP station for the week ending July 9, 2007, were sent to a commercial laboratory for analysis of gross alpha and gross beta activity using gas flow proportional counting (Hartwell et al. 2008).

The spectroscopic analysis for gamma activity did not detect cesium-137, the major long-lived gamma-emitter associated with fallout from past nuclear testing at the NNSS, or any other manmade radionuclides on any of the filters analyzed. Pre-fire samples were comparable to those collected during the fire at Milford and Delta (Hartwell et al. 2008). The analyses of alpha and beta activities on the Milford filters fell well within the normal range of measurements from the previous five quarters of sampling at the Milford CEMP station (Hartwell et al. 2008). This is in spite of the fact that the particulate loading on samples collected for the week of the fire was almost twice that of pre-fire samples as a result of deposition of particulates associated with smoke from the fire.
5.1.12.3 Intentional Destructive Acts

The impacts analysis of intentional destructive acts is described in a classified appendix to this SWEIS. The impacts of some intentional destructive acts would be similar to the accident impacts described earlier in this section, while some intentional destructive acts may have more-severe impacts. This section describes how DOE/NNSA assesses the vulnerability of its sites to terrorist threats and designs its response systems.

5.1.12.3.1 Assessment of Vulnerability to Terrorist Threats

In accordance with DOE Order 470.1B, *Graded Security Protection Policy*, and DOE Order 470.4B, *Safeguards and Security Program*, DOE/NNSA conducts vulnerability assessments and risk analyses of the facilities and sites under its management to evaluate the possible threats and the protection elements, technologies, and administrative controls used to protect against these threats. DOE Order 470.4B establishes the roles and responsibilities for the conduct of DOE’s Safeguards and Security Program. DOE Order 470.3B establishes requirements designed to prevent unauthorized access, theft, diversion, or sabotage (including unauthorized detonation or destruction) of all nuclear weapons, nuclear weapons components, and SNM under DOE’s control. Among other provisions, the Order (a) specifies those national security assets that require protection; (b) outlines threat considerations for safeguards and security programs to provide a basis for planning, design, and construction of new facilities or modifications to existing facilities; and (c) provides an adversary threat basis for evaluating the performance of safeguards and security systems. DOE/NNSA also protects against espionage and sabotage, as well as theft of radiological, chemical, or biological materials; classified matter; nonnuclear weapon components; and critical technologies.

DOE/NNSA’s safeguards and security programs and systems employ state-of-the-art technologies to accomplish the following:

- Deny access to nuclear weapons, nuclear test devices, and completed nuclear assemblies
- Prevent theft, sabotage, or an unauthorized nuclear yield (criticality) of SNM and credible rollup quantities of SNM
- Protect the public and employees from unacceptable impacts resulting from an adversary’s use of radiological, chemical, or biological materials
- Protect classified matter and designated critical facilities and activities from sabotage, espionage, and theft

DOE/NNSA’s vulnerability assessments employ a rigorous methodology based on guidance from the September 2004 *DOE Vulnerability Assessment Process Guide* and the Vulnerability Assessment Certification course. Typically, a vulnerability assessment involves analyses of modeling, simulation, and performance testing results by subject matter experts to determine the effectiveness of a safeguard and security system against an adversary’s objectives.

Vulnerability assessments generally include the following activities:

Characterizing the threat. Threat characterization provides a detailed description of a malevolent adversary’s physical threat to a site’s physical protection systems. Usually the description includes information about potential adversary types, motivations, objectives, actions, physical capabilities, and site-specific tactical considerations. Much of the information required to develop a threat characterization is described in DOE Order 470.3B and the Adversary Capabilities List. DOE also issues additional site-specific threat clarification and guidance.
Determining the target. Target determination involves identifying, describing, and prioritizing potential targets among DOE/NNSA’s security interests that meet the criteria outlined in DOE Order 470.3B. Target determination results are used to help characterize potential threats and target facilities, as well as protective force and neutralization requirements.

Defining the scope. The scope of a vulnerability assessment is determined by agreement among DOE Headquarters, field staff, and contractor personnel. In addition to defining the threat and applicable targets to be assessed, the scope establishes the key assumptions and interpretations that will guide the analyses, as well as the objectives, methods, schedule, personnel responsibilities, and format for documenting the results of the assessment.

Characterizing the facility or site. This activity requires defining and documenting aspects of the facility or site, particularly existing security programs (personnel security, information security, physical security, material control and accountability, etc.), to assist in identifying strengths and weaknesses. Results are used as inputs to the pathway analyses used to develop representative case scenarios for evaluating the security system. Facility and site characterization modeling tools include Analytical System and Software for Evaluating Safeguards and Security (ASSESS), Adversary Time-Line Analysis System (ATLAS), VISA, tabletop analysis, and others.

Characterizing the protective force. To assess a facility or site’s vulnerability, analysts must accurately characterize the associated protective force’s capabilities against a defined threat and objective, particularly the force’s ability to detect, assess, respond to, interrupt, and neutralize an adversary. Specific data used for this activity include SNM categorization; configuration, flow, as well as movement of SNM within or from a facility or site; defined threats; detection and assessment times; and adversary delay and task time. The protective force’s equipment, weapons, number, and locations also are considered in the characterization. The characterization information is validated and verified via observation, alarm response assessments, limited scope performance tests, force-on-force exercises, Joint Conflict and Tactical Simulations (JCATS) software, and tabletop analyses. The JCATS software tool is used for training, analysis, planning, and mission rehearsal, as well as characterization of the protective force. It employs detailed graphics and models of buildings, natural terrain features, and roads to simulate realistic operations in urban and rural environments.

Analyzing adversary pathways. This activity identifies and analyzes base case adversary pathways based on the results of threat, target, facility, and protective force characterization, as well as ancillary analyses such as explosives analysis. ASSESS and ATLAS are two primary tools used in this analysis. Analysts also conduct insider analysis as part of this activity.

Developing base case scenarios. Base case scenarios are developed for use in performance testing and to determine the effectiveness of the security system in place against a potential adversary’s capabilities and objectives. As part of this activity, data from the base case adversary pathways analyses are used to identify applicable threats, threat strategies, and objectives, and are combined with protective force strategies and capabilities to develop scenarios that include specific adversary resources, capabilities, and projected task times to complete their objectives successfully. Specialists also work with the vulnerability assessment team to develop realistic scenarios that provide a structured, intellectually honest analysis of the strengths and weaknesses of the terrorist adversary.

Determining the probability of neutralization. The probability of neutralization is a numeric value representing the probability that the protective force can prevent an adversary from achieving its objectives. The calculated number is derived from more than one source, one of which must be based on joint tactical simulation, JCATS analysis, or force-on-force exercises.
Determining system effectiveness. System effectiveness is determined by applying an equation that reflects the capabilities of a multilayered protection system. Analysis data derived from the various vulnerability assessment activities are used to calculate this equation, which reflects the security system’s effectiveness against each of the scenarios developed for the vulnerability assessment. If system effectiveness is unacceptable for a scenario, the root cause of the weakness must be analyzed and security upgrades must be identified. The scenarios are reanalyzed with the upgrades, and the successful upgrades are documented in the vulnerability analysis report.

Implementation. The culmination of the vulnerability assessment is development of a report documenting the analyses and results and a plan for implementing any necessary upgrades to achieve the required security system effectiveness. DOE/NNSA verifies the results of the vulnerability assessment report and the conclusions of the implementation plan. DOE/NNSA also provides management oversight of the actual implementation of security system upgrades.

5.1.12.3.2 Terrorist Impacts Analysis

Substantive details of terrorist attack scenarios and security countermeasures are not released to the public because disclosure of this information could be exploited by terrorists to plan attacks. Depending on the nature of malevolent, terrorist, or intentional destructive acts, impacts may be similar to or could exceed the impacts of accidents analyzed for this SWEIS. A separate classified appendix to this SWEIS has been prepared that considers the underlying facility threat assumptions with regard to malevolent, terrorist, or intentional destructive acts. Based on these threat assumptions, the classified appendix evaluates the potential human health impacts using appropriate analytical models, similar to the methodology used in this SWEIS to analyze accident impacts. The analysis in this NNSS SWEIS evaluates potential consequences to a noninvolved worker, an MEI, and the population in terms of physical injuries, radiation doses, and LCFs. From this analysis, the following general conclusion can be drawn: the potential consequences of intentional destructive acts depend on the size and proximity of the surrounding population; the closer and denser the surrounding population, the higher the consequences. These data provide DOE/NNSA with information on which to base, in part, decisions regarding activities at the NNSS.

Facilities and locations involving sufficient radioactive material to result in potentially severe impacts are protected by numerous physical, procedural, and operations-based systems that minimize the probability of a successful intentional destructive act occurring. In the unlikely event an actual intentional destructive act occurred, physical features associated with the facilities/locations would reduce the potential impacts under most intentional destructive act scenarios; in any event, DOE/NNSA security and response teams are trained and prepared to respond to an intentional destructive act to further reduce potential impacts.
Human Health—American Indian Perspective

As discussed previously in our assessment of Section 4.7, Biological Resources, it is widely known that many tribal representatives still collect and use plants and animals found within the Nevada National Security Site (NNSS) region. Many of the plants and animals cannot be gathered or found in other places. Consumption patterns of Indian people who still use plants and animals for food, medicine, and other cultural or ceremonial purposes force the Consolidated Group of Tribes and Organizations (CGTO) to question if its member tribes are still being exposed to radiation and possibly hazardous waste located at the NNSS.

The CGTO is aware that, typically, risk assessment models have been used and accepted as a means of mathematically calculating potential risks and assessments to human health and safety. While these models project the potential impacts based on a worst-case scenario, they do not consider the perceived risks which are considered meaningful to Indian people. The lack of knowledge of an unfamiliar concept can lead to a feeling of perceived danger. A perceived danger or hazard associated with something can be very real to Indian people. Indian people view things holistically and believe that everything is interrelated resulting in a cause-and-effect model. This is contrary to scientific models that tend to compartmentalize things from a mathematical point of view, calculating potential risks to health and safety. This viewpoint often does not consider perceived risks, which play an integral role to American Indian cultural beliefs. To address this important issue, U S. Department of Energy (DOE) listened to the recommendations from our people and commissioned a study in 1998 to evaluate perceived risks of radiation to Indian people. (See C.2.5 for additional information regarding this study.)

Emergency Preparedness

The CGTO knows that some of our member tribes are within close proximity to the NNSS and Tonopah Test Range (TTR). These Indian people will be directly, adversely, and potentially irrevocably impacted if an emergency occurs from DOE activities.

Indian reservations within the region of influence are located in remote areas with limited access by standard and substandard roads. Should an emergency situation resulting from NNSS-related activities, including the transportation of hazardous and radioactive waste occur, it could result in the closure of the main transportation artery to that land. If a major (only) road into a reservation closes, access to hospitals and medical facilities could be impeded or cut off entirely. Delays could occur for regular deliveries of necessary supplies, such as food and medicine. Emergency medical services en route to or from the reservation could result in death.

Accordingly, the CGTO recommends DOE collaborate with potentially affected tribes to develop emergency response measures. In particular, we understand DOE has developed the NNSS Emergency Preparedness Plan and an emergency management program. Each tribal government must have a copy of this plan, and participate in the training and implementation of the emergency management program set forth by DOE and its contractors.

Noise and Vibration

Numic people sing the souls of deceased tribal members to the afterlife in a multiple day ceremony called the Cry. The songs sung are called Salt Songs, a name derived from a spiritual journey taken by two sisters. The path of the journey is punctuated by topographically special places, which are reached at the end of various songs or sets of songs. The interactions between songs and places create a songscape. The CGTO knows Salt Songs follow a spiritual trail. Salt Songs are still sung by Indian people today.

Noise can be a deterrent and a distraction. Noise upsets the spirituality of the area, negatively impacting the ability of salt songs to be heard. Because the thoughts and focus are interrupted, the balance, harmony, and well-being of the community as a whole become affected.

Increased aircraft activities proposed in the site-wide environmental impact statement (SWEIS) will increase the noise and vibration throughout the area. According to one tribal elder, “Noise and vibrations from the proposed increased alt traffic will cause the animals to migrate from the area. The animals are placed where they are by the Creator. Forcing them to move results in their loss of power, their life span is shortened, and their very existence is endangered. This could disrupt the entire food chain. If these are used culturally and traditionally for medicines, stories, and songs, then harmony is broken. The Creator put them in their area. If you move them outside of their home, then their spirit dies and will cause undo and irreparable stress. They are grounded in the area. If habitats and animals are disturbed, then the benefit of salt songs and stories are diminished and will harm the culture of our people. The mountain needs to hear our songs, to hear our voices, and to still know that we are here. If we are not out there performing these, then the mountain, the wind, the water; and all of the others will continue to be unbalanced. This needs to be part of the Environmental Restoration process. People don’t understand harmony. This is our destiny and our responsibility. We are all woven together. The spirits are waiting for the Indian people to come back and to talk to them so that they can heal. We believe it is now time to allow the Indian people to begin the healing process. To do this, we propose balancing ceremonies.”

See Appendix C for more details.
5.1.13 Environmental Justice

Executive Order 12898, *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*, requires identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental impacts of Federal programs, policies, and activities on minority and low-income populations. Environmental justice analysis in this SWEIS is based on the geographic distribution of low-income and minority populations in Clark and Nye Counties (hereafter the region of influence or ROI), as described in Chapter 4, Section 4.1.13.

Environmental justice analysis involves two tiers of investigation. One is the determination of significant and adverse impacts as a result of the alternative. The other is an evaluation of whether a minority or low-income population is disproportionately affected by these significant and adverse impacts. If no significant and adverse impacts are expected, there would be no disproportionately high and adverse impacts on minority and low-income populations.

To determine whether human health impacts would be adverse and disproportionately high for low-income and minority populations, the following factors were considered:

- Whether the human health impacts, which may be measured in risks and rates, are significant, unacceptable, and above generally accepted norms (Adverse human health impacts may include bodily impairment, infirmity, illness, or death.)
- Whether the risk or rate of exposure of a minority or low-income population to an environmental hazard is significant and appreciably exceeds or is likely to appreciably exceed the risk or rate to the general population
- Whether human health impacts occur in a minority or low-income population affected by total or multiple adverse exposures from environmental hazards

To determine whether environmental impacts would be adverse and disproportionately high for low-income and minority communities, the following factors were considered to the extent practicable:

- Whether there is an impact on the natural or physical environment that significantly and adversely affects a minority community or low-income community
- Whether environmental effects are significant and have an adverse impact on minority or low-income populations that appreciably exceeds or is likely to appreciably exceed impacts on the general population or other appropriate comparison group
- Whether the environmental impacts occur in a minority or low-income population affected by total or multiple adverse exposures from environmental hazards

5.1.13.1 No Action Alternative

Impacts on human health would not be significant under any alternative. For example, the total number of LCFs among the general population associated with transportation of LLW, MLLW, and SNM was estimated at less than 1 for incident-free transportation and accident scenarios under each alternative. If unconstrained routing of shipments in the Las Vegas metropolitan area (see Section 5.1.3.1.2.2) occurred, shipments would pass in proximity to more densely populated areas, and could be more likely to pass near census blocks with higher minority and low-income populations. However, the analysis of unconstrained routing concluded that the transportation risk (LCFs) to the public would be the same as that seen in current constrained routing, and the population dose (expressed in person-rem) would be slightly lower than in constrained routing.
Similarly, direct and cumulative effects on environmental resources are not expected to result in significant adverse impacts on the public within the ROI.

Both human health and environmental impacts on low-income and minority populations would be the same as those on the general population within the ROI. Therefore, no disproportionately high and adverse impacts on minority and low-income populations are expected. In addition, an increase in jobs due to the construction of the solar power generation facility could provide needed jobs to unemployed individuals in the area, which would have a beneficial impact on low-income individuals in the ROI.

5.1.13.2 Expanded Operations Alternative

Impacts under the Expanded Operations Alternative would be the same as those described under the No Action Alternative in Section 5.1.13.1.

5.1.13.3 Reduced Operations Alternative

Impacts under the Reduced Operations Alternative would be the same as those described under the No Action Alternative in Section 5.1.13.1.

Environmental Justice—American Indian Perspective

The Consolidated Group of Tribes and Organizations (CGTO) knows that federal agencies are directed by Executive Order (EO) 12898, Environmental Justice, to detect and mitigate potentially disproportionately high and adverse human health or environmental effects of its planned programs, policies, and activities to promote nondiscrimination among various populations in the United States. In the Record of Decision for the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (1996 NTS EIS), the U.S. Department of Energy (DOE) recognized the need to address environmental justice concerns of the CGTO based on disproportionately high and adverse impacts to their member tribes from DOE Nevada National Security Site (NNSS) activities. In the 2002 Supplement Analysis for the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (2002 NTS SA), DOE concluded that the selection and implementation of the Preferred Alternative would impact its member tribes at a disproportionately high and adverse level, perpetuating environmental justice concerns. The CGTO maintains that environmental justice concerns continue to exist.

Of special concern to the CGTO is the potential for Holy Land violations, cultural survival-access violations, and disproportionately high and adverse human health and environmental impacts to the Indian population. These environmental justice issues need to be addressed in the SWEIS.

There is no question that the Holy Lands of Indian people have been, continue to be, and will be impacted by activities at the NNSS. It is also well known that only Indian people have lost cultural traditions because they have been denied free access to many places on the NNSS where ceremonies need to occur, where plants need to be gathered, and where animals need to be hunted in a traditional way. Prior to undertaking or approving activities at the NNSS, the CGTO recommends that DOE comply with EO 12898 and EO 13127 by facilitating tribal access to the NNSS, sponsoring an Indian subsistence consumption study, and sponsoring a study to determine perceived health risks and environmental impacts resulting from NNSS activities to CGTO member tribes.

The CGTO has concerns that fall within the context of EO 12898, such as subsistence consumption. Subsistence consumption requires the DOE to collect, maintain, and analyze information on consumption patterns such as those of Indian populations who rely principally on fish and/or wildlife for existence. Most importantly, the EO mandates each federal agency to apply equally their environmental justice strategy to Native American programs and assume the financial costs necessary for compliance.
Environmental Justice—American Indian Perspective (cont’d)

To date, DOE has not shared its design and implementation strategy for Environmental Justice with the CGTO, nor has it identified and analyzed subsistence consumption patterns of natural resources by Indian people within the region of influence. Since the EO specifically addresses equity to Indian people and low-income populations, it is critical that the DOE immediately address the concerns of Indian tribes and communities by conducting systematic ethnographic studies and eliciting input necessary for administrative compliance and in the spirit of the DOE American Indian Policy. This policy outlines seven principles in its decision making and interaction with Federally-recognized Tribal governments. It requests that all Departmental elements ensure Tribal participation and interaction regarding pertinent decisions that may affect the environmental and cultural resources of Tribes. Of particular interest within these seven guiding principles is (1) Recognize the Department’s trust responsibility. (2) Commit to a government-to-government relationship. (3) Consult with Tribes to assure rights and concerns are considered prior to taking actions, making decisions, or implementing programs. (4) Consult with Tribes about potential impacts of proposed DOE actions on cultural resources or religious concerns that will avoid unnecessary interference with traditional religious practices. (5) The Department will initiate a coordinated effort for technical assistance, economic self determination opportunities and training.

In the Record of Decision for the 1996 NTS EIS, DOE recognized the need to address environmental justice concerns of the CGTO based on disproportionately high and adverse impacts to their member tribes from DOE Nevada Test Site activities (now NNSS). In the 2002 NTS SA, DOE concluded that the selection and implementation of the Preferred Alternative would impact its member tribes at a disproportionately high and adverse level, perpetuating environmental justice concerns. The CGTO maintains that environmental justice concerns continue to exist and include (1) holy land violations, (2) cultural survival-access violations, and (3) disproportionately high and adverse human health and environmental impacts to the Indian population.

Holy Land Violations

American Indian people who belong to the CGTO consider the NNSS lands to be as central to their lives today as they have been since the creation of their people. The NNSS lands are part of the holy lands of Western Shoshone, Southern Paiute, and Owens Valley Paiute and Shoshone people. The CGTO perceives that the past, present, and future pollution of these holy lands constitutes both Environmental Justice and equity violations. No other people have had their holy lands impacted by NNSS-related activities. Prior to undertaking or approving new activities, the CGTO should be funded to design, conduct, and produce a systematic American Indian Environmental Justice study.

Cultural Survival-Access Violations

One of the most detrimental consequences to the survival of American Indian culture, religion, and society has been the denial of free access to their traditional lands and resources. Loss to access to traditional food sources and medicine has greatly contributed to undermining the cultural well-being of Indian people. These Indian people have experienced, and will continue to experience, breakdowns in the process of cultural transmission due to lack of free access to government-controlled lands and resources such as those in the NNSS area. No other people have experienced similar cultural survival impacts due to lack of free access to the NNSS area.

In 1996, President Clinton signed EO 13007, Indian Sacred Sites. The EO promotes accommodation of access to American Indian sacred sites by Indian religious practitioners and provides for the protection of the physical integrity of such sites located on federal lands. The CGTO recommends that open access be allowed for American Indians who must conduct their traditional ceremonies and obtain resources within the NNSS study area. Unfortunately, however, land disturbance and irreparable damage of cultural landscapes, potential Traditional Cultural Properties (TCPs), and cultural resources may render certain locations unusable.

Disproportionately High and Adverse Human Health and Environmental Impacts to the Indian Population

It is widely known that many tribal representatives still collect and use plants and animals that are found within the NNSS region. Many of the plants and animals cannot be gathered or found in other places. Consumption patterns of Indian people who still use plants and animals for food, medicine, and other cultural or ceremonial purposes force the CGTO to question if its member tribes are still being exposed to radiation, and possibly hazardous waste located at the NNSS.

See Appendix C for more details.
5.2 Remote Sensing Laboratory

The following sections describe the potential environmental consequences associated with alternatives and programs at RSL.

5.2.1 Land Use

No changes to land use were identified under any alternative for the RSL; therefore, no land use impacts, including impacts on surrounding land uses, were identified for any alternative. However, any new constructions at RSL would require close coordination with Nellis Air Force Base and would be subject to the availability of open space within or near RSL. A corresponding environmental study will be conducted as part of the new construction effort to determine any impacts on the baseline conditions.

While RSL does make use of airspace for its aircraft activities out of Nellis Air Force Base, there were no changes to airspace operations identified under the alternatives analyzed in this SWEIS. All activities involving RSL’s use of airspace are under control of Nellis Air Force Base and all operations are conducted in compliance with applicable requirements, including FAA and USAF requirements. No airspace impacts were identified.

5.2.2 Infrastructure and Energy

5.2.2.1 Infrastructure

5.2.2.1.1 No Action Alternative

There would be no change to RSL under this alternative.

5.2.2.1.2 Expanded Operations Alternative

There would be no change to RSL under this alternative.

5.2.2.1.3 Reduced Operations Alternative

There would be no change to RSL under this alternative.

5.2.2.2 Energy

5.2.2.2.1 No Action Alternative

Electrical energy at RSL is provided by the USAF (Nellis Air Force Base), which in turn is supplied by three sources: 65 percent from NV Energy; 10 percent from Western Area Power Administration (hydropower); and 23 percent from Solar Star, Inc., (the Nellis Air Force Base Solar Photovoltaic Project). In FY 2009, RSL’s electrical usage was 4,850 megawatt-hours (NNSA/NSO 2010b), which is a small portion of total power use (approximately 100,000 megawatt-hours) on Nellis Air Force Base. The existing electrical distribution system at RSL is capable of supporting present demands, although it is slated for minor improvements in 2014.

Natural gas at RSL is provided by the Southwest Gas Corporation through Nellis Air Force Base. In FY 2009, RSL used 33,673 therms of natural gas (NNSA/NSO 2010b). There is adequate capacity to serve current demands, and the condition of the gas lines are satisfactory (NSTec 2010i). The existing liquid fuel tanks and resupply schedules are adequate to support all heating, vehicular, and portable generator needs. RSL uses approximately 111,000 gallons of JP-8 jet fuel annually (NNSA/NSO 2010b) for aircraft operations, and an adequate supply is available directly through Nellis Air Force Base. RSL currently does not use any alternative form of fuel (e.g., E85).

As no changes in facilities, activities, or personnel staffing have been identified under this alternative, the existing electrical power and liquid fuel systems would be adequate to meet future needs.
5.2.2.2 Expanded Operations Alternative

As no changes in facilities, activities, or personnel staffing have been identified under this alternative, the existing electrical power and liquid fuel systems would be adequate to meet future needs.

5.2.2.3 Reduced Operations Alternative

As no changes in facilities, activities, or personnel staffing have been identified under this alternative, the existing electrical power and liquid fuel systems would be adequate to meet future needs.

5.2.3 Transportation and Traffic

5.2.3.1 Transportation

No radioactive waste would be generated at RSL; therefore, there would be no associated transportation impacts. Transport of any nonradioactive materials associated with RSL is encompassed by the analysis described for the NNSS in Sections 5.1.3.1 and 5.1.3.2.

5.2.3.2 Traffic

For all alternatives, the number of personnel at RSL is expected to remain the same and no construction projects are expected at RSL; therefore, no increases in vehicle traffic would occur and there would be no impacts on onsite and regional traffic associated with RSL. Traffic conditions of roadways near RSL are represented by Las Vegas Boulevard and Nellis Boulevard, as shown in Table 5–19.

5.2.4 Socioeconomics

There would be no change to the number of employees at RSL under any of the alternatives. As a result, there would be no impacts on economic activity, population, and housing; public finances; or public services.

5.2.5 Geology and Soils

5.2.5.1 No Action Alternative

RSL at Nellis Air Force Base consists of a small collection of buildings where most of its activities occur. Under the No Action Alternative, the mission of RSL would consist of remote sensing research, training, and logistical support. No construction is anticipated from continuation of the current activities. There are no prime farmland soils at RSL, so there would be no impacts on this resource under any of the alternatives.

5.2.5.1.1 National Security/Defense Mission

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Under the No Action Alternative, RSL would be used to support the Nuclear Emergency Support Team. Fixed-wing and rotary-wing aircraft stationed at RSL would be used for emergency response and aerial mapping as part of the Aerial Measuring System. RSL would also host some activities supporting U.S. nonproliferation and counterterrorism efforts at the NNSS. No additional construction would be required for implementation of these activities, so the geology and soils would not be impacted.

Work for Others Program. Under the Work for Others Program, existing facilities and resources at RSL would host other agencies for defense and homeland security applications. Should any new construction at RSL be needed, a corresponding environmental study would be conducted as a part of the new construction effort to determine any impacts on the geology or soils.
5.2.5.1.2 Environmental Management Mission

Waste Management Program. Waste produced at RSL consists primarily of office waste, nonhazardous solid waste, and small quantities of hazardous waste. There are no disposal or treatment facilities at RSL. Because oil and hazardous waste are present at the facility, there is a chance of a spill that could contaminate the soil surface. If an accidental release of hydrocarbons were to occur at the facility, the spill would be contained, and the contaminated soils would be disposed at a facility permitted to receive such waste. However, with spill prevention and mitigation measures in place, the potential for soil contamination would be reduced.

5.2.5.1.3 Nondefense Mission

General Site Support and Infrastructure Program. The activities described under the No Action Alternative would occur in existing facilities at RSL. No additional construction or demolition on the site would be required, so there would be no impacts on the geology or soils.

5.2.5.2 Expanded Operations Alternative

Should any new construction at RSL be needed, a corresponding environmental study would be conducted as a part of the new construction effort to determine any impacts on the geology or soils.

5.2.5.3 Reduced Operations Alternative

Should any new construction at RSL be needed, a corresponding environmental study would be conducted as a part of the new construction effort to determine any impacts on the geology or soils.

5.2.6 Hydrology

5.2.6.1 Surface-Water Hydrology

5.2.6.1.1 No Action Alternative

Overall, no impacts under any of the impact criteria are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.1.1 National Security/Defense Mission

No impacts are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.1.2 Environmental Management Mission

No impacts are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.1.3 Nondefense Mission

General Site Support and Infrastructure Program. RSL would continue wastewater discharges, which are expected to have no impact on surface-water resources, assuming these activities adhere to all permit limitations on discharged water quality. In 2009, all contaminant concentrations in discharged effluent were within permitted levels.

5.2.6.1.2 Expanded Operations Alternative

Overall, no impacts under any of the impact criteria are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.2.1 National Security/Defense Mission

No impacts are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.2.2 Environmental Management Mission

No impacts are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.2.3 Nondefense Mission

General Site Support and Infrastructure Program. RSL would continue wastewater discharges, which are expected to have no impact on surface-water resources, assuming these activities adhere to all permit limitations on discharged water quality. In 2009, all contaminant concentrations in discharged effluent were within permitted levels.
5.2.6.1.2.2 Environmental Management Mission
No impacts are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.2.3 Nondefense Mission

General Site Support and Infrastructure Program. Impacts would be the same as those described under the No Action Alternative in Section 5.2.6.1.1.3.

5.2.6.1.3 Reduced Operations Alternative
Overall, no impacts under any of the impact criteria are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.3.1 National Security/Defense Mission
No impacts are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.3.2 Environmental Management Mission
No impacts are expected at RSL because no activities are proposed that would affect surface hydrology.

5.2.6.1.3.3 Nondefense Mission

General Site Support and Infrastructure Program. Impacts would be the same as those described under the No Action Alternative in Section 5.2.6.1.1.3.

5.2.6.2 Groundwater

5.2.6.2.1 No Action Alternative
DOE/NNSA does not directly withdraw any groundwater at RSL (potable water is provided by Nellis Air Force Base) and does not directly discharge any contaminants that would threaten groundwater quality. The Nellis Air Force Base water system supplying RSL reportedly suffers from low pressure and limited supply capability. DOE/NNSA continues to work with Nellis Air Force Base officials to address these issues (DOE 2008f). While no expansion or addition of water-consuming facilities can be made at RSL until a new water source can be installed by Nellis Air Force Base, DOE/NNSA has not proposed any new facilities or activities that would exacerbate this problem or otherwise adversely impact groundwater quality or supply.

5.2.6.2.2 Expanded Operations Alternative
DOE/NNSA has not proposed any changes in activities at RSL under the No Action Alternative and has not identified any adverse impacts on groundwater quality or supply.

5.2.6.2.3 Reduced Operations Alternative
DOE/NNSA has not proposed any changes in activities at RSL under the No Action Alternative and has not identified any adverse impacts on groundwater quality or supply.

5.2.7 Biological Resources
Under all alternatives, activities at RSL in support of DOE/NNSA programs would continue in developed, previously disturbed areas characterized by an urban habitat for biological resources. No land-disturbing construction activities are proposed at RSL over the next 10 years under any of the three alternatives analyzed in this SWEIS. Therefore, DOE/NNSA activities at RSL under all missions and programs would not affect either biological resources in general or any sensitive or protected species.
5.2.8 Air Quality and Climate

5.2.8.1 No Action, Expanded Operations, and Reduced Operations Alternatives

5.2.8.1.1 Air Quality

DOE/NNSA activities at RSL would be the same under all three alternatives addressed in this NNSS SWEIS: No Action, Expanded Operations, and Reduced Operations. Therefore, this section addresses air quality impacts from stationary, mobile, and fugitive air pollutant sources that would occur within and outside RSL under all three of alternatives. The ROI for this air quality analysis encompasses Clark County in Nevada. Emissions from stationary and aircraft-related sources occur within RSL; emissions from other mobile sources occur mostly outside RSL, but within Clark County. Additional details supporting the information presented in this section can be found in Appendix D, Section D.2.2.1.1.

Table 5–59 shows the midpoint (year 2015) annual air emissions of the criteria pollutants and hazardous air pollutants associated with various RSL activities under the No Action Alternative. Most emissions are associated with mobile source activity. The midpoint year represents the average annual emissions over the 10-year planning period; however, these emissions are expected to continue beyond the 10-year period. The RSL contribution to the air emissions in Clark County would continue to be small and would decrease relative to 2008 emission levels (see Chapter 4, Table 4–57). The VOCs, nitrogen oxides, carbon monoxide, and PM_{10} from RSL sources (both mobile and stationary) in Clark County would decrease relative to 2008 emission levels by 0.02, 0.5, 0.4, and 0.026 tons per year, respectively. Thus, this action would not contribute to or cause additional violations of the carbon monoxide, ozone, or PM_{10} ambient air quality standards. Appendix D, Section D.2.2.1.1, provides more detail on how these emissions were determined, as well as source-type and vehicle-type characterization for mobile sources.

Table 5–59 No Action Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Remote Sensing Laboratory in 2015

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Stationary Sources</th>
<th>Aircraft-Related Sources</th>
<th>Annual Air Emissions (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RSL</td>
<td>On-RSL</td>
<td>Off-RSL</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>0.038</td>
<td>0.00040</td>
<td>0.03</td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>0.038</td>
<td>0.00037</td>
<td>0.016</td>
</tr>
<tr>
<td>CO</td>
<td>0.36</td>
<td>0.88</td>
<td>2.8</td>
</tr>
<tr>
<td>NO_{x}</td>
<td>0.9</td>
<td>0.045</td>
<td>0.53</td>
</tr>
<tr>
<td>SO_{2}</td>
<td>0.01</td>
<td>0.016</td>
<td>0.0072</td>
</tr>
<tr>
<td>VOCs</td>
<td>0.032</td>
<td>>0.17</td>
<td>0.079</td>
</tr>
<tr>
<td>Lead</td>
<td><0.01</td>
<td>0.00040</td>
<td>0.000020</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td>~1.4</td>
<td>~1.1</td>
<td>3.4</td>
</tr>
</tbody>
</table>

< is less than; > is greater than; ~ is approximately; CO = carbon monoxide; HAP = hazardous air pollutant; NO_{x} = nitrogen oxides; RSL = Remote Sensing Laboratory; PM_{n} = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO_{2} = sulfur dioxide; VOC = volatile organic compound.

General Conformity Determination. See Section 5.1.8 for a discussion of General Conformity Determinations. Based on the de minimis thresholds presented in Table 5–60, the total emissions in Clark County under the all three alternatives considered in this NNSS SWEIS do not exceed the de minimis levels for carbon monoxide, nitrogen oxides, PM_{10}, or VOCs in all cases. Therefore, a general conformity analysis would not be required under any of the alternatives.
Table 5–60 No Action Alternative Greenhouse Gas Emissions by RSL Activity in 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 27,558 Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>1,371</td>
<td>0.05</td>
</tr>
<tr>
<td>Natural gas heating</td>
<td>136</td>
<td>0.01</td>
</tr>
<tr>
<td>Other stationary sources, except natural gas heating</td>
<td>7</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>1,514</td>
<td>0.05</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft and ground support equipment</td>
<td>1,184</td>
<td>0.04</td>
</tr>
<tr>
<td>Commuting</td>
<td>311</td>
<td>0.01</td>
</tr>
<tr>
<td>Commercial vendors</td>
<td>138</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES</td>
<td>1,633</td>
<td>0.06</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>1,327</td>
<td>0.05</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>1,371</td>
<td>0.05</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>449</td>
<td>0.02</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,147</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Blue: Scope 1 emissions
Orange: Scope 2 emissions
Green: Scope 3 emissions

5.2.8.1.2 Radiological Air Quality

No activities under the No Action Alternative are expected to produce aboveground radiation beyond those documented for 2008 baseline conditions in Chapter 4, Section 4.2.8.3.

5.2.8.1.3 Climate Change

See Chapter 4, Section 4.2.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse gas emissions due to RSL-related activities. Table 5–60 shows greenhouse gas emissions levels for RSL-related activities under the No Action Alternative (see Section 5.1.8 for a discussion of the methodology for this analysis). The color coding in Table 5–60 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117) – blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by RSL (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–60 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.

Overall, RSL-related activities under all three alternatives would create about 3,147 carbon-dioxide-equivalent tons of greenhouse gas emissions per year, about 89 percent smaller than the reporting level. This represents a net reduction over current greenhouse gas emissions (4,055 tons in 2008) of about 22 percent, but these emissions would continue to contribute to global climate change.
5.2.9 Visual Resources

5.2.9.1 No Action Alternative

Under the No Action Alternative, current activities and operations would continue. These activities and operations occur indoors. No proposed changes would affect existing visual resources associated with RSL, and the scenic quality would remain Class C. No mitigation would be required.

5.2.9.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, there would be no changes at RSL from the No Action Alternative, and current activities and operations would continue. There would be no changes to the existing visual environment, and the scenic quality would remain at Class C. There would be no effect. No mitigation would be required.

5.2.9.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, there would be no changes at RSL from the No Action Alternative and current activities and operations would continue. There would be no changes to the existing visual environment, and the scenic quality would remain at Class C. There would be no effect. No mitigation would be required.

5.2.10 Cultural Resources

Under all of the alternatives addressed in this SWEIS, activities at RSL supporting all DOE/NNSA NSO programs would occur in developed, previously disturbed areas and are not expected to affect cultural resources.

5.2.11 Waste Management

Under all alternatives, RSL may generate small quantities of LLW, but is not expected to generate any MLLW, TRU waste, or mixed TRU wastes. RSL would continue to be a small-quantity generator of hazardous waste; this waste would be stored for no more than 90 days before being transferred off site to permitted facilities for recycle or treatment, storage, or disposal. Hazardous waste removal and disposition services would continue to be provided by the USAF, which would also continue to provide removal and disposition of sanitary solid wastes generated by RSL personnel. Some materials, such as scrap metals, are expected to continue to be shipped as needed to the NNSS, where they would be combined with NNSS materials and shipped off site for recycle under the NNSS Pollution Prevention and Waste Minimization Program (see Section 5.1.11.1.1).

Under all of the alternatives, about 68 cubic feet of hazardous waste would be annually generated at RSL; this waste would require offsite treatment and disposal. About 490 cubic feet of solid and hazardous wastes (e.g., scrap metal and electronic equipment) would be annually generated and would be subject to offsite reuse and recycle. In addition, based on the relatively small level of projected employment under all of the alternatives, RSL would annually generate about 4,000 cubic feet of sanitary solid waste that would require USAF removal and disposition, as discussed above.

Based on the availability of permitted facilities in Nevada and neighboring states (see Section 5.1.11.1.1), waste management activities at RSL are not expected to generate wastes that exceed available TSD or recycle capacity under any alternative.

5.2.12 Human Health

The approach to evaluating human health impacts is discussed in Section 5.1.12. The criteria for evaluating human health impacts are included in that discussion.
5.2.12.1 Normal Operations

5.2.12.1.1 No Action Alternative

No radiological or chemical impacts from normal operations activities performed for the National Security/Defense, Environmental Management, or Nondefense Missions are expected at RSL under the No Action Alternative. The potential for occupational injury and illness was estimated for RSL activities using rates based on DOE experience (DOE 2010e) (see Appendix G for details). The number of TRCs and DART cases were projected based on the number of FTEs estimated for this alternative. Under this alternative, a total of 2 TRCs and 0.9 DART cases per year were calculated.

Noise. Under the No Action Alternative, minimal noise impacts on offsite receptors are expected to result from activities at RSL because there would be no new activities on site that would generate increased noise levels. Daily volumes of privately owned vehicles and trucks would remain essentially unchanged and would not contribute to additional traffic noise.

5.2.12.1.2 Expanded Operations Alternative

As under the No Action Alternative, no radiological or chemical impacts are expected at RSL under the Expanded Operations Alternative. The number of TRCs and DART cases from industrial accidents would also be the same as the No Action Alternative.

Noise. Potential noise impacts at RSL under the Expanded Operations Alternative would be similar to those under the No Action Alternative. No new activities on site would generate increased noise levels. Daily volumes of privately owned vehicles and trucks would remain essentially unchanged and would not contribute to additional traffic noise.

5.2.12.1.3 Reduced Operations Alternative

As under the No Action Alternative, no radiological or chemical impacts are expected at RSL under the Reduced Operations Alternative. The number of TRCs and DART cases from industrial accidents would also be the same as the No Action Alternative.

Noise. Potential noise impacts at RSL under the Reduced Operations Alternative would be similar to those under the No Action Alternative. No new activities on site would generate increased noise levels. Daily volumes of privately owned vehicles and trucks would remain essentially unchanged and would not contribute to additional traffic noise.

5.2.12.2 Facility Accidents

5.2.12.2.1 No Action Alternative

No RSL accident scenarios that would cause impacts other than negligible radiological or hazardous chemical risks to the public, workers, or the environment were identified under the No Action Alternative.

5.2.12.2.2 Expanded Operations Alternative

As under the No Action Alternative, no RSL accident scenarios that would cause impacts other than negligible radiological or hazardous chemical risks to the public, workers, or the environment were identified under the Expanded Operations Alternative.

5.2.12.2.3 Reduced Operations Alternative

As under the No Action Alternative, no RSL accident scenarios that would cause impacts other than negligible radiological or hazardous chemical risks to the public, workers, or the environment were identified under the Reduced Operations Alternative.
5.2.13 Environmental Justice

5.2.13.1 No Action Alternative
Impacts on human health would not be significant under any alternative. Similarly, direct and cumulative effects on environmental resources are not expected to result in significant adverse impacts on the public within the ROI.

Impacts on low-income and minority populations under the No Action Alternative, as discussed in the other sections in this chapter, would be the same as to those of the general population. Therefore, no disproportionately high and adverse impacts on minority and low-income populations are expected.

5.2.13.2 Expanded Operations Alternative
Impacts under the Expanded Operations Alternative would be the same as those described under the No Action Alternative in Section 5.2.13.1.

5.2.13.3 Reduced Operations Alternative
Impacts under the Reduced Operations Alternative would be the same as those described under the No Action Alternative in Section 5.2.13.1.

5.3 North Las Vegas Facility
The following sections describe the potential environmental consequences associated with alternatives and programs at NLVF.

5.3.1 Land Use
No changes to NLVF land use were identified under any alternative; therefore, no land use impacts, including impacts on surrounding land uses, were identified under any alternative. No impacts on airspace were identified.

5.3.1.1 No Action Alternative
No changes to land use were identified under any alternative for NLVF.

5.3.1.2 Expanded Operations Alternative
No changes to land use were identified under any alternative for NLVF.

5.3.1.3 Reduced Operations Alternative
No changes to land use were identified under any alternative for NLVF.

5.3.2 Infrastructure and Energy

5.3.2.1 Infrastructure

5.3.2.1.1 No Action Alternative
There would be no change to NLVF under the No Action Alternative.

5.3.2.1.2 Expanded Operations Alternative
Under the Expanded Operations Alternative, the number of employees would increase by 10 percent over the level projected under the No Action Alternative level, thereby slightly increasing demand for utilities at NLVF. Existing infrastructure and utilities are adequate to handle this increased demand (see Section 5.3.2.2 for a discussion of energy-related utilities).

5.3.2.1.3 Reduced Operations Alternative
Under the Reduced Operations Alternative, the number of employees would decrease by 10 percent from the No Action Alternative level, thereby reducing demand for utilities at NLVF.
5.3.2.2 Energy

5.3.2.2.1 No Action Alternative

Under the No Action Alternative, no new facilities, changes in activity levels, or changes in personnel staffing were projected for NLVF.

In FY 2009, NLVF’s electrical usage was approximately 15,000 megawatt-hours (NNSA/NSO 2010b). The peak demand recorded during 2008 and 2009 was approximately 3.2 megawatts, recorded in August 2008 during on-peak afternoon hours. DOE/NNSA estimates that these power demand levels are representative of future demand under the No Action Alternative. Given the capacity of the NLVF distribution system (approximately 8 megawatts at main switch) and the reliable supply from the utility provider (NV Energy), there is adequate electrical power supply to support all future needs under this alternative.

In FY 2009, NLVF used approximately 48,000 therms of natural gas (NNSA/NSO 2010b), primarily for heating and boilers. DOE/NNSA estimates that these demand levels are representative of future demand under the No Action Alternative. There is adequate capacity to serve current demands, and the condition of the gas lines is satisfactory. NLVF also uses small quantities of diesel and unleaded gasoline for emergency generators and miscellaneous equipment; storage capacity is less than 400 gallons of each. These existing tanks would provide sufficient capacity to support incidental needs under this alternative.

Under all alternatives, DOE/NNSA is planning to install additional building-level electrical, water, and gas meters throughout NLVF, thus improving its ability to identify future conservation opportunities.

5.3.2.2.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, staffing levels at NLVF were estimated to increase by approximately 25 percent, and plasma fusion and physics experiments would increase by approximately 66 percent. However, it is likely that this increase in workforce population and activity levels would not result in a direct one-to-one increase in average and peak power demand. DOE/NNSA would conduct facility maintenance projects to maintain all current capabilities, but no new or modified facilities are planned. Direct power increases associated with the increased workforce would be attributed to minor additions such as computer workstations and some increased demand for lighting and cooling. Increases in plasma experiments would use existing equipment, although on a more frequent basis. DOE/NNSA estimates that average and peak power demand would increase by no more than 10 percent above demand under the No Action Alternative. The capacity of the NLVF distribution system is adequate to support all future needs under this alternative. Demands for liquid fuel are not likely to increase more than 10 percent above the demand under the No Action Alternative, and current storage capacity and resupply arrangements would be sufficient to satisfy this demand.

5.3.2.2.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, staffing levels at NLVF were estimated to decrease by approximately 10 percent, and plasma fusion and physics experiments would decrease by approximately 42 percent. DOE/NNSA would conduct facility maintenance projects to maintain all current capabilities, but no new or modified facilities are planned. DOE/NNSA estimates that average and peak power demand would remain at or below the levels seen under the No Action Alternative. The capacity of the NLVF distribution system is adequate to support all future needs under this alternative. Demands for liquid fuel are also estimated to remain at or below levels under the No Action Alternative, and current storage capacity and resupply arrangements would be sufficient to satisfy this demand.
5.3.3 Transportation and Traffic

5.3.3.1 Transportation

Water containing tritium is periodically transported by tanker truck from NLVF to the NNSS. Tritium is a beta-emitter and, therefore, would not be a source of an external radiation dose. The concentration of tritium in the water being transported is, on average, 900 picocuries per liter, which is about 20 times lower than the drinking water standard of 20,000 picocuries per liter for tritium (NSTec 2010e). Therefore, any impacts associated with a transportation accident would be much lower than those of other transportation accidents analyzed. Due to these considerations, radiological impacts for these shipments were not quantified for any of the alternatives.

Transport of any nonradioactive materials associated with NLVF under the three alternatives is encompassed by the analysis described for the NNSS in Sections 5.1.3.1 and 5.1.3.2.

5.3.3.2 Traffic

Any onsite or regional traffic impacts from NLVF would primarily be associated with incremental changes in personnel. The change in workforce numbers at NLVF is expected to remain the same under the No Action Alternative, increase by 25 percent under the Expanded Operations Alternative, and decrease by 10 percent under the Reduced Operations Alternative. Increased traffic congestion within the internal roadways of NLVF and longer delays during peak commute hours at the main entrance point on Energy Way would occur under the Expanded Operations Alternative. Traffic conditions of roadways near NLVF are represented by Losee Road in Table 5–19. As the table indicates, under the No Action and Reduced Operations Alternatives, Losee Road would experience minimal, if any, increases in daily traffic volumes as a result of NNSS personnel. Under the Expanded Operations Alternative, a 3 percent increase in traffic volumes during the peak hour may occur; however, the volume-to-capacity ratio and levels of service on this roadway would remain the same as those under future baseline conditions (see Chapter 4, Table 4–11, and Table 5–19).

5.3.4 Socioeconomics

5.3.4.1 No Action Alternative

There would be no change to the number of employees at NLVF under the No Action Alternative. As a result, there would be no impacts on economic activity, population, and housing; public finances; or public services.

5.3.4.2 Expanded Operations Alternative

5.3.4.2.1 Economic Activity, Population, and Housing

Under the Expanded Operations Alternative, it was estimated that employment would increase from 1,442 to 1,803 at NLVF. This represents an increase of 361 jobs.

Approximately 10 percent, or 36 individuals, are expected to relocate. Projected rates of population growth would not be altered as a result of the Expanded Operations Alternative. The 36 new households would reduce housing vacancy rates by 0.02 percent in Clark County. Sufficient housing exists in the region to support this increase in population.

The remaining 325 individuals filling the new jobs are expected to be already living in Clark and Nye Counties. Of the 325 individuals, it was assumed that 99 percent (322) would live in Clark County and 1 percent (3) in Nye County.
The 322 direct jobs added in Clark County would decrease unemployment by about 0.23 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). In Nye County, 3 direct jobs would decrease unemployment by about 0.10 percent (a total of 3,133 Nye County residents were unemployed as of August 2010). This would be a minor, but beneficial, impact on employment in Clark and Nye Counties.

As described under the No Action Alternative, RIMS II was used to calculate the indirect economic impact of DOE/NNSA activities on employment. An estimate of the change in the total number of jobs in a region’s economy was calculated by multiplying the initial change in jobs by a direct-effect employment multiplier. By adding 361 permanent employees at the NLVF under the Expanded Operations Alternative, approximately 699 jobs would be created in the ROI. The combined effect of direct and indirect employment would result in a decrease in unemployment in Clark County of about 0.5 percent and about 0.22 percent in Nye County.

Daily spending by new employees would positively affect the immediate area of NLVF. Purchases would typically include gasoline, automobile servicing, food and beverages, laundry, and other retail items. Therefore, a minor beneficial impact on economic activity would occur under the Expanded Operations Alternative due to the increase in employment.

Public finance. Increased sales transactions for the purchase of materials and supplies for construction of the solar power generation facility(ies) would generate some additional revenues for local governments. These impacts would be minor but beneficial. Revenues for Clark County would increase due to increases in personal income and total employment, which could lead to increased spending. This would have a beneficial impact on the local economy.

5.3.4.2 Public Services

Public education. As described under the No Action Alternative, for the 2009 to 2010 school year, the Clark County School District student–teacher ratio was 21:1. The student–teacher ratio for the Nye County School District was 18.6:1. Under the Expanded Operations Alternative, a total of 68 children could relocate to the area based on an average of 1.89 children per family. It was assumed that all 68 children would relocate to Clark County; therefore, to maintain the 21:1 student–teacher ratio, three additional teachers would be needed in Clark County.

Police protection. Under the Expanded Operations Alternative, the number of daytime occupants at NLVF would increase by 361 employees, which could result in more calls for services. This increase could have an impact on police protection resources due to a reduced level of service.

Fire protection. No changes to building density would occur under the Expanded Operations Alternative. Therefore, it is unlikely that any additional calls for fire protection would take place. Levels of service would not be impacted.

Health care. The addition of 361 employees would have a negligible impact on area hospitals and hospital personnel, as only 36 households are expected to relocate. The activities associated with the Expanded Operations Alternative are not anticipated to increase the need for hospital care or personnel.

5.3.4.3 Reduced Operations Alternative

5.3.4.3.1 Economic Activity, Population, and Housing

Under the Reduced Operations Alternative, there would be an employment reduction of 144 individuals at NLVF, estimated at 143 employees in Clark County and 1 employee in Nye County. In Clark County, this would increase unemployment by about 0.10 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). Within Nye County, this would increase unemployment by about 0.03 percent (a total of 3,133 Nye County residents were unemployed as of August 2010). These increases would represent a minor adverse impact on Clark County’s unemployment rate and a negligible impact on Nye County’s unemployment rate. As a result of this jobs reduction, daily spending in the
vicinity of NLFV would decrease correspondingly, which would have a minor impact on economic activity in the area immediately adjacent to NLFV.

Public finance. Revenues for Clark County could decrease due to reductions in personal income and total employment, which could lead to reduced spending. This small decrease in spending (due to a loss of 144 jobs) would have a negligible adverse impact on the local economy.

5.3.4.3.2 Public Services

Public education. Under the Reduced Operations Alternative, no individuals are expected to relocate to work at NLFV; therefore, no new students would enroll in Clark County or Nye County schools. No new teachers would be required as a result of the Reduced Operations Alternative.

Police protection. Under the Reduced Operations Alternative, the number of daytime occupants at NLFV would decrease, which could result in fewer calls for service. Therefore, a minor beneficial impact on police protection resources is anticipated under this alternative.

Fire protection. No changes to building density would occur under the Reduced Operations Alternative. Therefore, it is unlikely that any additional calls for fire protection would take place. Levels of service would not be impacted.

Health care. As stated previously, under the Reduced Operations Alternative, a small staff reduction of 144 people is anticipated. No impact on health care in the region is anticipated. Existing levels of services would be maintained.

5.3.5 Geology and Soils

5.3.5.1 No Action Alternative

NLFV is a collection of buildings on DOE-owned property within the North Las Vegas city boundary. Under the No Action Alternative, the mission at NLFV would continue to consist of energy experiments and coordination activities. There are no prime farmland soils at NLFV, so there would be no impacts on the resource from any of the alternatives.

5.3.5.1.1 National Security/Defense Mission

Stockpile Stewardship and Management Program. Under the No Action Alternative, fusion experiments on Dense Plasma Focus machines would be conducted at NLFV. These tests would be conducted inside existing facilities and laboratories. No additional construction would be required for these tests, so there would be no impacts on the physical setting from the fusion experiments.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. NLFV would host some activities supporting U.S. nonproliferation and counterterrorism efforts on the NNSS. These activities would primarily include research and development and some training activities, most of which would occur on the NNSS. No new facilities would be constructed at NLFV to support these activities, which would primarily occur within the existing buildings. Therefore, there would be no impacts on the physical setting from implementation of the No Action Alternative.

Work for Others. Under the Work for Others Program, existing facilities and resources at NLFV would host other agencies for defense and homeland security applications. No new structures would need to be built at NLFV, so no impacts on the geology or soils would occur.

5.3.5.1.2 Environmental Management Mission

Waste Management Program. Waste produced at NLFV consists primarily of office waste, nonhazardous solid waste, and small quantities of hazardous waste. There are no disposal or treatment facilities at NLFV. Because oil and hazardous waste are present at the facility, there is a chance of an accidental spill that could contaminate the soil surface. If an accidental release of hydrocarbons were to occur at the facility, the spill would be contained, and the contaminated soils would be disposed of at a
facility permitted to receive such waste. Although the soils at NLVF have been previously disturbed to construct the facility, disturbance from spill cleanup would increase the potential for increased erosion from wind and precipitation runoff. However, with spill prevention and mitigation measures in place, the potential for impact on the soils from a spill would be reduced.

5.3.5.1.3 Nondefense Mission

General Site Support and Infrastructure Program. The activities described under the No Action Alternative would be completed in the existing facilities at NLVF. Neither additional construction nor demolition on site would be required, so there would be no impacts on the geology or soils at the facility.

5.3.5.2 Expanded Operations Alternative

The impacts on the geology and soils at NLVF would be very similar to the No Action Alternative. Under the Expanded Operations Alternative, fusion experiments on Dense Plasma Focus machines would be conducted at NLVF. These tests would be conducted inside existing facilities and laboratories. No additional construction would be required for these tests, so there would be no impacts on the physical setting from the fusion experiments.

5.3.5.3 Reduced Operations Alternative

There would be no changes to NLVF under the Reduced Operations Alternative, so the impacts would be the same as discussed under the No Action Alternative.

5.3.6 Hydrology

5.3.6.1 Surface-Water Hydrology

5.3.6.1.1 No Action Alternative

Overall, no impacts under any of the impact criteria are expected at NLVF because no activities are proposed that would affect surface hydrology.

5.3.6.1.1.1 National Security/Defense Mission

No impacts are expected at NLVF because no activities are proposed that would affect surface hydrology.

5.3.6.1.1.2 Environmental Management Mission

No impacts are expected at NLVF because no activities are proposed that would affect surface hydrology.

5.3.6.1.1.3 Nondefense Mission

General Site Support and Infrastructure Program. NLVF would continue stormwater and wastewater discharges, which are expected to have no impact on surface-water resources, assuming the activities adhere to all permit limitations on discharged water quality. In 2009, all contaminant concentrations in discharged effluent were within permitted levels.

5.3.6.1.2 Expanded Operations Alternative

Overall, no impacts under any of the impact criteria are expected at NLVF because no activities are proposed that would affect surface hydrology.

5.3.6.1.2.1 National Security/Defense Mission

No impacts are expected at NLVF because no activities are proposed that would affect surface hydrology.

5.3.6.1.2.2 Environmental Management Mission

No impacts are expected at NLVF because no activities are proposed that would affect surface hydrology.
5.3.6.1.2.3 **Nondefense Mission**

General Site Support and Infrastructure Program. Impacts would be the same as those described under the No Action Alternative in Section 5.3.6.1.1.3.

5.3.6.1.3 **Reduced Operations Alternative**

Overall, no impacts under any of the impact criteria are expected at NLVF because no activities are proposed that would affect surface hydrology.

5.3.6.1.3.1 **National Security/Defense Mission**

No impacts are expected at NLVF because no activities are proposed that would affect surface hydrology.

5.3.6.1.3.2 **Environmental Management Mission**

No impacts are expected at NLVF because no activities are proposed that would affect surface hydrology.

5.3.6.1.3.3 **Nondefense Mission**

General Site Support and Infrastructure Program. Impacts would be the same as those described under the No Action Alternative in Section 5.3.6.1.1.3.

5.3.6.2 **Groundwater**

5.3.6.2.1 **No Action Alternative**

Under the No Action Alternative, current activities and operations would continue at NLVF. The dewatering program that was established to control encroaching groundwater beneath Building A-1 would continue. This dewatering program is regulated under an NPDES permit (NV0023507), which would continue to allow the discharge of water from dewatering operations to groundwater via percolation, when used for landscape irrigation and dust suppression, and into the Las Vegas Wash via direct discharge into the City of North Las Vegas stormwater drainage system.

Water extracted from the sump well located in the basement of Building A-1 for dewatering purposes is disposed at the NNSS Area 5 sewage lagoon in the winter months and is evaporated through swamp coolers located at NLVF during the summer months. As discussed in Chapter 4, Section 4.3.6.2, the sump well was previously used in tritium remediation efforts. Although the levels of tritium are now only one-twentieth of the limit established by the Safe Drinking Water Act, DOE/NNSA continues to dispose this water separately (June 2010 report).

These discharge programs will continue to comply with all permit conditions and regulatory requirements and are not expected to result in any adverse impacts on groundwater quality or supply.

NLVF does not withdraw any groundwater for production purposes; it receives its potable water from a large municipal supplier (i.e., the Las Vegas Valley Water District).

5.3.6.2.2 **Expanded Operations Alternative**

While a 25 percent increase in the workforce was estimated at NLVF under the Expanded Operations Alternative, this increase is not expected to adversely affect the municipal supplier of potable water. DOE/NNSA has not proposed any activities that would require groundwater withdrawals for production purposes, and has not identified any new activities that would present a risk to groundwater quality.

5.3.6.2.3 **Reduced Operations Alternative**

DOE/NNSA estimates that a 10 percent workforce reduction would occur under the Reduced Operations Alternative and that a corresponding 10 percent reduction in potable water demand would occur. DOE/NNSA has not proposed any activities that would require groundwater withdrawals for production purposes and has not identified any new activities that would present a risk to groundwater quality.
5.3.7 Biological Resources

Under all alternatives, activities at NLVF in support of DOE/NNSA NSO programs would occur in developed, previously disturbed areas. No land-disturbing construction activities are proposed at NLVF over the next 10 years under any of the three alternatives analyzed in this SWEIS. Therefore, DOE/NNSA activities at NLVF under all missions and programs would not affect either biological resources in general or any sensitive or protected species.

5.3.8 Air Quality and Climate

This section addresses air quality impacts from stationary, mobile, and fugitive air pollutant sources that would occur within and outside NLVF under each of the alternatives addressed in this NNSS SWEIS. The ROI for each alternative in this air quality analysis encompasses Nye and Clark Counties in Nevada. Stationary sources emissions occur within NVLF, while mobile sources emissions occur mostly outside NLVF, but still within Clark County. Additional details supporting the information presented in this section can be found in Appendix D, Section D.2.3.1.1.

General conformity determination. (See Section 5.1.8 for a discussion of general conformity determinations.) Based on the de minimis thresholds presented in Table 5–32, the total emissions in Clark County under each of the three alternatives considered in this NNSS SWEIS would not exceed the de minimis levels for carbon monoxide, nitrogen oxides, PM_{10}, or VOCs in all cases. Therefore, a general conformity analysis would not be required for any of the alternatives.

5.3.8.1 No Action Alternative

5.3.8.1.1 Air Quality

This section addresses air quality impacts from stationary, mobile, and fugitive air pollutant sources that would occur within and outside NLVF under the No Action Alternative. The ROI for this air quality analysis includes Nye and Clark Counties in Nevada.

Table 5–61 shows the midpoint (2015) annual air emissions for the criteria pollutants and hazardous air pollutants associated with various NLVF activities under the No Action Alternative. Most emissions are associated with mobile source activity. The midpoint year represents the average annual emissions over the 10-year planning period; however, these emissions are expected to continue beyond the 10-year period. The NLVF contribution to Clark County emissions would continue to be small and would decrease relative to 2008 emission levels (see Chapter 4, Table 4–63). Emissions of VOCs, nitrogen oxides, carbon monoxide, and PM_{10} from NLVF sources (both mobile and stationary) in Clark County would decrease relative to 2008 emission levels by 0.02, 2.9, 2.2, and 0.13 tons per year, respectively. Most of the emission reductions at the NLVF are associated with the phasing in of newer worker vehicles with lower emission reduction technology. Thus, this action would not contribute to or cause additional violations of the carbon monoxide, ozone, or PM_{10} air quality standards. Appendix D, Section D.2.3.1.1, provides more detail on how these emissions were determined, as well as source-type and vehicle-type characterization for mobile sources.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Stationary Sources</th>
<th>Commercial Vendors</th>
<th>Radiological Waste Trucks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clark County</td>
<td>Clark County</td>
<td>Nye County</td>
<td>Clark County</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>0.037</td>
<td>0.25</td>
<td>0.0016</td>
<td>0.069</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>0.037</td>
<td>0.14</td>
<td>0.00095</td>
<td>0.057</td>
</tr>
<tr>
<td>CO</td>
<td>0.19</td>
<td>23.8</td>
<td>0.14</td>
<td>0.26</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>0.73</td>
<td>4.4</td>
<td>0.027</td>
<td>0.70</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.017</td>
<td>0.060</td>
<td>0.00034</td>
<td>0.0016</td>
</tr>
<tr>
<td>VOCs</td>
<td>0.028</td>
<td>0.66</td>
<td>0.0041</td>
<td>0.076</td>
</tr>
<tr>
<td>Lead</td>
<td><0.01</td>
<td>0.000017</td>
<td>0.00000010</td>
<td>0.00000030</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td>1.0</td>
<td>29.2</td>
<td>0.17</td>
<td>1.1</td>
</tr>
<tr>
<td>HAPs</td>
<td>0.0026</td>
<td>0.049</td>
<td>0.00033</td>
<td>0.010</td>
</tr>
</tbody>
</table>

< = less than; CO = carbon monoxide; HAP = hazardous air pollutant; NO$_x$ = nitrogen oxides; NLVF = North Las Vegas Facility; NNSS = Nevada National Security Site; PM$_{10}$ = particulate matter with an aerodynamic diameter less than or equal to 10 micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.
5.3.8.1.2 Radiological Air Quality

No activities under the No Action Alternative are expected to produce aboveground radiation beyond those documented for 2008 baseline conditions in Chapter 4, Section 4.3.8.3.

5.3.8.1.3 Climate Change

See Chapter 4, Section 4.3.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse gas emissions due to NLVF-related activities. Table 5–62 shows greenhouse gas emissions due to NLVF-related activities under the No Action Alternative (see Section 5.1.8 for a discussion of methodology for this analysis). The color coding in Table 5–62 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117) – blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by NLVF (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–62 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.

Table 5–62 No Action Alternative Greenhouse Gas Emissions at the North Las Vegas Facility in 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 27,558 Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>5,623</td>
<td>0.20</td>
</tr>
<tr>
<td>Other stationary sources</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>5,633</td>
<td>0.20</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile sources – Commuting</td>
<td>2,601</td>
<td>0.09</td>
</tr>
<tr>
<td>Mobile sources – Hazardous material and waste transport (nongovernment)</td>
<td>7</td>
<td>0.01</td>
</tr>
<tr>
<td>Mobile sources – Commercial vendors</td>
<td>138</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES</td>
<td>2,746</td>
<td>0.10</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>5,623</td>
<td>0.20</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>2,746</td>
<td>0.10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8,379</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Blue: Scope 1 emissions
Orange: Scope 2 emissions
Green: Scope 3 emissions

Overall, NLVF-related activities under the No Action Alternative would create about 8,379 carbon-dioxide-equivalent tons of greenhouse gas emissions per year, about 70 percent lower than the reporting level. This represents a net reduction over current greenhouse gas emissions (13,355 tons in 2008) of about 37 percent, but these emissions would continue to contribute to global climate change.
5.3.8.2 Expanded Operations Alternative

5.3.8.2.1 Air Quality

This section addresses air quality impacts from stationary, mobile, and fugitive air pollutant sources that would occur within and outside NLVF under the Expanded Operations Alternative. The ROI for this air quality analysis includes Nye and Clark Counties in Nevada. Stationary sources emissions occur within NVLF, while mobile sources emissions occur mostly outside NLVF, but almost entirely within Clark County. Additional details supporting the information presented in this section can be found in Appendix D, Section D.2.3.1.1.

Table 5–63 shows the midpoint (2015) annual air emissions for the criteria pollutants and hazardous air pollutants associated with various NLVF activities under the Expanded Operations Alternative. Most emissions are associated with mobile source activity. The midpoint year represents the average annual emissions over the 10-year planning period; however, these emissions are expected to continue beyond the 10-year period. The NLVF contribution to Clark County air emissions would continue to be small and would decrease relative to 2008 emission levels (see Chapter 4, Table 4–63). Emissions of VOCs and carbon monoxide from NNSS mobile sources in Clark County would increase relative to 2008 emission levels by 0.17 and 3.8 tons per year, respectively; however, emissions of nitrogen oxides and PM$_{10}$ would decrease relative to 2008 emission levels by 1.6 and 0.05 tons per year, respectively. Because these emissions would be small and the increased emissions would come from mobile sources spread out over the Las Vegas Valley, the additional burden would not produce additional violations of the carbon monoxide or ozone ambient air quality standard. Appendix D, Section D.2.3.2.1, provides more detail on how these emissions were determined, as well as source-type and vehicle-type characterization for mobile sources.

5.3.8.2.2 Radiological Air Quality

No activities under the Expanded Operations Alternative are expected to produce aboveground radiation beyond those documented for 2008 baseline conditions in Chapter 4, Section 4.3.8.3.

5.3.8.2.3 Climate Change

See Chapter 4, Section 4.3.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse gas emissions due to NLVF-related activities. Table 5–64 shows greenhouse gas emissions levels from NLVF-related activities under the Expanded Operations Alternative (see Section 5.1.8 for a discussion of the methodology for this analysis). The color coding in Table 5–64 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117) – blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by NLVF (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–64 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.
Table 5–63 Expanded Operations Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the North Las Vegas Facility in 2015

Pollutant	Stationary Sources											
	Clark County	Nye County	Clark County	Nye County	Clark County	Nye County						
	On-NLVF	Off-NLVF	Off-NNSS	On-NLVF	Off-NNSS	On-NLVF	Off-NNSS	Total				
PM$_{10}$	0.037	0.31	0.0020	0.086	0.0021	0.00013	0.00019	0.037	0.40	0.00013	0.0022	0.44
PM$_{2.5}$	0.037	0.17	0.0020	0.071	0.0018	0.00011	0.00016	0.037	0.24	0.00011	0.0022	0.28
CO	0.19	29.8	0.19	0.33	0.0058	0.00038	0.00056	0.19	30.1	0.00038	0.19	30.5
NO$_x$	0.73	5.5	0.033	0.88	0.026	0.0016	0.0025	0.73	6.4	0.0016	0.036	7.2
SO$_2$	0.017	0.076	0.0043	0.0020	0.000058	0.0000036	0.0000055	0.017	0.078	0.0000036	0.00044	0.095
VOCs	0.028	0.83	0.0051	0.095	0.0011	0.000071	0.00011	0.028	0.93	0.000071	0.0052	0.096
Lead	<0.01	0.000022	0.00000013	0.00000038	0.0000000036	0.0000000025	0.0000000038	<0.01	0.000026	0.0000000025	0.000000013	<0.01
Criteria Pollutant Total	1.0	36.5	0.23	1.4	0.035	0.0022	0.0034	1.0	37.9	0.0022	0.23	39.2
HAPs	0.0026	0.062	0.00041	0.013	0.00015	0.000095	0.00014	0.0026	0.075	0.000095	0.00042	0.078

< = less than; CO = carbon monoxide; HAP = hazardous air pollutant; NO$_x$ = nitrogen oxides; NLVF=North Las Vegas Facility; NNSS=Nevada National Security Site; PM$_{10}$ = particulate matter with an aerodynamic diameter less than or equal to 10 micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.
Table 5–64 Expanded Operations Alternative Greenhouse Gas Emissions at the North Las Vegas Facility in 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 25,000 Metric Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>5,623</td>
<td>0.20</td>
</tr>
<tr>
<td>Other stationary sources</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>5,632</td>
<td>0.20</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile sources – commuting</td>
<td>3,252</td>
<td>0.12</td>
</tr>
<tr>
<td>Mobile sources – hazardous material and waste transport (nongovernment)</td>
<td>9</td>
<td>0.01</td>
</tr>
<tr>
<td>Mobile sources – commercial vendors</td>
<td>138</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES</td>
<td>3,399</td>
<td>0.12</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>5,623</td>
<td>0.20</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>3,399</td>
<td>0.12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9,031</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Blue: Scope 1 emissions
Orange: Scope 2 emissions
Green: Scope 3 emissions

Overall, NLVF-related activities under the Expanded Operations Alternative would create about 9,031 carbon-dioxide-equivalent tons of greenhouse gas emissions per year, about 67 percent smaller than the reporting level. This represents a net reduction over current greenhouse gas emissions (13,355 tons in 2008) of about 32 percent, but these emissions would continue to contribute to global climate change.

5.3.8.3 Reduced Operations Alternative

5.3.8.3.1 Air Quality

This section addresses air quality impacts from stationary, mobile, and fugitive air pollutant sources that would occur within and outside NLVF under the Reduced Operations Alternative. The ROI for this air quality analysis includes Nye and Clark Counties in Nevada. The emissions from stationary sources occur within NVLF, while the emissions from mobile sources occur mostly outside NLVF, but within Clark County. Additional details supporting the information presented in this section can be found in Appendix D, Section D.2.3.3.1.

Calculations of emissions on and near NLVF. Table 5–65 shows the midpoint (2015) annual air emissions for the criteria pollutants and hazardous air pollutants associated with various NLVF activities under the Reduced Operations Alternative. Most emissions are associated with mobile source activity. The midpoint year represents the average annual emissions over the 10-year planning period; however, these emissions are expected to continue beyond the 10-year period. The NLVF contribution to Clark County air emissions would continue to be small and would decrease relative to 2008 emission levels (see Chapter 4, Table 4–63). Emissions of VOCs, nitrogen oxides, carbon monoxide, and PM$_{10}$ from NLVF sources (both mobile and stationary) in Clark County would decrease relative to 2008 emission levels by 0.09, 3.4, 4.7, and 0.16 tons per year, respectively. Thus, this action would not contribute to or cause additional violations of the carbon monoxide, ozone, or PM$_{10}$ air quality standards. Appendix D, Section D.2.3.3.1, provides more detail on how these emissions were determined, as well as source-type and vehicle-type characterization of mobile sources.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Air Emissions (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stationary Sources</td>
</tr>
<tr>
<td></td>
<td>Clark County</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>On-NLVF</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Off-NLVF</td>
</tr>
<tr>
<td>CO</td>
<td>Off-NNSS</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>Off-NLVF</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Off-NLVF</td>
</tr>
<tr>
<td>VOCs</td>
<td>Off-NLVF</td>
</tr>
<tr>
<td>Lead</td>
<td>Off-NLVF</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td>Off-NLVF</td>
</tr>
<tr>
<td>HAPs</td>
<td>Off-NLVF</td>
</tr>
</tbody>
</table>

$<=$ less than; CO = carbon monoxide; HAP = hazardous air pollutant; NO$_x$ = nitrogen oxides; NLVF = North Las Vegas Facility; NNSS = Nevada National Security Site; PM$_n$ = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.
5.3.8.3.2 Radiological Air Quality

No activities under the Reduced Operations Alternative are expected to produce aboveground radiation beyond those documented for 2008 baseline conditions in Chapter 4, Section 4.3.8.3.

5.3.8.3.3 Climate Change

See Chapter 4, Section 4.3.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse gas emissions due to NLVF-related activities. Table 5–66 shows greenhouse gas emissions due to NLVF-related activities under the Reduced Operations Alternative (see Section 5.1.8 for a discussion of methodology for this analysis). The color coding in Table 5–66 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117) – blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by NLVF (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–66 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.

Table 5–66 Carbon-Dioxide-Equivalent Emissions of Greenhouse Gases by Activities Related to the North Las Vegas Facility Under the Reduced Operations Alternative for 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 27,558 Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>5,623</td>
<td>0.20</td>
</tr>
<tr>
<td>Other stationary sources</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>5,632</td>
<td>0.20</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commuting</td>
<td>2,341</td>
<td>0.08</td>
</tr>
<tr>
<td>Hazardous material and waste transport (nongovernment)</td>
<td>6</td>
<td>0.01</td>
</tr>
<tr>
<td>Commercial vendors</td>
<td>138</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES</td>
<td>2,485</td>
<td>0.09</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>5,623</td>
<td>0.20</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>2,485</td>
<td>0.09</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8,118</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Overall, NLVF-related activities under the Reduced Operations Alternative would create about 8,118 carbon-dioxide-equivalent tons of greenhouse gas emissions per year, about 71 percent smaller than the reporting level. This represents a net reduction over current greenhouse gas emissions (13,355 tons in 2008) of about 39 percent.
5.3.9 Visual Resources

5.3.9.1 No Action Alternative

Under the No Action Alternative, current activities and operations would continue. These activities and operations occur indoors. No proposed changes would affect existing visual resources associated with NLVF, and the scenic quality would remain Class C. No mitigation would be required.

5.3.9.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, there would be no changes at NLVF compared with the No Action Alternative and current activities and operations would continue. There would be no changes to the existing visual environment, and the scenic quality would remain at Class C. There would be no effect. No mitigation would be required.

5.3.9.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, there would be no changes at NLVF compared with the No Action Alternative, current activities and operations would continue, and there would be no change to the existing visual environment. The scenic quality would remain at Class C. There would be no effect. No mitigation would be required.

5.3.10 Cultural Resources

Under all alternatives addressed in this SWEIS, there are no proposed activities or projects that would affect Building A-17, which the DOE/NNSA NSO considers to be historically significant due to its connection with nuclear weapons testing. In addition, activities at NLVF supporting all of the DOE/NNSA NSO programs would occur in developed, previously disturbed areas and are not expected to affect cultural resources.

5.3.11 Waste Management

Under all of the alternatives, NLVF would generate no TRU or mixed TRU wastes. However, under all of the alternatives, NLVF would generate liquids containing small quantities of tritium collected from the sump of an NLVF building (tritium concentrations in the collected water are expected to continue to be below the maximum concentration limits for tritium specified in EPA primary drinking-water standards). Disposal of the collected tritiated water would continue, either by introducing it to the NLVF evaporative coolers or by collecting it in tanker trucks and transporting it to the NNSS for evaporation (see Section 5.1.11.1.1). The potential impacts of the release of tritium to the atmosphere through evaporation are addressed in Sections 5.1.8 and 5.1.12.

Under all of the alternatives, NLVF would remain a conditionally exempt, small-quantity generator of hazardous waste; this waste would be stored on site before being transferred off site to permitted facilities for recycle or treatment, storage, or disposal. NLVF would annually generate approximately 34 cubic feet of hazardous and other regulated wastes (e.g., asbestos) for offsite treatment and disposal, 21 cubic feet of hazardous waste (including universal waste) for offsite recycle, and 55 cubic feet of used oil or antifreeze for offsite recycle.

Sanitary solid waste generation at NLVF would vary under each of the three SWEIS alternatives based on the estimated number of personnel stationed there (see Section 5.2.4). Annual generation of sanitary solid wastes would total approximately 39,000 to 49,000 cubic feet under the No Action and Expanded Operations Alternatives, respectively, and approximately 35,000 cubic feet under the Reduced Operations Alternative. It is expected that sanitary solid waste generated by NLVF personnel would continue to be removed and dispositioned by a municipal service. In addition, occasional shipments of solid waste, consisting mainly of materials containing sensitive information, would be sent to the NNSS for disposal.

D&D of certain structures at NLVF is conservatively projected to generate up to approximately 150 cubic feet of LLW and 110,000 cubic feet of (nonradioactive) demolition debris under all alternatives. The
LLW would be shipped to the NNSS for disposal in the Area 5 RWMC, while the demolition debris could be disposed at a local landfill or transported to the NNSS for disposal at an NNSS landfill. The LLW and demolition debris volumes are both included in the volumes of waste projected for disposal at the NNSS, which are presented in Table 5–47.

The quantities of LLW projected for shipment to the NNSS are small under all of the alternatives and are within available NNSS disposal capacity (see Section 5.1.11). Under all of the alternatives, the quantities of tritiated liquids projected for shipment to the NNSS would be within the NNSS’s treatment capability. In addition, under all of the alternatives, recycle or TSD capacity is expected to be adequate for the nonradioactive wastes from NLVF, given the availability of large numbers of permitted recycle or TSD facilities in Nevada and neighboring states (see Section 5.1.11.1).

5.3.12 Human Health

The approach to evaluating human health impacts is discussed in Section 5.1.12. The criteria for evaluating human health impacts are included in that discussion.

5.3.12.1 Normal Operations

5.3.12.1.1 No Action Alternative

In support of the National Security/Defense Mission, 600 small plasma physics and fusion experiments would be conducted at NLVF, but these experiments are not expected to cause measurable releases of radioactive materials. As described in Chapter 4, Section 4.3.12, tritium from a previous spill continues to be emitted from the A-1 Building. It was estimated that the small amount of tritium expected to be released annually (an average of 0.0111 curies per year) would result in a dose of 0.00035 millirem per year to the MEI at the facility boundary or to a noninvolved worker (approximately 330 feet away). This dose represents a negligible annual risk of an LCF (about 1 chance in 5 billion). The estimated dose to the population of approximately 2,390,000 within 50 miles of NLVF is 4.1×10^5 person-rem per year; the calculated number of LCFs associated with this dose is 2×10^8, implying that the most likely outcome would be no additional LCFs in the exposed population. Based on the premise that there is some risk associated with any radiation dose, the population risk of 2×10^{-8} implies that there would be an annual risk of 1 in 50 million of a single LCF in the population. The tritium emissions and, therefore, the potential doses and risks could vary over the years due to factors such as meteorological conditions, but would trend downward due to radioactive decay (tritium has a half-life of 12.3 years).

The potential for occupational injury and illness was estimated for NLVF activities using rates based on DOE experience (DOE 2010e) (see Appendix G for details). The number of TRCs and DART cases were projected based on the number of FTEs estimated for this alternative. Under this alternative, a total of 22 TRCs and 9.5 DART cases per year were calculated.

No radiological or chemical impacts are expected at NLVF from any activities related to the Environmental Management or Nondefense Missions.

Noise. Under the No Action Alternative, potential noise impacts on offsite receptors from activities at NLVF would primarily result from traffic noise generated by privately owned vehicles of commuting employees and would occur along the principal roadways leading to the facility. As discussed in Section 5.1.3.2, Losee Road, which is representative of the offsite traffic near NLVF, would not increase in personnel and is expected to experience a negligible increase in traffic noise along the roadways.

5.3.12.1.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, approximately 1,000 small plasma physics and fusion experiments would be performed at NLVF; however, these experiments are not expected to cause measurable releases of radioactive material. Therefore, the impacts from normal operations under the Expanded Operations Alternative would be the same as those under the No Action Alternative.
The potential for occupational injury and illness for NLVF activities would be greater under the Expanded Operations Alternative than the No Action Alternative because of the larger number of employees at this location. Based on the number of FTEs estimated for this alternative, a total of 27 TRCs and 12 DART cases per year were calculated.

Noise. Similar to under the No Action Alternative, potential noise impacts on offsite receptors from activities at NLVF would primarily result from traffic noise generated by privately owned vehicles of commuting employees and would occur along the principal roadways leading to the facility. As discussed in Section 5.3.3.2, Losee Road would experience an approximate 3 percent increase in daily traffic volumes in comparison to future baseline conditions. The increase in daily vehicle trips by personnel vehicles would primarily increase baseline noise conditions along the main roadways leading to these sites; however, this would be limited to the morning and afternoon commuting hours.

5.3.12.1.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, 350 plasma physics and fusion experiments would be performed at NLVF; however, because these experiments are not expected to cause measurable releases of radioactive material, the impacts from normal operations under the Reduced Operations Alternative would be the same as those under the No Action Alternative.

The potential for occupational injury and illness for NLVF activities would be slightly less under the Reduced Operations Alternative than the No Action Alternative because of the fewer number of employees at this location. Based on the number of FTEs estimated for this alternative, a total of 20 TRCs and 8.6 DART cases per year were calculated.

Noise. Under the Reduced Operations Alternative, potential noise impacts on offsite receptors from activities at NLVF would be less than those described under the No Action Alternative because the number of personnel would be reduced. As discussed in Section 5.3.3.2, Losee Road would experience a negligible decrease in daily traffic volumes in comparison to future baseline conditions. This decrease in personnel vehicles would cause a negligible decrease in baseline noise levels during morning and afternoon commuting hours along the main roadways leading to the facility.

5.3.12.2 Facility Accidents

5.3.12.2.1 No Action Alternative

No NLVF accident scenarios that would cause impacts other than extremely small radiological or hazardous chemical risks to the public, workers, or the environment were identified under the No Action Alternative. A range of potential accidents at NLVF, including accidents involving sealed sources stored and used at Building A-1, was considered. The nature of sealed sources and the manner and location in which they are stored make the probability of an accident very small and the probability of an accident that results in a substantive release even smaller. Based on the low probability of any accidents that could result in offsite doses, no NLVF accidents were analyzed in detail.

5.3.12.2.2 Expanded Operations Alternative

As under the No Action Alternative, no NLVF accident scenarios that would cause impacts other than extremely small radiological or hazardous chemical risks to the public, workers, or the environment were identified under the Expanded Operations Alternative.

5.3.12.2.3 Reduced Operations Alternative

As under the No Action Alternative, no NLVF accident scenarios that would cause impacts other than extremely small radiological or hazardous chemical risks to the public, workers, or the environment were identified under the Reduced Operations Alternative.
5.3.12.2.4 Intentional Destructive Acts Analysis

Substantive details of terrorist attack scenarios and security countermeasures are not released to the public because disclosure of this information could be exploited by terrorists to plan attacks. A separate classified appendix to this SWEIS has been prepared that considers the underlying facility threat assumptions with regard to intentionally destructive acts. Based on these threat assumptions, the classified appendix evaluates potential human health impacts using appropriate analytical models, similar to the methodology used in this SWEIS to analyze accident impacts. These data provide DOE/NNSA with information on which to base, in part, decisions regarding activities at NLVF.

5.3.13 Environmental Justice

5.3.13.1 No Action Alternative

Impacts on human health would not be significant under any alternative. Similarly, direct and cumulative effects on environmental resources are not expected to result in significant adverse impacts on the public within the ROI.

Impacts on low-income and minority populations under the No Action Alternative, as discussed in the other sections in this chapter, would be the same as those on the general population. Therefore, no disproportionately high and adverse impacts on minority and low-income populations are expected.

5.3.13.2 Expanded Operations Alternative

Impacts under the Expanded Operations Alternative would be the same as those described under the No Action Alternative in Section 5.3.13.1.

5.3.13.3 Reduced Operations Alternative

Impacts under the Reduced Operations Alternative would be the same as those described under the No Action Alternative in Section 5.3.13.1.

5.4 Tonopah Test Range

The following sections describe the potential environmental consequences associated with alternatives and programs at the TTR.

5.4.1 Land Use

This section describes the potential environmental consequences for land use and airspace associated with DOE/NNSA missions at the TTR. No land use impacts were identified for any alternative at the TTR, including impacts on surrounding land uses. The only activities that would affect airspace would be defense-related. Therefore, only the National Security/Defense Mission is discussed and evaluated for airspace impacts resulting from implementation of the alternatives.

5.4.1.1 National Security/Defense Mission

5.4.1.1.1 No Action Alternative

Airspace. Under the No Action Alternative, DOE/NNSA activities at the TTR would continue at the level of current operations; therefore, no new impacts are expected from anticipated airspace activities and requirements. DOE/NNSA would continue to coordinate the use of airspace with the controlling entity responsible for TTR airspace, the Nellis Air Traffic Control Facility. A variety of DOE/NNSA programs that require occasional flights of helicopters and fixed-wing aircraft carrying supplies and personnel would continue to occur.

5.4.1.1.2 Expanded Operations Alternative

Airspace. Impacts would be similar to those described under the No Action Alternative in Section 5.4.1.1.1.
5.4.1.1.3 Reduced Operations Alternative

Airspace. Impacts would be similar to those described under the No Action Alternative in Section 5.4.1.1.1; however, the impacts would be minimized as a result of the discontinuation of fixed rocket launch operations, cruise missile operations, and fuel-air explosives at the TTR. This would increase the restricted airspace for other military uses as coordinated and scheduled by the Nellis Air Traffic Control Facility.

5.4.2 Infrastructure and Energy

5.4.2.1 Infrastructure

5.4.2.1.1 No Action Alternative

Under the No Action Alternative, infrastructure-related activities would include small projects to maintain the present capabilities of the TTR, including repairs and replacements. There would be no increases in capabilities, facilities, or demand for utilities at the TTR.

5.4.2.1.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, the number of employees at the TTR would decrease compared with the No Action Alternative, thereby reducing demand for utilities.

5.4.2.1.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, the number of employees at the TTR would decrease compared with the No Action Alternative, thereby reducing demand for utilities.

5.4.2.2 Energy

5.4.2.2.1 No Action Alternative

Under the No Action Alternative, DOE/NNSA operations at the TTR would continue at current levels, and no activities have been identified that would create additional long-term demands for electrical power or liquid fuel supply.

The existing 13.8-kilovolt electrical distribution line for DOE/NNSA operations (stepped down from the 120-kilovolt USAF main line) would continue to meet all facility power demands, and no adverse effects on system capacity are expected. For any routine facility repair activities associated with the No Action Alternative, the current power resources would be adequate to handle the temporary increased demand. All remote operations would continue to be supplied with electrical power by portable generators.

DOE/NNSA operations at the TTR use propane for most heating needs, and gasoline and diesel to support emergency generators. The TTR maintains diesel-fired generators, gasoline generators, and propane-fired boilers. The TTR has onsite propane storage tanks, with a collective permitted storage capacity of 23,563 gallons (NDEP 2007). Current liquid fuel storage and resupply capacity would be sufficient to meet ongoing demands.

5.4.2.2.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, the number of employees at the TTR would decrease compared to that under the No Action Alternative level due to the transfer of certain site support functions from DOE/NNSA to the USAF, which would reduce demand for electrical power and liquid fuels. The existing electrical distribution line for DOE/NNSA operations would continue to meet all facility power demands, and no adverse effects on system capacity are expected. For any routine facility repair activities associated with the Expanded Operations Alternative, the current power resources would be adequate to handle the temporary increased demand. All remote operations would continue to be supplied with electrical power by portable generators. Current liquid fuel storage and resupply capacity would be sufficient to meet ongoing demands.
5.4.2.2.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, the number of employees at the TTR would decrease further than under the Expanded Operations Alternative, which would reduce demand for electrical power and liquid fuels. The existing electrical distribution line for DOE/NNSA operations would continue to meet all facility power demands, and no adverse effects on system capacity are expected. For any routine facility repair activities associated with the Reduced Operations Alternative, the current energy resources would be adequate to handle the temporary increased demand. All remote operations would continue to be supplied with electrical power by portable generators. Current liquid fuel storage and resupply capacity would be sufficient meet ongoing demands.

5.4.3 Transportation and Traffic

5.4.3.1 Transportation

There would be about 230 shipments of LLW due to environmental restoration activities to the NNSS for disposal under the No Action and Reduced Operations Alternatives. There would be about 13,100 shipments of radioactive waste to the NNSS for disposal under the Expanded Operations Alternative. Table 5–11 and the following subsections summarize the impacts associated with these shipments.

5.4.3.1.1 No Action Alternative

The transport of LLW and MLLW by truck to the NNSS for disposal would result in a cumulative dose of about 0.015 person-rem, resulting in less than 1 \(\times 10^{-6}\) LCF to the crew. The cumulative dose to the general population would be about 0.0020 person-rem, resulting in less than 1 \(\times 10^{-6}\) additional LCF. The accident risk would be very small \((1 \times 10^{-12} LCF)\). Nonradiological accident risks for transporting LLW and MLLW would also be less than 1 \((0.002)\) fatality.

5.4.3.1.2 Expanded Operations Alternative

The transport of LLW and MLLW by truck to the NNSS for disposal would result in a cumulative dose of about 0.82 person-rem, resulting in less than 1 \(\times 10^{-6}\) LCF to the crew. The cumulative dose to the general population would be about 0.28 person-rem, resulting in less than 1 \(\times 10^{-6}\) additional LCF. The accident risk would be very small \((6 \times 10^{-11} LCF)\). Nonradiological accident risks for transporting LLW and MLLW would also be less than 1 \((0.1)\) fatality.

5.4.3.1.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, the impacts associated with transportation of TTR environmental restoration waste to the NNSS for disposal would be the same as described in Section 5.4.3.1.1 for the No Action Alternative.

5.4.3.2 Traffic

The number of personnel at the TTR is expected to remain the same under the No Action Alternative and decrease under the Expanded Operations and Reduced Operations Alternatives. The number of shipments of radioactive waste from the TTR could result in up to 4 truck trips daily under the No Action and Reduced Operations Alternatives and up to 14 trips daily under the Expanded Operations Alternative. These additional vehicles trips are considered relatively low and are expected to result in minor impacts on regional traffic. The shipments of radioactive waste would primarily occur on U.S. Routes 6 and 95. Traffic conditions on these roadways are shown in Table 5–18.

5.4.4 Socioeconomics

5.4.4.1 No Action Alternative

Under the No Action Alternative, the number of employees and the level of operations at the TTR would continue at current levels. There would be no increases in capabilities, facilities, or services at the TTR.
Because there would be no increase or decrease in the number of employees and the level of operations would continue, no impacts on economic activity, population, and housing; public finances; or public services would occur.

5.4.4.2 Expanded Operations Alternative

5.4.4.2.1 Economic Activity, Population, and Housing

Under the Expanded Operations Alternative, there would be an employment reduction of 63 individuals at the TTR, including 14 employees in Clark County (about 22 percent of the reduction) and 42 employees in Nye County (about 67 percent of the reduction), with the balance of eliminated positions (11 percent of the reduction, 7 employees) affecting employees residing in other counties or states. In Clark County, this would increase unemployment by about 0.01 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). In Nye County, this reduction would increase unemployment by about 1.34 percent (a total of 3,133 Nye County residents were unemployed as of August 2010). This reduction would represent a minor adverse impact on Clark County’s unemployment rate and a moderate adverse impact on Nye County’s unemployment rate (however, because 23 percent of the jobs added at the NNSS would be allocated to Nye County, this impact could be partially offset). As a result of the reduction in jobs, daily spending in the vicinity of the TTR would decrease, causing a minor adverse impact on economic activity in the area immediately adjacent to the TTR.

Public finance. Revenues for Clark and Nye Counties could decrease due to decreases in personal income and total employment, which could lead to reduced spending. This small decrease in spending (due to a loss of 63 jobs) would have a negligible adverse impact on local economies.

5.4.4.2.2 Public Services

Public education. Under the Expanded Operations Alternative, no individuals are expected to relocate to work at the TTR; therefore, no new students would enroll in Clark County or Nye County schools. No new teachers would be required under the Reduced Operations Alternative.

Police protection. Under the Expanded Operations Alternative, the number of daytime occupants at the TTR would decrease, which could result in fewer calls for service. Therefore, a minor beneficial impact on police protection resources is anticipated under this alternative.

Fire protection. No changes in building density at the TTR would occur under the Expanded Operations Alternative. Therefore, it is unlikely that any additional calls for fire protection would take place under the Expanded Operations Alternative. Levels of service at the volunteer fire departments in Nye County would not be impacted.

Health care. Under the Expanded Operations Alternative, a small reduction in staff of 63 people is anticipated. No impact on health care in the region is anticipated. Existing levels of service would be maintained.

5.4.4.3 Reduced Operations Alternative

5.4.4.3.1 Economic Activity, Population, and Housing

Under the Reduced Operations Alternative, there would be an employment reduction of 67 individuals at the TTR, including 15 in Clark County and 45 in Nye County, with the other 7 reductions affecting individuals residing in other counties or states. In Clark County, this reduction would increase unemployment by about 0.01 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). In Nye County, this would increase unemployment by about 1.44 percent (a total of 3,133 Nye County residents were unemployed as of August 2010). This would represent a minor adverse impact on Clark County’s unemployment rate and a moderate adverse impact on Nye County’s unemployment rate (however, because 23 percent of the jobs added at the NNSS would be allocated to Nye County, this impact would be partially offset). As a result of the reduction in jobs, daily spending in
the vicinity of the TTR would decrease, which would have a minor adverse impact on economic activity in the area immediately adjacent to the TTR.

Public finance. Revenues for Clark and Nye Counties could decrease due to reductions in personal income and total employment, which could lead to reduced spending. This small decrease in spending (due to a loss of 67 jobs) would have a negligible adverse impact on local economies.

5.4.4.3.2 Public Services

Public education. Under the Reduced Operations Alternative, no individuals are expected to relocate to work at the TTR; therefore, no new students would enroll in Clark County or Nye County schools. No new teachers would be required under the Reduced Operations Alternative.

Police protection. Under the Reduced Operations Alternative, the number of daytime occupants at the TTR would decrease, which could result in fewer calls for service. Therefore, a minor beneficial impact on police protection resources in calls for service is anticipated under this alternative.

Fire protection. Similar to under the Expanded Operations Alternative, no changes in building density would occur as a result of the Reduced Operations Alternative. Therefore, it is unlikely that any additional calls for fire protection would take place. Levels of service at the volunteer fire departments in Nye County would not be impacted.

Health care. Under the Reduced Operations Alternative, a small reduction in staff of 67 people is anticipated. No impact on health care in the region is anticipated. Existing levels of services would be maintained.

5.4.5 Geology and Soils

The TTR is used to test weapon systems using noncritical high-explosives experiments and aerial training. The TTR has contaminated soils sites that are managed as part of the Environmental Restoration Program.

5.4.5.1 No Action Alternative

5.4.5.1.1 National Security/Defense Mission

Stockpile Stewardship and Management Program. Several Stockpile Stewardship and Management Program activities occur at the TTR, which would impact the local geology and soils. Operations that would have a potential to impact the soils or geology would include impact tests (nonexplosive) using gravity weapons (bombs), joint test assemblies, and inert projectiles. Soils and geology would be affected by these operations because large sections of soils would be disturbed and contaminated, drainage patterns would be modified, and surface instability could be introduced into rugged areas. Although none of the tests would result in a nuclear yield, other chemicals and heavy metals could contaminate the impact surface. Many of the tests are designed to penetrate the ground surface, which results in impacts on soils from the penetration itself, as well as subsequent impacts when the ground is excavated to retrieve the test object. The operations at the TTR would be located in isolated areas that were previously used for similar tests. The passive tests using high-resonance energy, lasers, and ultrasound techniques would not affect soils because the activities would occur within existing facilities.

Work for Others. Under the Work for Others Program, and in conjunction with DoD, DOE/NNSA would use the restricted airspace at the TTR to conduct counterterrorism operations. There would be no impacts on the physical setting from performing the military operations.

Other Work for Others Program activities at the TTR would include robotics development and experiments for handling chemical materials, smart transportation-related experiments, smoke obscuration operations, infrared tests, and rocket development, testing, and deployment. These experiments would result in some localized soil disturbance, but would be unlikely to result in increased erosion or sedimentation.
5.4.5.1.2 Environmental Management Mission

Waste Management Program. At the TTR, Environmental Restoration Program activities may produce some LLW depending on negotiated cleanup levels and corrective action decisions and could produce minor quantities of TRU waste (a few drums). The wastes produced at the TTR would be disposed at the Area 5 RWMC or brought to the NNSS TRU Storage Pad, which would not generate any impacts on soils or the geology. Other wastes produced at the TTR, including small quantities of hazardous waste, used oil, asbestos, and PCB wastes, would be shipped off-site for disposal and would not produce impacts at the TTR. The USAF TTR sanitary landfill that receives sanitary solid waste produced by TTR facilities would not increase its footprint under the No Action Alternative and, therefore, would not impact soils or geologic resources.

Because oil and hazardous waste are present at the TTR, there is a chance of an accidental spill that could contaminate the soil surface. If an accidental release of hydrocarbons were to occur at the TTR, the soils contaminated with hydrocarbons would be removed to be disposed in permitted and approved landfills. With spill prevention and mitigation measures in place, the potential for impact on the soils from a spill would be reduced. The removal of the contaminated soils would be a positive impact on the soils at the TTR, and the use of existing landfills would not increase surface disturbance.

Environmental Restoration. The Environmental Restoration Program at the TTR would continue to investigate and characterize contaminated soil sites as described under the NNSS No Action Alternative. The corrective action sites for soils at the TTR are primarily related to the plutonium contamination from the Clean Slate 1, 2, and 3 experiments. In total, there are 43 source units (environmental restoration sites) on the TTR, which includes underground storage tanks, landfills and lagoons, soil contamination sites, surface and near-surface radioactive sites, and unexploded ordnance sites. The corrective action sites at the TTR would be closed under the FFACO by the end of 2022.

5.4.5.1.3 Nondefense Mission

General Site Support and Infrastructure Program. The existing infrastructure at the TTR would be able to support the activities described under the No Action Alternative. Neither additional construction nor demolition on site would be required, so there would be no impacts on the geology or soils around the buildings.

5.4.5.2 Expanded Operations Alternative

5.4.5.2.1 National Security/Defense Mission

National Security/Defense Mission activities at the TTR under the Expanded Operations Alternative would be the same as the No Action Alternative. Therefore, the impacts would be the same as those described in Section 5.4.5.1.

5.4.5.2.2 Environmental Management Mission

Environmental Management Mission activities at the TTR under the Expanded Operations Alternative would be the same as those under the No Action Alternative, so the impacts on the geology and soils at the TTR would not change. No new waste facilities would be needed to accept wastes from the TTR, so impacts resulting from increased erosion or surface disturbance would not occur. The Environmental Restoration Program would also not change.

5.4.5.2.3 Nondefense Mission

Nondefense Mission program activities at the TTR under the Expanded Operations Alternative would be the same as those under the No Action Alternative, so there would be no additional impacts on the geology or soils.
5.4.5.3 Reduced Operations Alternative

5.4.5.3.1 National Security/Defense Mission

Most of the National Security/Defense Mission activities at the TTR would be the same as those under the No Action Alternative. However, under the Reduced Operations Alternative, DOE/NNSA would not conduct ground/air-launched rocket and missile operations or fuel-air explosives operations at the TTR, so impacts related to surface disturbance and alteration of drainage pathways would be less than those seen under the No Action Alternative.

5.4.5.3.2 Environmental Management Mission

Environmental Management Mission activities at the TTR would be the same as those under the No Action Alternative, so the impacts on the geology and soils at the TTR would not change. No new waste facilities would be needed to accept wastes from the TTR, so impacts resulting from increased erosion or surface disturbance would not occur. The Environmental Restoration Program would also not change.

5.4.5.3.3 Nondefense Mission

The Nondefense Mission programs at the TTR under the Reduced Operations Alternative would be the same as those under the No Action Alternative, so there would be no impacts on the geology or soils.

5.4.6 Hydrology

5.4.6.1 Surface-Water Hydrology

As described in Chapter 4, Sections 4.1.6.1 and 4.4.6.4, springs are the only perennial sources of surface water at the TTR; therefore, the only perennial surface waters occur as pools at some large springs. Springs are located outside of locations used for testing and training events and are generally upgradient; therefore, no impacts on perennial surface waters are anticipated to occur at the TTR under any of the alternatives.

The TTR land area is nearly entirely contained within the Cactus Flat Hydrographic Basin, which drains internally to Cactus Flat, roughly in the center of the TTR. Thus, in terms of transport via surface water, potential surface contamination resulting from the activities described in the following sections would be contained on site and would not affect offsite areas during rare flooding events.

5.4.6.1.1 No Action Alternative

The following sections describe impacts associated with the various activities that may potentially occur under the three missions. With respect to the aforementioned impact criteria, no activities are expected to conflict with the provisions of approved water discharge permits or cause alteration to 100- or 500-year floodplains or other flood hazard areas in a manner that would endanger lives and property.

Soils Project activities under the Environmental Restoration Program and activities under the General Site Support and Infrastructure Program are not expected to alter natural drainage pathways.

Industrial Sites Project activities under the Environmental Restoration Program and activities under the General Site Support and Infrastructure Program are not expected to contaminate surface waters with chemical and/or biological agents.

The following TTR operations and activities under the Stockpile Stewardship and Management Program and General Site Support and Infrastructure Program are not expected to deposit sediment in surface waters.

5.4.6.1.1.1 National Security/Defense Mission

Stockpile Stewardship and Management Program – Operations at the TTR. Under the No Action Alternative, operations would continue at the TTR to ensure that nuclear weapons systems meet the
highest standards of safety and reliability. DOE/NNSA would conduct tests and experiments on gravity weapons, including flight tests of weapon and delivery systems, as well as impact testing to study the parameters of a weapon as it is dropped and as it penetrates the ground surface. At the TTR, following tests and experiments, recovery operations are conducted to minimize damage to the environment. All test assets and associated hardware are recovered with the use of a mobile crane and transport vehicle. When necessary, subsurface recovery excavations are performed using either an excavator or a drill rig to create an entry shaft. Surface water is controlled by building an earthen dike around the recovery area or the excavation; following recovery operations, all excavations and dikes are backfilled and/or leveled. Gravity weapon drops could cause minor alterations of natural drainage pathways and introduce chemical contamination into ephemeral waters. If these exercises would occur in areas where similar exercises occurred previously, impacts from drainage alterations would be less prominent.

Work for Others Program – Work for Others at the TTR. Under the No Action Alternative, the Work for Others Program would provide support to other agencies at the TTR. As described above under “Stockpile Stewardship and Management Program – Operations at the TTR,” following tests and experiments, recovery operations are performed to minimize damage to the environment, including controlling surface water with earthen dikes, which are leveled following recovery. The operation of ground-based remote control vehicles could cause localized sedimentation to ephemeral waters. Rocket and missile testing could cause alterations of natural drainage pathways and introduce chemical contamination into the soil where weapons impacts occur. If these exercises would occur in areas where similar exercises occurred previously, impacts from drainage alteration would be less prominent.

5.4.6.1.1.2 Environmental Management Mission

Environmental Restoration Program – Soils Project. The Soils Project would continue to investigate soil sites to determine whether contamination exists and to perform corrective actions as needed. Land-disturbing activities associated with these corrective actions (e.g., vehicular and equipment movements) could cause some minor sedimentation to ephemeral waters. During corrective action activities, excavated or exposed contaminated materials could potentially be transported to downgradient land surfaces during storm events that generate runoff. Appropriate site-specific dust and drainage controls would be implemented for each corrective action (e.g., establishing temporary diversion berms), which would minimize the potential for impacts to occur; however, it is possible that moderate impacts on the water quality of ephemeral surface waters could occur if contaminants were transported to such features.

Environmental Restoration Program – Industrial Sites Project. Following the complete remediation and closure of industrial sites, the facilities would be demolished to the ground level where practical. Therefore, where facilities are demolished to ground level, natural drainage pathways would be restored, resulting in minimal beneficial impacts. Land-disturbing activities associated with demolition (e.g., vehicular and equipment movements) could cause some minor sedimentation to ephemeral waters.

5.4.6.1.3 Nondefense Mission

General Site Support and Infrastructure Program. At the TTR, continued wastewater discharges are expected to have no impact on surface-water resources, assuming they adhere to all permit limitations on discharged water quality. In 2009, all contaminant concentrations in discharged effluent were within permitted levels.

5.4.6.1.2 Expanded Operations Alternative

The following sections describe impacts associated with the various activities that may potentially occur under the three missions. With respect to the aforementioned impact criteria, no activities are expected to conflict with the provisions of approved water discharge permits or cause alteration to 100- or 500-year floodplains or other flood hazard areas in a manner that would endanger lives and property.
Soils Project activities under the Environmental Restoration Program and activities under the General Site Support and Infrastructure Program are not expected to alter natural drainage pathways.

Industrial Sites Project activities under the Environmental Restoration Program and activities under the General Site Support and Infrastructure Program are not expected to contaminate surface waters with chemical and/or biological agents.

TTR operations under the Stockpile Stewardship and Management Program and activities under the General Site Support and Infrastructure Program are not expected to deposit sediment in surface waters.

5.4.6.1.2.1 National Security/Defense Mission

Stockpile Stewardship and Management Program – Operations at the TTR. Impacts would be the same as those described under the No Action Alternative in Section 5.4.6.1.1.1.

Work for Others Program – Work for Others at the TTR. Impacts would be the same as those described under the No Action Alternative in Section 5.4.6.1.1.1.

5.4.6.1.2.2 Environmental Management Mission

Environmental Restoration Program – Soils Project. Impacts would be similar to those described under the No Action Alternative in Section 5.4.6.1.1.2; however, these impacts could be exacerbated because activities could occur at an accelerated rate. Therefore, compared to the No Action Alternative, an increased potential for surface contamination would occur, as well as increased sedimentation to ephemeral waters.

Environmental Restoration Program – Industrial Sites Project. Impacts would be similar to those described under the No Action Alternative in Section 5.4.6.1.1.2; however, these impacts could be exacerbated because activities could occur at an accelerated rate. Therefore, compared to the No Action Alternative, more work would be done to restore natural topographies and drainage patterns in areas where remediated facilities are demolished and increased sedimentation to ephemeral waters would occur.

5.4.6.1.2.3 Nondefense Mission

General Site Support and Infrastructure Program. Impacts would be the same as those described under the No Action Alternative in Section 5.4.6.1.1.3.

5.4.6.1.3 Reduced Operations Alternative

The following sections describe impacts associated with the various activities that may potentially occur under the three missions. With respect to the aforementioned impact criteria, no activities are expected to conflict with the provisions of approved water discharge permits or cause alteration to 100- or 500-year floodplains or other flood hazard areas in a manner that would endanger lives and property.

Soils Project activities under the Environmental Restoration Program and activities under the General Site Support and Infrastructure Program are not expected to alter natural drainage pathways. Industrial Sites Project activities under the Environmental Restoration Program and activities under the General Site Support and Infrastructure Program are not expected to contaminate surface waters with chemical and/or biological agents. TTR operations under the Stockpile Stewardship and Management Program and activities under the General Site Support and Infrastructure Program are not expected to deposit sediment in surface waters.

5.4.6.1.3.1 National Security/Defense Mission

Stockpile Stewardship and Management Program – Operations at the TTR. Impacts would be the same as those described under the No Action Alternative in Section 5.4.6.1.1.1.

Work for Others Program – Work for Others at the TTR. Impacts would be the same as those described under the No Action Alternative in Section 5.4.6.1.1.1.
5.4.6.1.3.2 Environmental Management Mission

Environmental Restoration Program – Soils Project. Impacts would be the same as those described under the No Action Alternative in Section 5.4.6.1.1.2.

Environmental Restoration Program – Industrial Sites Project. Impacts would be the same as those described under the No Action Alternative in Section 5.4.6.1.1.2.

5.4.6.1.3.3 Nondefense Mission

General Site Support and Infrastructure Program. Impacts would be the same as those described under the No Action Alternative in Section 5.4.6.1.1.3.

5.4.6.2 Groundwater

5.4.6.2.1 No Action Alternative

Under the No Action Alternative, current DOE/NNSA activities at the TTR would continue, and no new facilities or activities are proposed.

Production Well 6 supplies drinking water and fire water distribution systems at the TTR Main Compound in Area 3 and is the only well that is monitored for contaminants. Water appropriations on the TTR total 200 acre-feet per year, and their source basins are considered over-appropriated (i.e., the appropriations exceed the perennial yield in each basin). However, the estimated water demand for the entire TTR (including USAF operations) is much lower, at approximately 18 acre-feet per year (DOE 2008l). Specific water usage or demand for DOE/NNSA activities was not calculated separately. DOE/NNSA has not identified any activities or projects that would place a greater demand for groundwater withdrawals, and no adverse impacts on water supply are anticipated from DOE/NNSA activities.

5.4.6.2.1.1 National Security/Defense Mission

Flight tests for gravity weapons, including impact testing and open-air and underground detonations, would continue at the TTR under the Stockpile Stewardship and Management Program. When weapons are dropped, they strike and penetrate the ground surface. These activities could release hazardous constituents near the ground surface, which could migrate downward. Groundwater at the TTR is relatively deep (90 to 450 feet), which affords protection and makes the contamination of groundwater from these activities unlikely. As no contamination has occurred in the past, it is expected that the continuation of these activities would not negatively impact the resource.

5.4.6.2.1.2 Environmental Management Mission

The TTR is considered a small-quantity generator of hazardous waste and can accumulate hazardous waste for 180 days before transferring the waste off site for disposal. It is possible that small leaks or spills or hazardous waste could occur during accumulation or storage, although such releases would likely be discovered and contained promptly. As previously stated, the depth of the groundwater also makes groundwater contamination from waste releases unlikely.

The Industrial Sites Project would continue decommissioning facilities, which is unlikely to affect groundwater availability or quality due to the short duration of activity, the small quantity of contaminants that could be released, and the depth of the groundwater. Nonpotable water demands for dust suppression during decommissioning would be temporary and make up only a small fraction of total water demand on the TTR.

5.4.6.2.1.3 Nondefense Mission

No new activities or facilities are proposed for the TTR; thus, no adverse impacts on groundwater quality or supply would occur.
5.4.6.2.2 Expanded Operations Alternative
No new activities or facilities are proposed for the TTR; thus, no adverse impacts on groundwater quality or supply would occur.

5.4.6.2.2.1 National Security/Defense Mission
As a result of the transfer of certain site support functions from DOE/NNSA to the USAF, the number of DOE/NNSA and DOE/NNSA contractor employees at the TTR would drop from the existing 106 personnel under the No Action Alternative to approximately 43 personnel. The amount of potable water use for DOE/NNSA activities would decrease by over 50 percent compared to the amount required under the No Action Alternative and would not result in any adverse impacts on groundwater availability. No adverse impacts on groundwater quality at the TTR are expected under the Expanded Operations Alternative.

5.4.6.2.2.2 Environmental Management Mission
Impacts on groundwater quality and supply at the TTR under the Expanded Operations Alternative would be the same as those under the No Action Alternative.

5.4.6.2.2.3 Nondefense Mission
No new activities or facilities are proposed for the TTR; thus, no adverse impacts on groundwater quality or supply would occur.

5.4.6.2.3 Reduced Operations Alternative
5.4.6.2.3.1 National Security/Defense Mission
Under the Reduced Operations Alternative, activities involving fixed rocket launches, cruise missile operations, and fuel air explosives conducted under the Stockpile Stewardship and Management Program would cease. The workforce associated with DOE/NNSA activities would decrease an additional 10 percent beyond the reduction under the Expanded Operations Alternative, to approximately 39 staff. The amount of potable water use for DOE/NNSA activities would decrease by over 50 percent compared to the amount required under the No Action Alternative and would not result in any adverse impacts on groundwater availability. No adverse impacts on groundwater quality at the TTR are expected under the Reduced Operations Alternative.

5.4.6.2.3.2 Environmental Management Mission
Impacts on groundwater quality and supply at the TTR under the Reduced Operations Alternative would be the same as those under the No Action Alternative.

5.4.6.2.3.3 Nondefense Mission
No Nondefense Mission activities or facilities are proposed for the TTR; thus, no adverse impacts on groundwater quality or supply would occur.

5.4.7 Biological Resources
Impacts on biological resources would occur at the TTR due to ground-disturbing activities such as building modifications and environmental restoration (the criteria for evaluating biological impacts are listed in Section 5.1.7). These impacts would result from military equipment field testing; drilling; grading; excavation; soil disturbance due to explosives testing; environmental remediation; fencing construction; and building decontamination or demolition. Increased vehicular access would have a potential direct impact on wildlife in these areas due to the risk of road kills.

There are very minor differences among the three alternatives addressed in this SWEIS regarding the types and levels of DOE/NNSA activities at the TTR. For this reason, the following section addresses impacts at the TTR under all three alternatives.
5.4.7.1 No Action, Expanded Operations, and Reduced Operations Alternatives

5.4.7.1.1 National Security/Defense Mission

Stockpile Stewardship and Management Program. Weapons impact testing, flight test operation of gravity weapons, and passive testing would occur at the TTR. Although these activities could potentially disturb native vegetation and affect wildlife habitat, they are generally conducted in sparsely to nonvegetated playa (the flat-floored bottom of an undrained desert basin that becomes at times a shallow lake) areas and in existing facilities. For this reason, Stockpile Stewardship and Management Program activities at the TTR are not expected to reduce the viability of special status wildlife species significantly or have a negative impact on biodiversity, ecosystem functions, or springs in these areas. Explosives tests and detonations could startle wildlife, resulting in impacts on certain species. If these detonations and explosives tests were to occur near vital water sources, they could cause wildlife to avoid them, which could significantly affect species that depend on those water sources. Additionally, if detonations were to occur during the nesting season for birds, explosions could startle nesting birds, causing them to abandon their nests and resulting in a loss of eggs or young.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs. Other than providing airspace for counterterrorism activities, no nuclear emergency response, nonproliferation, and counterterrorism activities would be conducted at the TTR. Therefore, no impacts on biological resources are anticipated.

Work for Others Program. Military research and development activities, such as ground-based robotics testing, remote-controlled vehicle testing, and rocket development, would be conducted under this program in previously undisturbed areas and existing facilities and would not disturb native vegetation. Activities that create sudden loud noises, such as rocket motor tests or rocket launches, would potentially disturb nesting birds, causing them to abandon their eggs or young in nests located within the project area.

5.4.7.1.2 Environmental Management Mission

Waste Management Program. Short-term storage of hazardous waste, hydrocarbon-contaminated soil, asbestos, and PCB waste would continue at the TTR before this waste is disposed off site at a permitted facility. Disposal of sanitary solid waste would continue on site at the TTR sanitary landfill. No additional impacts on biological resources are expected to result from these ongoing activities.

Environmental Restoration Program. Soil remediation activities at the TTR may include onsite radiation surveys, soil cleanup, and fencing of contaminated areas. These activities would likely occur on previously disturbed land. However, fencing and soil excavation could potentially disturb native vegetation, although the amount of vegetation and soil that would be disturbed is not expected to reduce the viability of special status wildlife species or have a negative impact on biodiversity, ecosystem functions, or springs in these areas. However, if disturbance of native vegetation occurs during the nesting season for birds, the eggs or young in nests located within the project area could be destroyed. In the longer term, Environmental Restoration Program activities at the TTR would have a beneficial effect on biological resources because contamination would be removed or stabilized, some buildings would be removed, and areas would be revegetated with native plant species appropriate to the sites.

Regarding the Industrial Sites Project, all but 1 of the 64 corrective action sites at the TTR have been closed. Under each of the alternatives, operations involving field investigations to identify contaminated sites would continue, as would characterization and remediation of sites and D&D of facilities. No impacts on biological resources are anticipated to result from these project activities.
5.4.7.1.3 Nondefense Mission

General Site Support and Infrastructure Program. TTR facilities include 195 buildings, towers, and sheds. Under each of the alternatives, small projects to maintain and repair TTR facilities would occur in previously disturbed areas, but are not expected to affect biological resources.

The TTR area supports a number of nesting and wintering birds. Of particular note is the presence of large raptors. Due to their large size and use of utility poles as perches, raptors are most susceptible to electrocution through the potential contact with phase conductors or other electrical equipment.

Extensive research has been conducted regarding the causes of bird electrocution and collision associated with electric transmission and distribution systems, and studies are ongoing. Much if this research has been summarized by the Avian Power Line Interaction Committee (APLIC 2006). Typically, avian risk occurs where (1) poles provide perching opportunities and conductor separation-spacing, and/or proximity to other energized hardware creates electrocution potential, and (2) where overhead wires cross traditional bird use areas and create a potential for collision. The risk is greatest for large raptors. The risk may increase in weather that hinders flight maneuverability or when feathers are wet, thereby increasing conductivity.

In August 2010, the DOE/NNSA Sandia Site Office completed retrofitting four electrical transmission/distribution structures to reduce the risk of electrocution of larger birds, particularly raptors. The retrofitting included new insulator caps, the re-routing of and insulation of jumpers, and insulation of grounding wires.

In the future, new construction and refurbishments at the TTR would use a raptor-safe pole design and wire configuration to help reduce avian mortality. Regular surveys along the power lines will be conducted. Monitoring would be increased for any structures or line segments that have any avian issues. If a need for avian mortality reduction measures is identified, they will be fully developed in cooperation with state and Federal agencies.

Bird mortality incidents reported as a result of power outages or through incidental observations will be reviewed immediately. If the cause is related to an unprotected power pole or conductor issue, a mortality reduction action (i.e., retrofitting poles, installing protective coverings, or installing perch deterrents or diverters) will be implemented accordingly, consistent with standard practices recommended by the Avian Power Line Interaction Committee (APLIC 2006).

When a nest is detected in or around electrical transmission/distribution facilities, a risk assessment will be conducted to determine if nest removal or relocation is needed. If it is determined that the nest poses no risk to system function, maintenance procedures, or to the birds, the nest would be allowed to remain. If it is determined that the nest poses a potential risk, then a further assessment will be conducted to determine if the risk is imminent or not imminent. The TTR will coordinate with the USFWS to determine whether the nest would need to be removed and discarded or relocated to an alternative location.

Unless there is an immediate threat to birds or system function, nest removal or relocation (excluding eagles and state- or federally listed species) would occur only during the non-breeding season when the nest is not being used or during the breeding season if the nest is unoccupied. If removal or relocation of an eagle or state- or federally listed species nest is necessary, the TTR would coordinate with the USFWS regarding permitting and authorization pursuant to applicable regulations. Nest removal or relocation would occur when the nest is occupied only in cases where it is deemed warranted based on the risk to system function or electrocution risk of the birds. Removal or relocation of an occupied nest would require coordination and permitting/authorization with the USFWS and/or Nevada Department of Wildlife.

Conservation and Renewable Energy Program. No renewable energy projects are planned for the TTR. Energy efficiency measures, conservation measures, and best management practices would consist...
of small projects located in or adjacent to extant facilities. These activities could potentially disturb native vegetation, although the amount of vegetation and soil that would be disturbed is not expected to reduce the viability of special status wildlife species significantly or have a negative impact on biodiversity, ecosystem functions, or springs in these areas. However, if disturbance of native vegetation occurs during the nesting season for birds, the eggs or young in nests located within the project area could be destroyed.

5.4.8 Air Quality and Climate

This section addresses air quality impacts from stationary and mobile air pollutant sources that would occur within and outside the TTR under the No Action, Expanded Operations, and Reduced Operations Alternatives. For each of the alternatives, the ROI for air quality analysis encompasses Nye and Clark Counties in Nevada. Stationary sources emissions would occur entirely within the TTR, while mobile sources emissions would occur mostly outside the TTR boundaries. Emissions-generating activities within the TTR would be widely dispersed over the 280-square-mile area of the TTR. Under all of the alternatives, emissions levels would not increase over current levels, so Nye County would continue its present attainment/nonclassified designation for all criteria pollutants. Additional details supporting the information presented in this section can be found in Appendix D, Section D.2.4.1.1.

General conformity determination. Section 5.1.8 includes a discussion of general conformity determinations. Based on the de minimis thresholds presented in Table 5–32, the total emissions in Clark County under the No Action Alternative would not exceed the de minimis levels for carbon monoxide, nitrogen oxides, PM10, or VOCs in all cases. Therefore, a general conformity analysis would not be required for any of the alternatives considered in this NNSS SWEIS.

5.4.8.1 No Action Alternative

5.4.8.1.1 Air Quality

Calculations of emissions on and near the TTR. Table 5–67 shows the midpoint (year 2015) annual air emissions of the criteria pollutants and hazardous air pollutants associated with various TTR activities under the No Action Alternative (from a combination of stationary and mobile sources). The midpoint year represents the average annual emissions over the 10-year planning period; however, these emissions are expected to continue beyond the 10-year period. The TTR contribution to the air emissions in Clark County would continue to be small and would decrease relative to 2008 emission levels (see Chapter 4, Table 4–72). Emissions of VOCs, nitrogen oxides, carbon monoxide, and PM10 from TTR sources (there are no TTR stationary sources in Clark County) in Clark County would decrease relative to 2008 emission levels by 0.11, 0.70, 0.40, and 0.076 tons per year, respectively. Most of the emission reductions at the TTR are associated with the phasing in of newer worker vehicles with lower emission reduction technology. Thus, this action would not contribute to or cause additional violations of the carbon monoxide, ozone, or PM10 air quality standards. Appendix D, Section D.2.4.1.1, provides more detail on how these emissions were determined, as well as source-type and vehicle-type characterization for mobile sources.

5.4.8.1.2 Radiological Air Quality

No activities under the No Action Alternative are expected to produce any aboveground radiation beyond the levels documented for 2008 baseline conditions in Chapter 4, Section 4.4.8.3.
Table 5–67 No Action Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Tonopah Test Range in 2015

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Stationary Sources</th>
<th>Government-Owned Vehicles</th>
<th>TTR Commuters</th>
<th>Commercial Vendors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nye County</td>
<td>Clark County</td>
<td>Nye County On-TTR</td>
<td>Nye County Off-TTR/Off-NNSS</td>
<td>Clark County On-TTR</td>
</tr>
<tr>
<td>PM₁₀</td>
<td><3.7</td>
<td>0.067</td>
<td>0.0099</td>
<td>0.0040</td>
<td>0.036</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td><3.7</td>
<td>0.051</td>
<td>0.0048</td>
<td>0.0024</td>
<td>0.021</td>
</tr>
<tr>
<td>CO</td>
<td><2.9</td>
<td>2.5</td>
<td>0.84</td>
<td>0.36</td>
<td>3.3</td>
</tr>
<tr>
<td>NOₓ</td>
<td><13.3</td>
<td>0.58</td>
<td>0.16</td>
<td>0.065</td>
<td>0.60</td>
</tr>
<tr>
<td>SO₂</td>
<td><0.91</td>
<td>0.007</td>
<td>0.0021</td>
<td>0.00084</td>
<td>0.0076</td>
</tr>
<tr>
<td>VOCs</td>
<td><0.96</td>
<td>0.044</td>
<td>0.023</td>
<td>0.010</td>
<td>0.091</td>
</tr>
<tr>
<td>Lead</td>
<td><0.01</td>
<td>0.00000027</td>
<td>0.00000062</td>
<td>0.00000026</td>
<td>0.00000024</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td><21.8</td>
<td>3.2</td>
<td>1.0</td>
<td>0.44</td>
<td>4.0</td>
</tr>
<tr>
<td>HAPs</td>
<td><1.1</td>
<td>0.0036</td>
<td>0.0018</td>
<td>0.00082</td>
<td>0.0074</td>
</tr>
</tbody>
</table>

< = less than; CO = carbon monoxide; HAP = hazardous air pollutant; NOₓ = nitrogen oxides; NNSS = Nevada National Security Site; PMₙ = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO₂ = sulfur dioxide; TTR = Tonopah Test Range; VOC = volatile organic compound.
5.4.8.1.3 Climate Change

See Chapter 4, Section 4.4.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse gas emissions due to TTR-related activities. (See Section 5.1.8 for a discussion of methodology for this analysis.) Table 5–68 shows greenhouse gas emissions levels for TTR-related activities under the No Action Alternative. The color coding in Table 5–68 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117) – blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by the TTR (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–68 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.

Traffic from commercial vendors would be by far the largest single source of greenhouse gas emissions related to TTR activities. Overall, TTR-related activities under the No Action Alternative would create about 3,653 carbon-dioxide-equivalent tons of greenhouse gas emissions per year, about 87 percent smaller than the reporting level. This represents a net reduction over current greenhouse gas emissions (4,166 tons in 2008) of about 12 percent.

Table 5–68 No Action Alternative Greenhouse Gas Emissions by Tonopah Test Range Activity in 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 27,558 Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>185</td>
<td>0.01</td>
</tr>
<tr>
<td>Other stationary sources</td>
<td>332</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>517</td>
<td>0.02</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onsite government vehicles</td>
<td>444</td>
<td>0.02</td>
</tr>
<tr>
<td>Commuting</td>
<td>482</td>
<td>0.02</td>
</tr>
<tr>
<td>Commercial vendors</td>
<td>2,210</td>
<td>0.08</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES</td>
<td>3,136</td>
<td>0.11</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>776</td>
<td>0.03</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>185</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>2,692</td>
<td>0.10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,653</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Blue Scope 1 emissions
Orange Scope 2 emissions
Green Scope 3 emissions
5.4.8.2 Expanded Operations Alternative

5.4.8.2.1 Air Quality

This section addresses air quality impacts from stationary and mobile air pollutant sources that would occur within and outside the TTR under the Expanded Operations Alternative.

Table 5–69 shows the midpoint (year 2015) annual air emissions for the criteria pollutants and hazardous air pollutants associated with various TTR activities under the Expanded Alternative (from a combination of stationary and mobile sources). The midpoint year represents the average annual emissions over the 10-year planning period; however, these emissions are expected to continue beyond the 10-year period. These emissions would be less than the levels projected under the No Action Alternative because certain site support functions would be transferred from DOE/NNSA to the USAF under the Expanded Operations Alternative, resulting in more-efficient operations and fewer employees at the TTR.

The TTR contribution to air emissions in Clark County would continue to be small and would decrease relative to 2008 emission levels (see Chapter 4, Table 4–72). Emissions of VOCs, nitrogen oxides, carbon monoxide, and PM$_{10}$ from all TTR sources would decrease in Clark County relative to 2008 emission levels by 0.15, 1.1, 0.99, and 0.11 tons per year, respectively. Thus, this action would not contribute to or cause additional violations of the carbon monoxide, ozone, or PM$_{10}$ air quality standards. Appendix D, Section D.2.4.2.1, provides more detail on how these emissions were determined, as well as source-type and vehicle-type characterization for mobile sources.

5.4.8.2.2 Radiological Air Quality

Potential remediation activities may occur for the Soils Project corrective action units at the Clean Slate 2 and Clean Slate 3 sites. If this remediation activity occurs, it would likely result in increased suspended particulates and higher radiological air emissions relative to those observed in the 2008 baseline conditions, as discussed in Chapter 4, Section 4.4.8.3. However, if this remediation activity takes place at these sites, simultaneous ambient radiological air monitoring would also be performed to assess the potential for offsite impacts and the need for mitigating action.
Table 5–69 Expanded Operations Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Tonopah Test Range in 2015

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Stationary Sources Nye County</th>
<th>Government-Owned Vehicles Nye County</th>
<th>TTR Commuters Nye County</th>
<th>Commercial Vendors Nye County</th>
<th>Total Nye County</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sub>10</sub></td>
<td><3.7</td>
<td>0.027</td>
<td>0.0040</td>
<td>0.0016</td>
<td>0.015</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td><3.7</td>
<td>0.021</td>
<td>0.0019</td>
<td>0.00097</td>
<td>0.0085</td>
</tr>
<tr>
<td>CO</td>
<td><2.9</td>
<td>1.0</td>
<td>0.34</td>
<td>0.15</td>
<td>1.3</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td><13.3</td>
<td>0.24</td>
<td>0.065</td>
<td>0.026</td>
<td>0.24</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td><0.91</td>
<td>0.0029</td>
<td>0.00085</td>
<td>0.00034</td>
<td>0.0031</td>
</tr>
<tr>
<td>VOCs</td>
<td><0.96</td>
<td>0.018</td>
<td>0.0093</td>
<td>0.0041</td>
<td>0.037</td>
</tr>
<tr>
<td>Lead</td>
<td><1.0</td>
<td>0.0000011</td>
<td>0.00000025</td>
<td>0.00000011</td>
<td>0.00000097</td>
</tr>
<tr>
<td>Criteria Pollutants Total</td>
<td><21.8</td>
<td>1.3</td>
<td>0.42</td>
<td>0.18</td>
<td>1.6</td>
</tr>
<tr>
<td>HAPs</td>
<td><1.1</td>
<td>0.0015</td>
<td>0.00073</td>
<td>0.00033</td>
<td>0.0030</td>
</tr>
</tbody>
</table>

< = less than; CO = carbon monoxide; HAP = hazardous air pollutant; NO_x = nitrogen oxides; NNSS = Nevada National Security Site; PM_n = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO₂ = sulfur dioxide; TTR = Tonopah Test Range; VOC = volatile organic compound.
5.4.8.2.3 Climate Change

See Chapter 4, Section 4.4.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse gas emissions due to TTR-related activities. (See Section 5.1.8 for a discussion of methodology for this analysis.) Table 5–70 shows greenhouse gas emissions levels for TTR-related activities under the Expanded Operations Alternative. The color coding in Table 5–70 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117) – blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by the TTR (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–70 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.

Traffic from commercial vendors would be by far the largest single source of greenhouse gas emissions related to TTR activities. Overall, TTR-related activities under the Expanded Operations Alternative would create about 1,791 carbon-dioxide-equivalent tons of greenhouse gas emissions per year, about 94 percent lower than the threshold reporting level. This represents a net reduction over current greenhouse gas emissions (4,166 tons in 2008) of about 57 percent.

Table 5–70 Expanded Operations Alternative Greenhouse Gas Emissions at the Tonopah Test Range in 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 27,558 Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>185</td>
<td>0.01</td>
</tr>
<tr>
<td>Other stationary sources</td>
<td>332</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>517</td>
<td>0.02</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onsite government vehicles</td>
<td>182</td>
<td>0.01</td>
</tr>
<tr>
<td>Commuting</td>
<td>196</td>
<td>0.01</td>
</tr>
<tr>
<td>Commercial vendors</td>
<td>896</td>
<td>0.03</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES</td>
<td>1,274</td>
<td>0.05</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>514</td>
<td>0.02</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>185</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>1,092</td>
<td>0.04</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,791</td>
<td>0.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Scope 1 emissions</td>
</tr>
<tr>
<td>Orange</td>
<td>Scope 2 emissions</td>
</tr>
<tr>
<td>Green</td>
<td>Scope 3 emissions</td>
</tr>
</tbody>
</table>
5.4.8.3 Reduced Operations Alternative

5.4.8.3.1 Air Quality

This section addresses air quality impacts from stationary and mobile air pollutant sources that would occur within and outside the TTR under the Reduced Operations Alternative.

Table 5–71 shows the midpoint (2015) annual air emissions for the criteria pollutants and hazardous air pollutants associated with various TTR activities under the Reduced Operations Alternative (from a combination of stationary and mobile source emissions). The midpoint year represents the average annual emissions over the 10-year planning period; however, these emissions are expected to continue beyond the 10-year period. These emissions would be less than the levels projected under the No Action Alternative, as the Record of Decision for the Complex Transformation SPEIS (DOE 2008) would be implemented under this Reduced Operations Alternative, resulting in smaller, more-efficient operations and fewer employees at the TTR. The TTR contribution to Clark County air emissions would continue to be small and would decrease relative to 2008 emission levels (see Chapter 4, Table 4–72).

Emissions of VOCs, nitrogen oxides, carbon monoxide, and PM$_{10}$ from all TTR sources would decrease in Clark County relative to 2008 emission levels by 0.15, 1.1, 1.0, and 0.11 tons per year, respectively. Thus, this action would not contribute to or cause additional violations of the carbon monoxide, ozone or PM$_{10}$ air quality standards. Appendix D, Section D.2.4.3.1, provides more detail on how these emissions were determined, as well as source-type and vehicle-type characterization for mobile sources.

5.4.8.3.2 Radiological Air Quality

No activities under the Reduced Operations Alternative are expected to produce aboveground radiation beyond the levels documented for 2008 baseline conditions in Chapter 4, Section 4.4.8.3.

5.4.8.3.3 Climate Change

See Chapter 4, Section 4.4.8.4, for general details on climate change science and greenhouse gas emissions.

Greenhouse Gas Emissions Due to TTR-related Activities. (See Section 5.1.8 for a discussion of methodology for this analysis.) Table 5–72 shows greenhouse gas emissions levels from TTR-related activities under the Reduced Operations Alternative. The color coding in Table 5–72 corresponds to the greenhouse gas accounting requirement scopes under Executive Order 13514 (74 FR 52117) – blue shading corresponds to scope 1 direct emissions (onsite stationary and fugitive emissions, as well as onsite company-owned vehicular emissions); orange shading corresponds to scope 2 indirect emissions (purchased electricity); and green shading corresponds to scope 3 indirect emissions that are not owned or directly controlled by the TTR (commuting, product and waste transport and disposal, business travel, and product use). However, because efforts to account for scope 3 emissions are recent and accepted methods for calculating emissions are evolving, the scope 3 emissions categories reported here are for those categories for which reliable and accessible data are available for estimating emissions (commuting and commercial vendor transport activity). Specifically, Table 5–72 does not include emissions from business travel, leased assets, and outsourced assets or the greenhouse gas emissions associated with the extraction and production of purchase material and services.
Table 5–71 Reduced Operations Alternative Emissions of Criteria Pollutants and Hazardous Air Pollutants at the Tonopah Test Range in 2015

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Nye County</th>
<th>Clark County</th>
<th>Off-TTR/Off-NNSS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM(_{10})</td>
<td><3.7</td>
<td>0.025</td>
<td>0.0015</td>
<td>0.013</td>
</tr>
<tr>
<td>PM(_{2.5})</td>
<td><3.7</td>
<td>0.019</td>
<td>0.0088</td>
<td>0.0077</td>
</tr>
<tr>
<td>CO</td>
<td><2.9</td>
<td>0.93</td>
<td>0.13</td>
<td>1.2</td>
</tr>
<tr>
<td>NO(_x)</td>
<td><13.3</td>
<td>0.21</td>
<td>0.024</td>
<td>0.22</td>
</tr>
<tr>
<td>SO(_2)</td>
<td><0.91</td>
<td>0.0077</td>
<td>0.0031</td>
<td>0.0028</td>
</tr>
<tr>
<td>VOCs</td>
<td><0.96</td>
<td>0.016</td>
<td>0.0037</td>
<td>0.033</td>
</tr>
<tr>
<td>Lead</td>
<td><0.01</td>
<td>0.000001</td>
<td>0.0000023</td>
<td>0.00000096</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td><21.8</td>
<td>1.2</td>
<td>0.16</td>
<td>1.5</td>
</tr>
<tr>
<td>HAPs</td>
<td><1.1</td>
<td>0.0013</td>
<td>0.0003</td>
<td>0.0027</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NO\(_x\) = nitrogen oxides; NNSS = Nevada National Security Site; PM\(_{10}\) = particulate matter with an aerodynamic diameter less than or equal to 10 micrometers; SO\(_2\) = sulfur dioxide; TTR = Tonopah Test Range; VOC = volatile organic compound.
Table 5–72 Reduced Operations Alternative Greenhouse Gas Emissions at the Tonopah Test Range in 2015

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Carbon-Dioxide-Equivalent Emissions (tons per year)</th>
<th>Fraction of Reference Point of 27,558 Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIONARY SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>185</td>
<td>0.01</td>
</tr>
<tr>
<td>Other stationary sources</td>
<td>332</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL STATIONARY SOURCES</td>
<td>516</td>
<td>0.02</td>
</tr>
<tr>
<td>MOBILE SOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onsite government vehicles</td>
<td>164</td>
<td>0.01</td>
</tr>
<tr>
<td>Commuting</td>
<td>177</td>
<td>0.01</td>
</tr>
<tr>
<td>Commercial vendors</td>
<td>813</td>
<td>0.03</td>
</tr>
<tr>
<td>ALL MOBILE SOURCES</td>
<td>1,155</td>
<td>0.04</td>
</tr>
<tr>
<td>ALL SCOPE 1 SOURCES</td>
<td>496</td>
<td>0.02</td>
</tr>
<tr>
<td>ALL SCOPE 2 SOURCES</td>
<td>185</td>
<td>0.01</td>
</tr>
<tr>
<td>ALL SCOPE 3 SOURCES</td>
<td>990</td>
<td>0.04</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,671</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Traffic from commercial vendors would be by far the largest single source of greenhouse gas emissions related to TTR activities. Overall, TTR-related activities under the Reduced Operations Alternative would create about 1,671 carbon-dioxide-equivalent tons of greenhouse gas emissions per year, about 94 percent lower than the threshold reporting level. This represents a net reduction over current greenhouse gas emissions (4,166 tons in 2008) of about 60 percent.

5.4.9 Visual Resources

5.4.9.1 No Action Alternative

Under the No Action Alternative, current activities and operations would continue. No proposed changes would affect existing visual resources associated with the TTR, and the scenic quality would remain Class B. No mitigation would be required.

5.4.9.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, there would be no changes at the TTR under the No Action Alternative and current activities and operations would continue. There would be no changes to the existing visual environment, and the scenic quality would remain at Class B. There would be no effect. No mitigation would be required.

5.4.9.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, there would be no changes at the TTR under the No Action Alternative and current activities and operations would continue. There would be no changes to the existing visual environment, and the scenic quality would remain at Class B. There would be no effect. No mitigation would be required.

5.4.10 Cultural Resources

At the TTR, Stockpile Stewardship and Management and Work for Others Program activities would not differ significantly among any of the alternatives. All such activities would take place at existing
facilities and would not, under normal operations, affect previously undisturbed land. Construction of new buildings or development of new facilities is not proposed under any of the alternatives. Therefore, Stockpile Stewardship and Management and Work for Others Program activities under all alternatives would not affect cultural resources.

DOE/NNSA would remediate the Clean Slate 1, 2, and 3 sites in accordance with the FFACO. Under the No Action and Reduced Operations Alternatives, Environmental Restoration Program activities would be the same. Under the Expanded Operations Alternative, DOE/NNSA analyzed a potential for clean closure of the Clean Slate 1, 2, and 3 sites, which would likely disturb a larger area of ground. These Soils Project sites are previously disturbed, but are themselves considered by DOE/NNSA to be historically significant. Therefore, prior to undertaking any remediation actions, DOE/NNSA, in compliance with Section 106, would consult with the State Historic Preservation Office prior to initiating such work to determine eligibility of the Clean Slate sites for inclusion on the NRHP and, if necessary, identify and implement appropriate mitigation measures.

5.4.11 Waste Management

DOE/NNSA is expected to generate wastes from site operations at the TTR and from environmental restoration at the Nevada Test and Training Range, which includes the TTR. Adequate management capacity is expected for all wastes as discussed below.

Under all SWEIS alternatives, TTR operations are not expected to generate LLW, MLLW, TRU, or mixed TRU wastes. (Environmental restoration, however, was projected to generate LLW as discussed below.) The TTR would continue to be a small-quantity generator of hazardous waste under all alternatives; this waste would be stored on site for no more than 180 days before being transferred off site to permitted recycle or TSD facilities. Under all of the alternatives, TTR operations would annually generate approximately 4 tons of hazardous waste that would be sent off site for disposal (including wastes regulated under authorities other than RCRA, such as PCBs and asbestos), as well as approximately 4 tons of waste that would be sent off site for recycling (including used oil, solid wastes, and other regulated wastes).

Under all of the alternatives, DOE/NNSA would annually generate approximately 460 cubic feet of construction debris that would be disposed at the TTR within USAF-operated landfills, as well as approximately 6,100 cubic feet of solid waste that would be annually disposed on site.\(^\text{10}\) It is expected that this waste would be generated episodically; estimates were projected by averaging waste generation rates over 3 years of data (DOE 2009a; SNL 2007, 2008). Under all of the alternatives, the TTR would annually generate a few thousand cubic feet of sanitary solid waste per year; this small quantity is not expected to vary significantly among the alternatives because TTR personnel requirements are small and are not expected to vary among the alternatives (see Section 5.4.4). It is expected that this waste would continue to be disposed at a TTR landfill operated by the USAF.

Under the No Action and Reduced Operation Alternatives, environmental restoration at the TTR and Nevada Test and Training Range would generate approximately 2.9 million cubic feet of LLW over 10 years, a portion of which may be TRU waste.\(^\text{11}\) The volume of this environmental restoration waste would rise to approximately 11 million cubic feet of LLW under the Expanded Operations Alternative (again, a portion of this may be TRU waste).

Under the No Action and Reduced Operations Alternatives, waste management activities from operations and environmental restoration are not expected to generate wastes that cannot be accommodated by existing recycle or TSD capacity. It is expected that LLW from environmental restoration activities

\(^{10}\) Adequate disposal capacity is expected at the NNSS and commercial landfills. NNSS landfill capacity is addressed in Section 5.1.11. Regarding commercial landfills, as of 2010, over three dozen municipal solid and industrial waste landfills were permitted in Nevada (NDEP 2010b).

\(^{11}\) Any TRU waste generated at the TTR would be sent to the NNSS Area 5 RWMC for storage pending offsite shipment to WIPP for disposal or INL for characterization.
would be transported to the NNSS for disposal in the Area 5 RWMC, although disposal could also occur at the Area 3 RWMS if that facility were reopened. It is not expected that the combined LLW volumes from all in-state and out-of-state generators would exceed available waste disposal capacity at the NNSS; however, additional options for managing environmental restoration waste could be considered, as discussed below and in Section 5.1.11.1.

Regarding nonradioactive wastes, there are several dozen facilities for disposal of hazardous waste in Nevada or nearby states, and disposal capacity for solid waste is available at the TTR and offsite locations, including the NNSS and commercial landfills. Recycle capacity for solid and hazardous materials is also available (see Section 5.1.11.1). Consequently, generation of nonradioactive wastes under the No Action and Reduced Operations Alternatives is not expected to strain available nonradioactive waste disposal capacity.

Under the Expanded Operations Alternative, additional LLW was projected to be generated from environmental restoration activities, as discussed above. One option for disposition of this waste is to transport it to the NNSS for disposal in the Area 5 RWMC, although disposal could also occur at the Area 3 RWMS if that facility were reopened. Under this option, waste from environmental restoration activities at the TTR and Nevada Test and Training Range could constitute approximately 21 percent of all LLW to be disposed at the NNSS under the Expanded Operations Alternative. For this reason, as well as the large number of shipments of LLW that would be required to transport the waste to the NNSS for disposal (see Section 5.4.3), additional options for managing this environmental restoration waste could be considered, including closure in place (stabilizing existing contamination in place) or construction and operation of dedicated disposal facilities for this waste that are proximal to the waste generation sources (see Section 5.1.11.1.1).

Under the Expanded Operations Alternative, the same quantities of nonradioactive wastes were projected as under the No Action and Reduced Operations Alternatives. Therefore, the same conclusions regarding adequate disposition capacity for nonradioactive wastes apply under all of the alternatives.

5.4.12 Human Health

The approach to evaluating human health impacts is discussed in Section 5.1.12. The criteria for evaluating human health impacts are included in that discussion.

5.4.12.1 Normal Operations

5.4.12.1.1 No Action Alternative

National Security/Defense, Environmental Management, and Nondefense Mission activities are not expected to cause radioactive releases that would affect the public or workers. Radiological doses from the TTR would be from legacy radioactive materials that become resuspended and transported by the wind. The annual dose to an MEI and the population within 50 miles of the TTR would be 0.024 millirem and much less than 1 person-rem, respectively, as reported in Chapter 4, Section 4.4.12.1. The increased risk of an LCF for the MEI would be 1×10^{-8} (1 chance in 100 million). The calculated number of LCFs associated with an annual population dose of 1 person-rem is 0.0006, implying that the most likely result would be no additional LCFs in the population. As noted, the annual population dose would be much less than 1 person-rem; however, assuming a dose of 1 person-rem and based on the premise that there is some risk associated with any radiation dose, the annual risk of a single LCF in the population would be much less than 1 in 1,700.

Radiological doses to workers could also come from legacy radioactive materials. Because the source would be legacy contamination, it was assumed that all workers would receive a dose approximate to the average historical dose received by radiation workers at the TTR (12 millirem per year [see Chapter 4, Section 4.4.12.2]). Based on an estimate of 106 workers under the No Action Alternative (see Section 5.1.4.1), the estimated worker dose would be 1.3 person-rem per year. The calculated annual LCF risk of 0.0008 implies that no additional LCFs are expected in the worker population.
The potential for occupational injury and illness was estimated for TTR activities using rates based on DOE experience (DOE 2010e) (see Appendix G for details). The number of TRCs and DART cases were projected based on the number of FTEs estimated for this alternative. Under this alternative, a total of 1.6 TRCs and 0.7 DART cases per year were calculated.

Noise. Fuel–air explosives experiments at the TTR under the Stockpile Stewardship and Management Program would instantaneously cause high noise levels. These increases would be intermittent and temporary and are not expected to result in any appreciable noise level increases beyond the TTR boundary. Additionally, because the TTR is located in a remote area and is essentially surrounded by the Nevada Test and Training Range to the west, east, and south, potential noise impacts on residents near the TTR would be minimal. Daily traffic volumes are expected to remain unchanged or similar to current conditions, and negligible increases in traffic noise are expected under the No Action Alternative.

5.4.12.1.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, no new activities would occur, but a larger amount of environmental restoration work would be performed. Because additional soil would be disturbed from the higher level of environmental restoration cleanup, it was assumed that the dose rate would be higher by a factor of 2. Based on an estimate of 43 workers (see Section 5.1.4.1), the estimated worker dose would be 1.0 person-rem per year. The calculated annual LCF risk of 0.0006 implies that no additional LCFs are expected in the worker population.

The potential for occupational injury and illness for TTR activities would be less under the Expanded Operations Alternative than the No Action Alternative because fewer employees would be at the site. Based on the number of FTEs estimated for this alternative, a total of 0.7 TRCs and 0.3 DART cases per year were calculated.

Noise – Under the Expanded Operations Alternative, noise impacts on offsite receptors would mainly result from the increase in daily truck traffic. Similar to the No Action Alternative, fuel–air explosives experiments at the TTR under the Stockpile Stewardship and Management Program would instantaneously cause high noise levels. The number of shipments from the TTR under the Waste Management Program would increase threefold. Up to 14 daily truck trips from the TTR could occur on any given day. This increase would contribute to small increases in baseline noise conditions along the main roadways leading to the TTR.

5.4.12.1.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, there would be an overall reduction in the level of activity at the TTR. Using the same basis of analysis as used for the No Action Alternative and an estimate of 39 workers (see Section 5.1.4.1), the estimated worker dose would be 0.47 person-rem per year. The calculated annual LCF risk of 0.0003 implies that no additional LCFs are expected in the worker population.

The potential for occupational injury and illness for TTR activities would be less under the Reduced Operations Alternative than the No Action Alternative because fewer employees would be at the site. Based on the number of FTEs estimated for this alternative, a total of 0.6 TRCs and 0.3 DART cases per year were calculated.

Noise. Under the Reduced Operations Alternative, fuel–air explosives experiments at the TTR would not occur; therefore, any potential noise impacts on onsite workers or offsite receptors would be eliminated. Daily vehicle trips to the TTR and, therefore, associated traffic noise, would be similar to those described under the No Action Alternative.
5.4.12.2 Facility Accidents

5.4.12.2.1 No Action Alternative

Table 5–73 presents the public and worker radiological consequences (the impacts of an accident if it were to occur) of accidents at the TTR under the No Action Alternative. Table 5–74 combines the estimated frequency of the postulated accidents with the potential consequences to present the estimated annual risk of an increased likelihood of an LCF due to accidents at the TTR. Appendix G presents the methods used to develop the estimated consequences and risks.

Table 5–73 Tonopah Test Range Accident Radiological Consequences – No Action, Expanded Operations, and Reduced Operations Alternatives

<table>
<thead>
<tr>
<th>Accident Scenario</th>
<th>Offsite Population</th>
<th>Onsite Noninvolved Worker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximally Exposed Individual</td>
<td>Population within 50 Miles</td>
</tr>
<tr>
<td></td>
<td>Dose (rem)</td>
<td>LCF Risk a</td>
</tr>
<tr>
<td>National Security/Defense Mission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint test assembly – radiological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealed source aircraft impact fire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Management Mission – Environmental Restoration Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-container spill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-container fire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft crash and fire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCF = latent cancer fatality; rem = roentgen equivalent man.
a Increased risk of an LCF to an individual, assuming the accident occurs. The risk value is doubled for individual doses exceeding 20 rem.
b The reported value is the projected number of LCFs in the population, assuming the accident occurs, and is therefore presented as a whole number. The result calculated by multiplying the collective population dose by the risk factor (0.0006 LCFs per person-rem) is shown in parentheses.

Table 5–74 Tonopah Test Range Accident Radiological Risks a – No Action, Expanded Operations, and Reduced Operations Alternatives

<table>
<thead>
<tr>
<th>Accident</th>
<th>Frequency b</th>
<th>Offsite Population</th>
<th>Onsite Noninvolved Worker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximally Exposed Individual</td>
<td>Population within 50 Miles</td>
<td></td>
</tr>
<tr>
<td>National Security/Defense Mission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint test assembly – radiological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealed source aircraft impact fire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Management Mission – Environmental Restoration Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-container spill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-container fire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft crash and fire</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The risk is the annual increased likelihood of an LCF in the MEI or noninvolved worker or the increased likelihood of a single LCF occurring in the offsite population, accounting for the estimated probability (frequency) of the accident occurring.
b The estimated frequency is on an annual basis.

Under the No Action Alternative, National Security/Defense Mission activities would include experiments with joint test assemblies, which are part of a nuclear-explosive-like assembly. The maximum reasonably foreseeable accident would involve the release of radioactive and toxic material due
to a structural failure, drop, seismic event, fire, explosion, or aircraft impact involving a joint test assembly. The accident could release small quantities of uranium, lithium, and beryllium.

Since the 1996 NTS EIS (DOE 1996c), Stockpile Stewardship and Management Program activities at the TTR have changed substantially, with the result that some of the activities evaluated in the 1996 NTS EIS are not included under the No Action Alternative. For example, the activity that resulted in the maximum reasonably foreseeable radiological accident, the failure of an artillery-fired test assembly, is not included under any of the alternatives evaluated in this SWEIS.

Accident scenarios associated with environmental restoration activities at the TTR that are performed as part of the Environmental Management Mission were evaluated under the No Action Alternative. These accident scenarios involved the release of radioactive material due to a single container spill, a multiple container fire, and an aircraft crash into multiple containers. The maximum reasonably foreseeable accident for the TTR environmental restoration activities is an aircraft crash and fire. The estimated probability of this type of event is in the range of 1.7×10^{-6} (1 chance in 590,000) per year of operation. If this accident were to occur, the MEI would receive a dose of 0.00034 rem, with a corresponding LCF risk of 2×10^{-7} (1 chance in 5,000,000). The offsite population within 50 miles would receive a dose of 0.012 person-rem; the calculated number of LCFs associated with this dose is 7×10^{-6}, implying that the most likely outcome would be no additional LCFs in the exposed population. A noninvolved worker outside the immediate area of the crash could receive a dose of 1.5 rem, with an associated LCF risk of 9×10^{-4} (1 chance in 1,100). When the probability of the accident is taken into consideration, the risk to the offsite public or a noninvolved worker would be negligible.

No reasonably foreseeable major TTR accident scenarios that could cause exposure to noninvolved workers or the public were identified for the ongoing Nondefense Mission.

After accounting for the frequency of the postulated accidents, the estimated highest risk accident would be the aircraft crash and fire accident. Table 5–74 shows that the annual increased likelihood of an LCF from this accident for the MEI, the offsite population, or a noninvolved worker is essentially zero.

5.4.12.2.2 Expanded Operations Alternative

The accident impacts at the TTR under the Expanded Operations Alternative would be the same as those under the No Action Alternative, as presented in Tables 5–73 and 5–74. None of the new or expanded activities was determined to have potential accident impacts that would have more than negligible radiological or chemical impacts on noninvolved workers, the public, or the environment. At the expanded level of operations, the frequencies of some hazardous activities that might lead to accidents could change. However, given the uncertainty in accident frequency estimation regarding very rare accidents that are not expected to happen within the operating lifetime of a facility or activity, the overall accident frequencies would still remain within the broad frequency categories, such as “extremely unlikely” (10^{-4} to 10^{-6} per year).

5.4.12.2.3 Reduced Operations Alternative

The accident impacts at the TTR under the Reduced Operations Alternative would be the same as those under the No Action Alternative, as presented in Tables 5–73 and 5–74. Although some National Security/Defense Mission activities would be reduced or eliminated under this alternative, environmental restoration activities would continue the same as under the No Action Alternative. None of the reductions in activities was determined to result in more than negligible changes in the radiological or chemical risks to the public or workers.
5.4.13 Environmental Justice

5.4.13.1 No Action Alternative

Impacts on human health would not be significant under any alternative. Similarly, direct and cumulative effects on environmental resources are not expected to result in significant adverse impacts on the public within the ROI.

Impacts on low-income and minority populations under the No Action Alternative, as discussed in the other sections in this chapter, would be the same as those on the general population. Therefore, no disproportionately high and adverse impacts on minority and low-income populations are expected.

5.4.13.2 Expanded Operations Alternative

Impacts under the Expanded Operations Alternative would be the same as those described under the No Action Alternative in Section 5.4.13.1.

5.4.13.3 Reduced Operations Alternative

Impacts under the Reduced Operations Alternative would be the same as those described under the No Action Alternative in Section 5.4.13.1.

5.5 Aggregated Environmental Consequences

The preceding sections of this chapter present potential environmental consequences (impacts) associated with activities at specific DOE/NNSA facilities. The majority of these impacts would occur in geographically separate settings or over different periods of time and would not directly affect the same environmental resources or populations. However, DOE/NNSA has identified some instances in which impacts associated with two or more facilities could occur within the same environmental setting and time periods and can be quantitatively added to determine the total (aggregated) impact on the affected resources.

Table 5–75 presents aggregated direct impacts on socioeconomics and air quality associated with the three alternatives evaluated in this SWEIS.

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>No Action</th>
<th>Expanded Operations</th>
<th>Reduced Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socioeconomics – Direct Employment Change in Clark County, Nevada a</td>
<td>+115</td>
<td>+759</td>
<td>–146</td>
</tr>
<tr>
<td>Socioeconomics – Direct Employment Change in Nye County, Nevada a</td>
<td>+35</td>
<td>+163</td>
<td>–110</td>
</tr>
<tr>
<td>Air Emissions – Criteria Pollutants in Clark County, Nevada (tons per year) b</td>
<td>122.8</td>
<td>156.11</td>
<td>112.44</td>
</tr>
<tr>
<td>Air Emissions – Criteria Pollutants in Nye County, Nevada (tons per year) b</td>
<td>113.97</td>
<td>166.23</td>
<td>104.16</td>
</tr>
<tr>
<td>Air Emissions – Hazardous Air Pollutants in Clark County, Nevada (tons per year) b</td>
<td>0.43</td>
<td>0.49</td>
<td>0.41</td>
</tr>
<tr>
<td>Air Emissions – Hazardous Air Pollutants in Nye County, Nevada (tons per year) b</td>
<td>1.39</td>
<td>1.41</td>
<td>1.29</td>
</tr>
<tr>
<td>Air Emissions – Greenhouse Gas Emissions (tons per year; all sites combined) b</td>
<td>54,870</td>
<td>63,713</td>
<td>50,962</td>
</tr>
</tbody>
</table>

a Excludes temporary construction-related employment and indirect economic effects, but includes permanent positions associated with one or more commercial solar power generation facilities.

b Includes emissions from ongoing activities and employees’ commutes, calculated at the midpoint year; excludes temporary construction activities.
Note that previous discussions of traffic (see Section 5.1.3.2) and waste management (see Section 5.1.11) already present aggregated impacts in summary form, where appropriate. For example, traffic levels and level of service on local roadways are included in accounts for commuter traffic associated with multiple DOE/NNSA facilities. LLW disposed at the NNSS under each alternative includes environmental remediation wastes that may be generated at the TTR.

Chapter 6, “Cumulative Impacts,” presents a discussion of cumulative effects that considers the effects of past and reasonably foreseeable future actions, as well as actions proposed under this SWEIS, and also considers a larger ROI than that analyzed in this chapter.
6.0 CUMULATIVE IMPACTS

Council on Environmental Quality (CEQ) National Environmental Policy Act (NEPA) regulations (42 United States Code [U.S.C.] 4321 et seq.) define a cumulative impact as the “impact on the environment which results from the incremental impact of the action when added to past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative impacts can result from individually minor, but collectively significant, actions taking place over a period of time” (40 Code of Federal Regulations [CFR] 1508.7). Thus, the cumulative impacts of an action are the total effects on a resource, ecosystem, or human community of that action and all other activities affecting that resource no matter what entity is acting. This cumulative impacts analysis is based on continued operations at U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) sites in Nevada, including the Nevada National Security Site (NNSS) (formerly the Nevada Test Site), Remote Sensing Laboratory (RSL), North Las Vegas Facility (NLVF), Tonopah Test Range (TTR), and DOE environmental restoration sites on the U.S. Air Force (USAF) Nevada Test and Training Range; reasonably foreseeable actions at these sites; and ongoing or reasonably foreseeable actions within each site’s region of influence (ROI).

6.1 Methodology and Analytical Baseline

The analysis in this chapter was conducted in accordance with CEQ NEPA regulations, as outlined in the CEQ handbook, Considering Cumulative Effects Under the National Environmental Policy Act (CEQ 1997), and Guidance on the Consideration of Past Actions on Cumulative Effects Analysis (Connaughton 2005).

Cumulative impacts assessment is based on both geographic (spatial) and time (temporal) considerations. Historical impacts at DOE/NNSA facilities in Nevada are captured in the environmental baseline conditions described in Chapter 4 of this Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada (NNSS SWEIS). Geographic boundaries for impact assessment vary by resource depending on the time an effect remains in the environment, the extent to which the effect can migrate, and the magnitude of the potential impact. The ROI that DOE/NNSA used for identifying potential projects for the cumulative impacts analysis includes the area within 50 miles of the boundaries of the NNSS and the TTR and within 10 miles of the boundaries of RSL and NLVF. All of these ROIs intersect, forming a single cumulative impacts ROI, as shown in Figure 6–1. The cumulative impacts ROI encompasses about 15,737,760 acres and includes most of Nye County and parts of Clark, Lincoln, and Esmeralda Counties in Nevada, as well as a portion of Inyo County in California. The cumulative impacts ROI was selected because, for most resource areas, there is little likelihood of any impact from activities at DOE/NNSA facilities having a cumulative effect beyond the ROIs. For some resource areas, such as transportation and air quality, cumulative impacts may occur in an area far outside of the cumulative impacts ROI just described. Where cumulative impacts may occur over a wider area, an appropriately expanded area is analyzed. For instance, the cumulative impacts analysis for transportation of radiological materials considers a nationwide ROI.
Figure 6–1 Cumulative Impacts Analysis Region of Influence
The cumulative impacts analysis for this NNSS SWEIS includes (1) an examination of cumulative impacts presented in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (1996 NTS EIS) (DOE/EIS-0243); (2) impacts from activities since the 1996 NTS EIS was issued; and (3) a review of the environmental impacts of past, present, and reasonably foreseeable future actions of other Federal and non-Federal agencies and individuals in the ROI. For DOE/NNSA contributions to cumulative impacts, the analysis primarily uses the Expanded Operations Alternative because it tends to result in the highest estimates of potential cumulative impacts associated with the alternatives analyzed in this NNSS SWEIS. To compare the cumulative impacts associated with each of the three alternatives considered in this NNSS SWEIS, i.e., No Action, Expanded Operations, and Reduced Operations, Table 6–15 in Section 6.4 summarizes the cumulative impacts by alternative.

Plans for a number of reasonably foreseeable actions identified for this analysis have not reached a sufficient level of development for specific potential impact information to be readily available (e.g., solar power generation projects that have not met the minimum requirements of the U.S. Department of the Interior Bureau of Land Management [BLM] to begin the NEPA process). In those cases, to quantify potential cumulative impacts, a reasonable effort was made to estimate potential impacts by using known information from similar projects.

6.2 Potentially Cumulative Actions

Most of the land within the cumulative impacts ROI for this NNSS SWEIS is managed by Federal agencies. In addition to DOE/NNSA, other Federal agencies that manage lands within the ROI include BLM, DOE, the USAF, the U.S. Fish and Wildlife Service (USFWS), the U.S. Forest Service (USFS), and the National Park Service (NPS). In addition, there are lands and facilities under the jurisdiction of agencies of the State of Nevada and the State of California; Nye, Clark, Esmeralda, and Lincoln Counties in Nevada; Inyo County in California; various municipal governments; and private landowners. DOE/NNSA identified reasonably foreseeable future actions of others by conducting a review of publicly available documents prepared by Federal, state, tribal, and local government agencies and organizations. In addition, DOE/NNSA requested information regarding potential future actions that may not yet have been addressed in publicly available documents. The information obtained through that process formed the basis for this cumulative impacts analysis and is discussed below.

6.2.1 U.S. Department of Energy

This section addresses proposed DOE/NNSA actions that are not under the auspices of DOE/NNSA or are not environmental restoration activities. The proposed Greater-Than-Class C Low-Level Waste Disposal Facility and the formerly proposed Yucca Mountain Repository Projects are separate from the DOE/NNSA programs, projects, and activities addressed in this NNSS SWEIS. In addition, DOE’s Office of Energy Efficiency and Renewable Energy recently proposed establishment of a Concentrating Solar Power (CSP) Validation Project in Area 25 of the NNSS. That proposed action has been indefinitely postponed and is no longer being addressed as a reasonably foreseeable action in this site-wide environmental impact statement (SWEIS).

6.2.1.1 Greater-Than-Class C Low-Level Radioactive Waste Disposal

On February 25, 2011, DOE issued a Notice of Availability for the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (GTCC EIS) (76 Federal Register [FR] 10574) (DOE 2011a). The Draft GTCC EIS addresses disposal of low-level radioactive waste (LLW) that contains radionuclides in concentrations exceeding 10 CFR Part 61 Class C limits and is generated by activities licensed by the U.S. Nuclear Regulatory Commission (NRC) or an agreement state, as well as DOE-owned or generated LLW and non-defense-generated transuranic (TRU) waste with characteristics similar to GTCC LLW for which there may be no path to disposal. The NNSS is one of a number of DOE sites analyzed for disposal of GTCC and GTCC-like waste. In addition to the NNSS and other DOE sites, DOE also evaluated generic commercial disposal sites in four regions of the United States. The disposal technologies considered for
the NNSS are intermediate-depth borehole disposal, enhanced near-surface trench disposal, and/or above-grade vault disposal. A combination of disposal methods and locations might be appropriate depending on the characteristics of the waste and other factors.

All of the disposal technologies would have common supporting infrastructure, such as facilities or buildings for receiving and handling waste packages or containers and space for a retention pond to collect runoff and truck washdown water. Each of the facilities, described below, would accommodate the full 12,000 cubic meters (about 420,000 cubic feet) of waste evaluated in the Draft GTCC EIS.

Based on the conceptual design for the intermediate-depth borehole disposal facility, about 110 acres of land would be required for 930 boreholes and supporting infrastructure. The conceptual design evaluated in the Draft GTCC EIS employs boreholes that are 14 feet in diameter and 130 feet deep with 100 feet between boreholes. Deeper or shallower boreholes than those evaluated in the Draft GTCC EIS could be used, depending on site-specific considerations (e.g., depth to groundwater).

The conceptual design for enhanced near-surface trench disposal includes 29 trenches occupying a footprint of about 50 acres. Each trench would be approximately 10 feet wide, 36 feet deep, and 330 feet long. This method of disposal would use deeper trenches than the 21-foot depth typically used for LLW at the Area 5 Radioactive Waste Management Complex (RWMC).

An above-grade vault disposal facility would consist of 12 vault units (each with 11 vault cells) and occupy a footprint of about 60 acres. Each vault would be about 36 feet wide, 310 feet long, and 26 feet tall, with 12 vault units situated in a linear array. The vault cell would be 27 feet wide, 25 feet long, and 18 feet high, with an internal volume of 12,000 cubic feet per vault cell.

The GTCC reference location at the NNSS is in Area 5 of the NNSS. If the NNSS were to be selected as the site for a GTCC waste disposal facility, there would be changes to facilities and operations at the NNSS and cumulative impacts in a number of areas, including cultural and biological resources, transportation, air emissions, number of workers, health and safety, energy consumption, and groundwater use.

6.2.1.2 Yucca Mountain Repository Project

As reflected in the fiscal year 2010, 2011, and 2012 budget requests, the Administration has determined that a repository at Yucca Mountain is not a workable option and has called for elimination of all funding and activities related to development of a repository at Yucca Mountain. Regardless, DOE recognizes that it has an obligation to remediate lands disturbed by past activities associated with the formerly proposed Yucca Mountain Repository Project. Accordingly, DOE is evaluating the potential cumulative impacts of remediating the lands and closing the infrastructure and buildings at Yucca Mountain. This analysis is based on the preliminary approach to remediating and closing the former Yucca Mountain Repository site and facilities described under the No Action Alternative in the Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (Yucca Mountain EIS) (DOE/EIS-0250-F) (DOE 2002e).
As described in the *Yucca Mountain EIS* (2002), decommissioning and reclamation of the former Yucca Mountain Repository site would include dismantling and removing structures, shutting down some surface facilities, and rehabilitating land disturbed during characterization activities. The *Yucca Mountain EIS* envisioned that DOE would salvage usable equipment and materials. Drill holes would be sealed, subsurface drifts and rooms would be left in place, and the portals would be gated. The piles of excavated rock from the tunnel would be landscaped. Areas disturbed by surface studies or used as laydown yards, borrow areas, or the like would be restored. Holding ponds would be backfilled or capped. DOE would not remove foundations or infrastructure such as access roads, parking lots, and sewage systems. When funds have been appropriated by Congress for this purpose, DOE plans to prepare a detailed proposal to remediate the lands and close the infrastructure and buildings, then undertake further NEPA review, as appropriate.

6.2.2 U.S. Air Force

The USAF operates the Nevada Test and Training Range (formerly known as the Nellis Air Force Range) in south-central Nevada, a national test and training facility for military equipment and personnel that consists of approximately 3 million acres. In *Renewal of the Nellis Air Force Range Land Withdrawal: Legislative Environmental Impact Statement* (USAF 1999), the USAF addressed potential environmental impacts of extending the land withdrawal to continue use of the Nevada Test and Training Range lands for military use. The Military Lands Withdrawal Act of 1999 (Public Law [P.L.] 106-65) renewed the land withdrawal for the Nevada Test and Training Range for a period of 25 years, beginning November 6, 2001. In addition, the act assigned to DOE lands that were formerly withdrawn for use by the USAF (portions of Areas 19 and 20 of the NNSS) and made additional adjustments to the boundary between the NNSS and Nevada Test and Training Range (see Chapter 2, Figure 2–2, of this *NNSS SWEIS*).

About 394,000 acres (BLM 2010g) of the 1,301,628-acre (BLM 2011a) BLM-administered Nevada Wild Horse Range is within the boundary of the Nevada Test and Training Range, including the TTR (see Section 6.2.5.2). More than 800,000 acres of the Nevada Test and Training Range are located within the Desert National Wildlife Range (see Section 6.2.3.1, Desert Wildlife Refuge Complex). The USAF and USFWS jointly manage this area.

Nellis Air Force Base lies within the cumulative impacts ROI for this *NNSS SWEIS* and is the host site for RSL. The main gate for the base is located approximately 8 miles northeast of downtown Las Vegas. The base covers more than 14,000 acres. Nellis Air Force Base is home to the USAF Warfare Center, an advanced air combat training mission. Nellis Air Force Base provides training for composite strike forces that include every type of aircraft in the USAF inventory. Training is conducted in conjunction with air and ground units of the U.S. Army, Navy, and Marine Corps, as well as air forces from allied nations.

In 2005, the USAF made the Indian Springs Air Force Auxiliary Airfield an air base and renamed it Creech Air Force Base. The USAF expanded its mission and infrastructure at Creech Air Force Base to play a major role in the war on terrorism. The base is home to two key military operations: the MQ-1 unmanned aerial system and the Unmanned Aerial Vehicle Battle Laboratory.

NEPA documents are periodically completed for proposed new or changing activities at Nellis and Creech Air Force Bases, the TTR, and the Nevada Test and Training Range. Table 6–1 is a summary of USAF NEPA documents related to these facilities that have been completed since the *1996 NTS EIS* was issued. Most of these NEPA documents address activities and projects at existing facilities that are consistent with the designated missions of those facilities. A few proposed projects would affect previously undisturbed areas, but most would not.
Table 6–1 U.S. Air Force National Environmental Policy Act Documents Completed for Activities Within the Cumulative Impacts Region of Influence Since 1996

<table>
<thead>
<tr>
<th>Title and Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Environmental Assessment for Predator Force Structure Changes at Indian Springs Air Force Auxiliary Field, Nevada (USAF 2003a)</td>
<td>The proposed action included changes to personnel assignments, upgrades to existing facilities, construction of new facilities, and extension of a runway by 120 meters (400 feet). The USAF issued a Finding of No Significant Impact (FONSI). The USAF completed facilities for the Predator unmanned aerial systems in 2006.</td>
</tr>
<tr>
<td>Nevada Training Initiative Environmental Assessment (USAF 2003b)</td>
<td>To fulfill the USAF’s need to train aircrews and security forces in a modern urban and airfield environment at the Nevada Test and Training Range, the USAF proposed the Nevada Training Initiative, which would implement two separate proposed actions: (1) establish and operate a set of integrated, realistic targets and assets that simulate an urban environment for aircrews at one of two locations in the South Range of the Nevada Test and Training Range and (2) construct and operate a Military Operations in Urban Terrain complex at Range 63A that realistically simulates an airbase environment and construct facilities and infrastructure to support security forces training at one of two locations in the Indian Springs area.</td>
</tr>
<tr>
<td>Environmental Assessment Nellis Air Force Base Pipeline Project, Nevada (USAF 2005)</td>
<td>The proposed action would increase the refueling and fuel storage capacity of Nellis Air Force Base by installing a new 8-inch-diameter steel pipeline to the West Operational Bulk Storage Area and the East Side Operations Storage, constructing two new 420,000-gallon storage tanks, and a new 6-inch-diameter liquid fuel steel pipeline connecting the new storage tanks to the East Side Operations Storage.</td>
</tr>
<tr>
<td>Wing Infrastructure Development Outlook (WINDO) Environmental Assessment, June 2006 (USAF 2006a)</td>
<td>The proposed USAF action consisted of implementing over 630 Wing Infrastructure Development Outlook (WINDO) projects at Nellis Air Force Base, Creech Air Force Base, Nevada Test and Training Range, and the Tonopah Test Range (TTR). Most of the projects addressed were minor improvement, repair, and maintenance projects. Over 80 proposed projects would involve new construction, expansion, or demolition of existing facilities and infrastructure. All of the proposed WINDO projects would occur within functionally compatible areas and would likely be sited on previously used and/or disturbed land; occur within areas similarly zoned for such uses; and avoid important cultural resources, sensitive habitat, and environmental restoration sites. The USAF issued a FONSI.</td>
</tr>
<tr>
<td>Expeditionary Readiness Training (ExperRT) Course Expansion Final Environmental Assessment, June 2006 (USAF 2006b)</td>
<td>The USAF proposed to increase Security Forces Expeditionary Readiness Training course student capacity at the Regional Training Center at Silver Flag Alpha and Creech Air Force Base, Nevada. Training and use of facilities would continue at both Creech Air Force Base and Silver Flag Alpha. Improvements at the Silver Flag Alpha complex would include construction of a convoy combat training route, two academic facilities, a laundry/shower/ latrine facility, a leach field, and water storage tanks, as well as installation of communication, water, and power lines at the existing tent complex and Military Operations in Urban Terrain training site. All of these infrastructure improvements would occur within the already developed area of Silver Flag Alpha. The USAF issued a FONSI and began implementation of the proposed actions.</td>
</tr>
<tr>
<td>Final Environmental Assessment for Leasing Nellis Air Force Base Land for Construction & Operation of a Solar Photovoltaic System, Clark County, Nevada, August 2006 (USAF 2006c)</td>
<td>The USAF proposed to lease 140 acres of land for construction of a solar photovoltaic system that would provide Nellis Air Force Base with a cost-efficient renewable energy source to augment the existing energy provided by its commercial supplier. The system would generate an 18-megawatt direct current that would be transformed into a 13.5-megawatt alternating current. The USAF issued a FONSI, and the photovoltaic system was constructed and is in operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title and Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Assessment for Increased Depleted Uranium Use on Target 63-10, Nevada Test and Training Range, September 2006 (USAF 2006d)</td>
<td>The proposed action authorized an increase in the annual use of depleted uranium rounds from 7,900 to 19,000 (and high-explosive incendiary rounds from 1,600 to 3,800) to provide sufficient depleted uranium rounds to accomplish essential training requirements. The USAF issued a FONSI.</td>
</tr>
<tr>
<td>Final Environmental Assessment for Sanitary Landfill Expansion on the Tonopah Test Range, Nye County, Nevada, January 2007 (USAF 2007a)</td>
<td>The USAF proposed to construct, operate, and maintain an expansion of its Class II landfill at the TTR to support continued operations. The landfill would be located adjacent to the existing solid waste facility. The total life expectancy of the landfill expansion would be 30 years. The USAF issued a FONSI.</td>
</tr>
<tr>
<td>Base Realignment and Closure (BRAC) Environmental Assessment for Realignment of Nellis Air Force Base, March 2007 (USAF 2007b)</td>
<td>The USAF proposed to implement and supplement the 2005 Base Realignment and Closure Commission’s mandated realignment for Nellis Air Force Base. Realignment would add 13 F-16 aircraft and 18 F-15C aircraft to Nellis Air Force Base. The proposed action would include construction of 18 new facilities for personnel and equipment scheduled for fiscal year 2007 through fiscal year 2009. The proposed action would also encompass increases of 509 permanently based personnel and 60 part-time Reservists. The proposed action would result in an increase of 1,400 sorties, but the total number of sorties would not exceed the previously approved maximum. The USAF issued a FONSI.</td>
</tr>
<tr>
<td>Draft Environmental Assessment For the Integrated Natural Resource Management Plan Nellis Air Force Base and Nevada Test and Training Range, Nevada, May 2007 (USAF 2007c)</td>
<td>The proposed Integrated Natural Resource Management Plan provides guidance for the conservation of natural resources at the Nevada Test and Training Range and Nellis Air Force Base to the extent practicable. The guidelines were developed within the context of the military missions of the affected facilities. A primary goal of the plan is to sustain military readiness while maintaining ecosystem integrity and dynamics.</td>
</tr>
<tr>
<td>Range 74 Target Complexes Environmental Assessment Nevada Test and Training Range, Nevada, July 2007 (USAF 2007d)</td>
<td>The USAF proposed to construct mountainous terrain target complexes at three locations within Range 74: Limestone Ridge, Saucer Mesa, and Cliff Springs. The Saucer Mesa target complex comprises 9 discrete sites totaling approximately 131 acres in the hills and valleys along an existing network of two-track trails east of Saucer Mesa. The Limestone Ridge target complex includes 10 discrete sites totaling approximately 245 acres along an existing unimproved road network between Limestone Ridge and the Belted Range. The Cliff Springs target complex comprises 1 linear site situated in a 15-acre corridor along an existing road. The USAF issued a FONSI.</td>
</tr>
<tr>
<td>BLM Communications Use Lease to USAF to Conduct Patriot Communications Exercises in Lincoln County, Nevada, August 2008 (USAF 2008b)</td>
<td>The USAF proposed to obtain from the Bureau of Land Management a 15-year Communications Use Lease for 14 sites on public land in Lincoln County, Nevada. Each site would be 500 feet by 500 feet (5.7 acres) in size, for a total of approximately 79.8 acres, and would be used for electronic air defense systems to support training with an integrated air defense system. Both the USAF and BLM issued FONSI.</td>
</tr>
<tr>
<td>Nellis and Creech AFBs Capital Improvements Program Environmental Assessment, September 2008 (USAF 2008c)</td>
<td>The USAF proposed to implement updates of the Nellis and Creech Air Force Bases’ general plans. The Capital Improvements Plan would include new construction, repair/replacement, installation, maintenance, demolition, and environmental projects. These projects would occur within previously developed or otherwise disturbed lands at both Nellis and Creech Air Force Bases. The USAF issued a FONSI.</td>
</tr>
<tr>
<td>Title and Date</td>
<td>Description</td>
</tr>
</tbody>
</table>
6.2.3 U.S. Fish and Wildlife Service

6.2.3.1 Desert Wildlife Refuge Complex

USFWS manages the Desert National Wildlife Refuge Complex, which encompasses more than 1.6 million acres of land in Nye, Clark, and Lincoln Counties in southern Nevada and includes the Desert National Wildlife Range and Ash Meadows, Moapa Valley, and Pahranagat National Wildlife Refuges. Each refuge within the Desert National Wildlife Refuge Complex provides important and unique habitat for wildlife, including several endemic species (species native to the refuges and often not found anywhere else). The Ash Meadows and Moapa Valley National Wildlife Refuges were established to protect endangered and threatened species, while the Pahranagat National Wildlife Refuge was established to provide a habitat for migratory birds, and the Desert National Wildlife Range was established to protect desert bighorn sheep and other wildlife (USFWS 2009b).

All of these ranges and refuges except Moapa Valley are located within the cumulative impacts ROI for this NNSS SWEIS (see Figure 6–1). The closest of these to the NNSS, the Desert Wildlife Range, is located about 1 mile east of the NNSS. As noted in Section 6.2.2, over 800,000 acres of the western portion of the Desert Wildlife Range are jointly managed for shared use by the USAF and USFWS.

In August 2009, USFWS issued the Desert National Wildlife Refuge Complex – Ash Meadows, Desert, Moapa Valley, and Pahranagat National Wildlife Refuges Final Comprehensive Conservation Plan and Environmental Impact Statement (DNWR Complex EIS). Under the plan, various habitat restoration and management activities would occur and some visitor services facilities would be improved and/or constructed. There would be impacts on various resources from the proposed activities, but the net impacts of the habitat restoration and management activities would generally benefit natural plant and animal populations in the region. Construction activities would result in some localized adverse impacts on wildlife habitat and other resources, but these would be relatively minor and temporary. Because the comprehensive conservation plan is largely conceptual, specific impacts on resources were not addressed in the DNWR Complex EIS, but will be evaluated in subsequent NEPA processes. Therefore, although there could be some cumulative impacts associated with the proposed actions addressed in this NNSS SWEIS, those impacts cannot be quantified at this time but are expected to be small. For instance, USFWS is proposing to conduct restoration work at Fairbanks and Soda Springs at Ash Meadows National Wildlife Refuge (USFWS 2009c). This would result in small temporary local air quality impacts, but would not result in any other impacts that would be cumulative with the impacts of the actions analyzed in this SWEIS.

6.2.3.2 Clark County Multi-Species Habitat Conservation Plan

Federal regulations and Section 9 of the Endangered Species Act, as amended (16 U.S.C. 1531 et seq.), prohibit the “take” of a fish or wildlife species listed as endangered or threatened. Under the Endangered Species Act, the following activities are defined as take: “to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect listed wildlife species or to attempt to engage in such conduct” (16 U.S.C. 1532). However, under Section 10(a)(1)(B) of the act, USFWS may issue permits to authorize “incidental take” of listed wildlife species to non-Federal entities. Incidental take is defined as take that is incidental to, but not the purpose of, carrying out an otherwise lawful activity. Regulations governing permits for endangered and threatened species are found in 50 CFR 17.22 and 17.32, respectively.

In September 2000, USFWS issued a permit to the Cities of Boulder City, Henderson, Las Vegas, Mesquite, and North Las Vegas; Clark County; and the Nevada Department of Transportation for incidental take of 78 covered species, including the federally threatened desert tortoise (Gopherus agassizii) by the development of up to 145,000 acres in Clark County, Nevada. The permit was based on the Clark County Multi-Species Habitat Conservation Plan (MSHCP) (USFWS 2000). The permit is effective as of February 1, 2001, and expires on January 31, 2031. Activities included in the MSHCP for the permitted projects include, but are not limited to, development of residential and commercial areas, urban parks and recreation facilities, utility and transportation facilities, and other
capital improvements; operations; and flood control. As noted in the MSHCP, the permit applies to all non-Federal lands that currently exist and all non-Federal lands that result from sales or transfers from the Federal Government after the issuance of the Section 10(a) permit.

In September 2009, USFWS announced that the permitted parties intend to request a permit amendment for the incidental take of covered species on up to 215,000 additional acres in Clark County, Nevada. Activities that would be covered by the MSHCP amendment are not likely to change from the existing MSHCP (74 FR 50239). USFWS is preparing an environmental impact statement (EIS) to address the potential impacts of issuance of a modified incidental take permit.

The combined areas under the current and amended permit would total up to 360,000 acres. However, it was assumed that any amended permit resulting from this process would also apply to all non-Federal lands that currently exist and all non-Federal lands that result from sales or transfers from the Federal Government after issuance of the amendment. For this reason, in calculating potential areas of disturbance within the cumulative impacts ROI, the acres of land that would disposed by BLM (described below in Section 6.2.4.6, Las Vegas Valley Land Disposal) should be excluded to prevent double counting. Therefore, about 36,000 acres were deducted from the 360,000 acres that would be developed under the modified incidental take permit. The remaining 324,000 acres were used as part of the estimate of potential cumulative environmental impacts in this NNSS SWEIS.

6.2.4 Bureau of Land Management

BLM administers public lands within the cumulative impacts ROI for this NNSS SWEIS. BLM administers the land immediately adjacent to the southern end of the NNSS and land surrounding much of the Nevada Test and Training Range and the TTR. With the exception of almost 740 acres of the Area 5 RWMC at the NNSS, the NNSS and the Nevada Test and Training Range, including the TTR, are located on land under BLM jurisdiction that is withdrawn from public use by DOE/NNSA and the USAF, respectively.

Section 102 of the Federal Land Policy and Management Act (P.L. 94-579) states that “the national interest will be best realized if the public lands and their resources are periodically and systematically inventoried and their present and future use is projected through a land use planning process coordinated with other Federal and State planning efforts.” In compliance with this policy, BLM uses a public process to prepare resource management plans that serve as the basis for all activities that occur on BLM-administered lands. The purpose of a resource management plan is to provide direction for management of renewable and nonrenewable resources found on public lands administered by BLM and to guide decisionmaking for future site-specific actions. The cumulative impacts ROI for this NNSS SWEIS includes parts of the Ely, Southern Nevada, and Battle Mountain Districts administered by BLM. The Ely District completed its new resource management plan in August 2008 (BLM 2008c). The Las Vegas District initiated the process to revise its resource management plan with public scoping meetings in January 2010 (BLM 2010d). The Battle Mountain District has initiated the process to update and combine the Shoshone, Eureka, and Tonopah resource management plans into a district-wide resource management plan and EIS, but has not yet begun public scoping (BLM 2010e). In 2004, BLM prepared a resource management plan for about 2.2 million acres of withdrawn public lands on the Nevada Test and Training Range (BLM 2004a). The plan guides the management of the affected natural resources through 2024. The decisions, directions, allocations, and guidelines in the plan are based on the primary use of the withdrawn area for military training and testing purposes.
6.2.4.1 Renewable Energy Projects

On May 29, 2008, DOE and BLM issued an NOI to prepare an EIS (73 FR 30908) in response to the following mandates: (1) Executive Order 13212, Actions to Expedite Energy-Related Projects, and (2) Title II, Section 211, of the Energy Policy Act of 2005. DOE and BLM identified utility-scale solar energy development as a potentially critical component in meeting these mandates and jointly prepared the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar Energy PEIS) (DOE/BLM 2012) to evaluate utility-scale solar energy development in Arizona, California, Colorado, Nevada, New Mexico, and Utah. In the Solar Energy PEIS, BLM identified lands considered to be best-suited for large-scale production of solar energy, called solar energy zones (SEZs). Seven SEZs are located in Nevada, and three are within the cumulative impacts ROI of this NNSS SWEIS: Amargosa Valley (8,479 developable acres), Gold Point (4,596 developable acres), and Miller’s (16,534 developable acres) (DOE/BLM 2012). No SEZs were identified in California within the cumulative impacts ROI of this NNSS SWEIS. The SEZs include exclusions areas where solar energy development would not be permitted. None of the SEZs in Nevada incorporate any portion of the NNSS. Under its preferred alternative, BLM would prioritize utility-scale solar energy development in SEZs; however, solar energy development may be permitted outside of SEZs in “variance areas” under a proposed variance process. BLM’s preferred alternative also would establish authorization policies and procedures for utility-scale solar energy development and design features applicable to all development on BLM-administered lands. Under its preferred alternative, DOE would adopt programmatic environmental guidance, which would be used by DOE to further integrate environmental considerations into its analysis and selection of proposed solar projects. Because Area 25 of the NNSS is located on withdrawn public lands, it is reasonable to assume that any commercial solar power generation facilities that may be developed there would be required to comply with BLM’s mitigation measures, as well as DOE/NNSA’s. The Solar Energy PEIS does not provide specific analysis to support any particular project. However, information is available regarding the specific proposed renewable energy projects being considered by BLM for land use permitting within the cumulative impacts ROI analyzed in this NNSS SWEIS, as discussed below.

As noted in the Final Environmental Impact Statement for the Amargosa Farm Road Solar Energy Project (BLM 2010a), there are uncertainties in any large-scale, complex, and costly industrial project as it moves from concept toward realization. However, the level of uncertainty with some proposed renewable energy projects is high for the following reasons: (1) not all of the developers will develop the detailed information necessary to meet BLM standards; (2) following completion of BLM’s NEPA process, the developers must obtain any necessary permits required by Federal, state, and local regulatory authorities; (3) the developers must secure funding to construct the project (if not already obtained), which may be affected by the status of competing renewable energy projects; and (4) proposed renewable energy projects must successfully compete for power purchase agreements with utility organizations that are working to meet their state-mandated renewable portfolio standards. Cumulative impacts analysis under NEPA requires consideration of the likelihood that the proposed projects actually will occur. To be conservative, all of the proposed solar energy projects listed in Table 6–2 were included in the cumulative impacts analysis in this NNSS SWEIS.
Table 6–2 Summary of Renewable Energy Projects Within the Cumulative Impacts Region of Influence

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Estimated Facility Area (acres)</th>
<th>Proposed Plant Capacity (megawatts)</th>
<th>Estimated Operational Water Demand (acre-feet per year) c</th>
<th>Proposed Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects for which a Decision has been Made by BLM and a Right-of-Way Permit Issued or Pending</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Millennium LLC; Amargosa Farm Road Solar Energy Project d</td>
<td>4,350</td>
<td>500</td>
<td>400</td>
<td>Parabolic Trough</td>
</tr>
<tr>
<td>Tonopah Solar Energy LLC; Crescent Dunes Solar Energy Project e</td>
<td>1,620</td>
<td>110</td>
<td>600</td>
<td>Concentrating Solar Power (power tower)</td>
</tr>
<tr>
<td>Projects that are in the Permitting Process with BLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abengoa Solar, Inc.; Lathrop Wells Solar Facility f</td>
<td>5,366</td>
<td>250 to 520</td>
<td>200 to 405 b</td>
<td>Parabolic Trough plus 20 megawatts of photovoltaic</td>
</tr>
<tr>
<td>Pacific Solar, Inc.; Amargosa North Solar Project i</td>
<td>7,500</td>
<td>150</td>
<td>5 to 10</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>Projects for which BLM has received an Application for Right-of-Way (first-in-line projects only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amargosa Flats Energy, LLC (Aurasra) j</td>
<td>4,480</td>
<td>140</td>
<td>112 i</td>
<td>Linear Fresnel Reflector</td>
</tr>
<tr>
<td>Cogentrix Solar j</td>
<td>13,440</td>
<td>1,000</td>
<td>800 h</td>
<td>Solar Thermal (troughs)</td>
</tr>
<tr>
<td>Cogentrix Solar j</td>
<td>12,800</td>
<td>1,000</td>
<td>800 h</td>
<td>Solar Thermal (troughs)</td>
</tr>
<tr>
<td>Cogentrix Solar j</td>
<td>22,400</td>
<td>1,000</td>
<td>800 h</td>
<td>Solar Thermal (troughs)</td>
</tr>
<tr>
<td>Cogentrix Solar j</td>
<td>30,720</td>
<td>1,000</td>
<td>800 h</td>
<td>Concentrating Solar Power</td>
</tr>
<tr>
<td>EwindFarm, Inc. j</td>
<td>11,238</td>
<td>500</td>
<td>17 k</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>Nye County Solar One, LLC j</td>
<td>14,160</td>
<td>300</td>
<td>240 h</td>
<td>Parabolic Trough</td>
</tr>
<tr>
<td>Pacific Solar, Inc.; Amargosa South Solar Project j</td>
<td>4,000</td>
<td>500</td>
<td>400 h</td>
<td>Parabolic Trough</td>
</tr>
<tr>
<td>Element Power j</td>
<td>1,039</td>
<td>Unknown</td>
<td>Unknown m</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>Totals for Solar Energy Projects</td>
<td>133,083</td>
<td>5,480 to 5,750</td>
<td>5,174 to 5,379</td>
<td></td>
</tr>
<tr>
<td>Sierra Geothermal Power Corp. Alum j</td>
<td>9,660</td>
<td>33</td>
<td>Unknown m</td>
<td>Geothermal</td>
</tr>
<tr>
<td>Sierra Geothermal Power Corp. Silver Peak j</td>
<td>Unknown</td>
<td>15</td>
<td>Unknown m</td>
<td>Geothermal</td>
</tr>
<tr>
<td>Totals for Geothermal Projects</td>
<td>9,660</td>
<td>48</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Totals for All Renewable Energy Projects</td>
<td>142,743</td>
<td>5,528 to 5,798</td>
<td>5,174 to 5,379</td>
<td></td>
</tr>
</tbody>
</table>

BLM = Bureau of Land Management.

a Values in this table are based on sources with varying degrees of certainty, from those that are derived from final EISs to those that are derived from initial plans of development. None of these values represent a built project, and all are subject to change. Some of the projects listed in this table are likely not to be built.

b Unless otherwise noted, water withdrawals would most likely be from the Amargosa Desert Hydrographic Basin.

c 1 acre-foot of water is equal to 325,851 gallons.

d BLM 2010a.

e BLM 2010f.

f Water would be withdrawn from groundwater within the Tonopah Flat member of the Great Smokey Valley Hydrographic Basin.

h Value estimated by assuming dry-cooled technology and scaling from the Final Environmental Impact Statement for the Amargosa Farm Road Solar Energy Project (BLM 2010a), i.e., 0.8 acre-feet of water for each megawatt of generating capacity.

i 74 FR 66147.

k Located within the Pahrump Hydrographic Basin.

l PSI 2007.

m Located in northwestern Esmeralda County.
Chapter 6
Cumulative Impacts

As shown in Table 6–2, within the cumulative impacts ROI, there are 13 proposed solar facilities and two proposed geothermal projects. There are no wind energy projects proposed within the cumulative impacts ROI, but two firms are evaluating potential wind energy sites west of the NNSS. Altagas Renewable Energy is evaluating a site about 5.5 miles west-southwest of Beatty in Nye County, Nevada (BLM 2010k), and Pacific Wind Development, LLC, a subsidiary of Iberdrola Renewables Inc., is evaluating a site located about 14 miles west-northwest of Lida in Esmeralda County, Nevada (BLM 2010j). As of January 2011, two of the proposed solar energy projects have completed BLM’s NEPA process and may proceed: Amargosa Farm Road Solar Energy Project (BLM 2010i), located in Amargosa Valley about 5 miles southwest of the NNSS, and Crescent Dunes Solar Energy Project (BLM 2010h), located north of Tonopah, Nevada. In addition, two of the proposed projects have entered the BLM permitting process and are preparing EISs (74 FR 66147 and 75 FR 41231): Lathrop Wells Solar Facility, located in Amargosa Valley just south of the intersection of U.S. Route 95 and Nevada State Route 373 and Amargosa North Solar Project, located in Amargosa Valley between 5 and 6 miles west of the NNSS. The other seven proposed solar facilities have submitted applications for a right-of-way but have not submitted an approved plan of development to BLM to initiate the permitting process. There are also several solar power developers who have submitted applications to BLM that are “second in line,” meaning that they proposed development of sites for which applications have already been submitted. The proponents have not submitted detailed project-specific information for these projects, but only basic information such as type of technology to be used, proposed size, and requested acreage. These “second-in-line” applications are not included in this cumulative impacts analysis to preclude double counting potential impacts. In addition, a potential solar project that has submitted an application to BLM that would be located on the NNSS (BLM 2010a) is not addressed in this cumulative impacts analysis because, as the holder of the withdrawal for the land proposed to be used, DOE/NNSA has not been consulted regarding this project and believes that the capacity of the facility described in the application to BLM (8,000 megawatts) is unreasonably large and cannot be supported by available resources, particularly groundwater.

6.2.4.2 National Wild Horse Range

Under the Wild Free-Roaming Horses and Burros Act, BLM manages wild horses and burros in herd areas where they were found when the act went into effect in 1971. Herd areas that can provide adequate food, water, cover, and space to sustain healthy and diverse wild horse and burro populations over the long term are designated by BLM as Herd Management Areas. There are 20 BLM Herd Management Areas (19 in Nevada and 1 in California) that lie wholly or in part within the cumulative impacts ROI for this NNSS SWEIS (BLM 2009d), as follows:

<table>
<thead>
<tr>
<th>Amargosa Valley</th>
<th>Johnnie</th>
<th>Sand Springs West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash Meadows</td>
<td>Montezuma Peak</td>
<td>Saulsbury</td>
</tr>
<tr>
<td>Bullfrog</td>
<td>Nevada Wild Horse Range</td>
<td>Silver Peak</td>
</tr>
<tr>
<td>Chicago Valley</td>
<td>Paymaster</td>
<td>Stone Cabin</td>
</tr>
<tr>
<td>Goldfield</td>
<td>Pilot Mountain</td>
<td>Stonewall</td>
</tr>
<tr>
<td>Gold Mountain</td>
<td>Redrock</td>
<td>Wheeler Pass</td>
</tr>
<tr>
<td>Hot Creek</td>
<td>Reville</td>
<td></td>
</tr>
</tbody>
</table>

As mentioned in Section 6.2.2, BLM administers the Nevada Wild Horse Range located within the boundary of the TTR and Nevada Test and Training Range (BLM 2010g). While the primary purpose of the TTR and Nevada Test and Training Range is weapons development and flight training, the management of wild horses is a secondary use of the lands.
6.2.4.3 Designation of Energy Corridors on Federal Land

Section 368 of the Energy Policy Act of 2005 (P.L. 109-58) directed the Secretaries of Agriculture, Commerce, Defense, Energy, and the Interior to (1) designate, under their respective authorities, corridors on Federal land in the 11 western states for oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities (energy corridors); (2) perform any environmental reviews that may be required to complete the designation of such corridors; (3) incorporate the designated corridors into relevant agency land use and resource management plans; (4) ensure that additional corridors for oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities on Federal land are promptly identified and designated as necessary; and (5) expedite applications to construct or modify oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities within such corridors. In partial response to that direction, DOE and BLM, as lead agencies, prepared the Final Programmatic Environmental Impact Statement for the Designation of Energy Corridors on Federal Land in 11 Western States (DOE/EIS-0386) (Energy Corridors PEIS) (DOE 2009j) to conduct a detailed programmatic environmental analysis of potential energy corridors and to integrate NEPA at the earliest possible time.

The Energy Corridors PEIS identified potential Section 368 corridors; evaluated effects of potential future development within designated corridors; identified mitigation measures for such effects; and developed interagency operating plans applicable to planning, construction, operation, and decommissioning of future projects within the corridors. In January 2009, BLM issued a Record of Decision (ROD) to amend relevant resource management plans and designate Section 368 energy corridors therein. Several Section 368 corridor segments identified in the Energy Corridors PEIS are within the cumulative impacts ROI for this NNSS SWEIS. Those corridor segments parallel existing transmission lines and major roadways, such as U.S. Route 95. There were no specific energy transmission projects identified for these corridor segments in the Energy Corridors PEIS.

6.2.4.4 Electrical Transmission Line Projects

As part of its long-term planning to support renewable energy development in the Amargosa Valley, the Valley Electric Association intends to upgrade its existing transmission lines in its service territory (BLM 2010a). The first phase would include the upgrade of an existing transmission line located south of U.S. Route 95 and west of Nevada State Route 160 from 138 to 230 kilovolts. The second phase would consist of construction of a new 230-kilovolt transmission line from the existing Valley Electric Association substation at the corner of Powerline Road and Anvil Road to the existing Valley Switching Station. The new 230-kilovolt line would then parallel Valley Electric Association’s existing 138-kilovolt transmission line to the site of the proposed Johnnie substation that would be located 5 to 10 miles south of U.S. Route 95 near Nevada State Route 160. Valley Electric Association is currently performing system impact studies based on interconnection requests to determine whether other upgrades are required to accommodate future load growth. Valley Electric Association will file a right-of-way application or update to accommodate these upgrades, and BLM will prepare a separate NEPA review of Valley Electric Association’s proposed action.

In January 2010, Renewable Energy Transmission Company filed an application with BLM for the proposed Solar Express Transmission Line Project (RetCo 2010). The Solar Express Transmission Line Project would consist of two 500-kilovolt, double circuit, electric transmission lines, which would run 122 miles between the existing Eldorado Valley Substation Complex, south of Boulder City, Clark County, Nevada, and a new 500-kilovolt substation, located in the Amargosa Valley in Nye County, Nevada. An additional 500-kilovolt substation is planned as a mid-terminal, at a location south of the town of Pahrump, close to the Nye and Clark County line. The proposed line would also interconnect with Valley Electric Association’s 230-kilovolt system at its proposed Johnnie Substation. The Solar Express Transmission Line would be routed within Section 368 corridors 18–224, 224–225, and 225–231, as identified in the Energy Corridors PEIS. Renewable Energy Transmission Company filed an application in September 2010 with Western Area Power Administration for its Transmission Infrastructure Program to receive consideration for funding under Section 402 of the American Recovery
Chapter 6
Cumulative Impacts

and Reinvestment Act. The purpose of the proposed project is to connect new generation facilities with the Eldorado Valley Substation Complex, which is a major point of connection of the western power grid. While it is envisioned that the generation connected would be mostly solar, it is possible that wind, geothermal, or natural-gas-fired generation may also connect to the Solar Express Transmission Line Project.

The Southwest Intertie Project and the ON Line Project have both been subject to BLM NEPA processes. The Southwest Intertie Project is a proposed 520-mile, 500-kilovolt transmission line for which BLM originally granted right-of-way permits to Idaho Power Company in December 1994 (BLM 2008b). Idaho Power Company did not undertake final permitting or construction of the Southwest Intertie Project, and the rights to the southern portion were eventually transferred to Great Basin Transmission, LLC (BLM 2008b). The southern portion of the Southwest Intertie Project would extend from the proposed Thirty Mile Substation about 18 miles northwest of Ely, Nevada, south approximately 230 miles to the existing Harry Allen Substation, located about 20 miles northeast of Las Vegas, Nevada. The ON Line Project is an NV Energy-proposed 236-mile, 500-kilovolt transmission line between a new Robinson Summit Substation, located less than 1 mile southeast of the proposed Thirty Mile Substation, and the Harry Allen Substation (BLM 2010k). Both of these transmission line projects would interconnect with the existing Falcon-Gonder 345-kilovolt transmission line at their northern ends (BLM 2008b and 2010k). The alignment of the southernmost portions of both of these transmission lines would follow the Southwest Intertie Project right-of-way and would be outside of the cumulative impacts ROI for this NNSS SWEIS.

TransWest Express, LLC, filed an application with BLM for a right-of-way to construct and operate a 600-kilovolt overhead direct current transmission line to cross public and private lands for the TransWest Express 600-kilovolt Project (76 FR 379). The extra-high-voltage line would transmit up to 3,000 megawatts of power generated by renewable energy projects in Wyoming to the desert southwest. The project would begin in south-central Wyoming, cross northwestern Colorado and Utah, and end south of Las Vegas at the Marketplace hub in the Eldorado Valley near Boulder City, Nevada. Western Area Power Administration plans to partially fund the project under the American Recovery and Reinvestment Act of 2009. The project schedule calls for it to be in operation by 2015. Although one alternative corridor currently under consideration would cross the northern portion of the Las Vegas Valley and would be within the cumulative impacts ROI for this NNSS SWEIS, the proposed route would be outside of the ROI.

NV Energy is considering several potential transmission lines within the cumulative impacts ROI (NV Energy 2009). The potential projects are 500-kilovolt transmission lines and associated facilities beginning at the Harry Allen Substation, then going to the Northwest Substation, located in the northwestern area of Las Vegas Valley and then westerly and north along the western part of the state of Nevada, to NV Energy’s existing Blackhawk Substation near Carson City. The potential projects could ultimately interconnect with a proposed Raven Substation in northern California. This or an equivalent electrical transmission system, such as the Solar Express Transmission Line project discussed above, would be essential to effectively market the renewable energy generation that is either proposed or considered in southern Nevada. The potential transmission system additions could include a 500-kilovolt interconnection between Amargosa Valley and Mead Substation near Boulder City, Nevada. It is reasonably likely that these 500-kilovolt transmission lines would be primarily routed within the Section 368 corridors identified in the Energy Corridors PEIS, as discussed in Section 6.2.4.3.
6.2.4.5 Groundwater Development Projects

The Southern Nevada Water Authority submitted an application to BLM for a groundwater development project in southern Nevada called the Clark, Lincoln, and White Pine Counties Groundwater Development Project. Based on information in the BLM Round Two Scoping Package, the Southern Nevada Water Authority Groundwater Development Project would withdraw water from the Spring Valley, Snake Valley, Cave Valley, Dry Lake Valley, Delamar Valley, and Coyote Spring Valley Hydrographic Basins (BLM 2006a). All of the affected hydrographic basins are within the Great Salt Lake or the White River Groundwater Flow Systems and are some distance from the NNSS.

6.2.4.6 Las Vegas Valley Land Disposal

To address issues associated with rapid growth and the need for developable lands and the management of public lands in southern Nevada, Congress passed the Southern Nevada Public Land Management Act in 1998 (P.L. 105-263), which was later amended by the Clark County Conservation of Public Land and Natural Resources Act (Clark County Act) (P.L. 107-282). The Southern Nevada Public Land Management Act and Clark County Act authorized BLM to dispose Federal lands in Clark County, Nevada, consistent with applicable law, population growth, and community land use plans and policies. The disposal boundary established by the two acts encompasses much of the Las Vegas Valley and totals about 46,700 acres. Public lands within the northern portion of the disposal area include the Upper Las Vegas Wash, which is within the cumulative impacts ROI for this NNSS SWEIS.

BLM prepared the Las Vegas Valley Disposal Boundary Final Environmental Impact Statement (BLM 2004b) to identify the environmental consequences that may result from the disposal and use of the remaining BLM-managed lands within the disposal boundary. The Las Vegas Valley Disposal Boundary Final Environmental Impact Statement Record of Decision (BLM 2004c) selected the Conservation Transfer Alternative (BLM 2004b), which allowed BLM to dispose approximately 46,700 acres of land in the Las Vegas Valley. The ROD also required additional study, collaboration, and environmental analysis of approximately 5,000 acres in the Upper Las Vegas Wash area, known collectively as the Conservation Transfer Area, that were withheld from sale because of a high concentration of sensitive resources. Although the ROD identified approximately 5,000 acres of land to be withheld from disposal, it also stipulated that the boundaries were adaptable. Based on input received during public interaction and its own review, BLM expanded the Conservation Transfer Area study area to 13,622 acres. In January 2010, BLM issued the Draft Supplemental Environmental Impact Statement Upper Las Vegas Wash Conservation Transfer Area, Las Vegas, Nevada (BLM/NV/EL/ES-10-06+1793) (BLM 2010b) to address the potential environmental impacts of six alternative Conservation Transfer Area configurations and sizes, ranging from about 1,448 to 12,952 acres. The BLM-preferred alternative would protect about 11,008 acres from development, leaving about 35,692 acres for BLM disposition. According to the Clark County Regional Transportation Plan 2009–2030: A Plan for Mobility in the Las Vegas Region Over the Next 20 Years, Las Vegas, Nevada (Regional Transportation Plan), the area within the Public Land Management Act boundary can accommodate nearly all the growth expected over the next 20 years (RTCASN 2008).

6.2.4.7 Amargosa River Area of Critical Environmental Concern

The BLM Barstow Field Office, located in Barstow, California, published a draft Amargosa River Area of Critical Environmental Concern Implementation Plan with an associated environmental assessment in October 2006 (BLM 2006b). The Amargosa River Area of Critical Environmental Concern (ACEC) encompasses 21,552 acres of land in three distinct parcels located in northeastern San Bernardino and southeastern Inyo Counties, California, near the communities of Tecopa and Death Valley Junction, California. The purpose of the draft implementation plan is to guide BLM’s on-the-ground management of public lands within the ACEC over the next 20 years. The ACEC implementation plan would have generally beneficial impacts for the lower reaches of the Amargosa River but would have little or no cumulative effects with DOE/NNSA activities at the NNSS.
Certain stretches of the Amargosa River in California were designated as either wild, scenic, or recreational by the March 30, 2009, Designation of Wild and Scenic Rivers Act (P.L. 111-11, Section 1805(a)(196)(A)-(E)). One 7.9-mile stretch was designated as “wild,” two stretches totaling 12.1 miles as “scenic,” and two stretches totaling 6.3 miles as “recreational.” These stretches begin approximately 40 miles downstream of the river’s confluence with Fortymile Wash, the main Amargosa River tributary originating on the NNSS. The influx of pollutants (i.e., sedimentation and chemical contaminants) from NNSS activities to Amargosa River tributaries is expected to have little effect on water quality in the designated areas, considering the large distance between them and the mostly dry nature of these ephemeral surface waters.

6.2.5 U.S. Department of Justice

In October 2010, the U.S. Department of Justice, Office of the Federal Detention Trustee, opened a contractor-operated detention facility located on 120 acres in Pahrump, Nevada. The facility employs about 235 people.

6.2.6 Federal Aviation Administration

The Federal Aviation Administration (FAA) is proposing to develop an Air Tour Management Plan for Death Valley National Park, pursuant to the National Parks Air Tour Management Act of 2000 (P.L. 106-181) and its implementing regulations (14 CFR Part 136, Subpart B) (75 FR 2922). The objective of the plan is to develop acceptable and effective measures to mitigate or prevent the significant adverse impacts, if any, of commercial air tour operations on the natural resources, cultural resources, and visitor experiences of a national park unit and any tribal lands within or abutting the park. The Air Tour Management Plan would have no authorization over other non-air-tour operations such as military and general aviation operations; therefore, it should not affect or be affected by aviation activities at the NNSS.

6.2.7 National Park Service

The U.S. Department of Interior, NPS, operates Death Valley National Park. This is the only NPS unit located within the cumulative impacts ROI for this NNSS SWEIS. The NPS Planning, Environment and Public Comment website identified 10 proposed projects for Death Valley as of October 2010. The following are brief descriptions of proposed projects that are within the cumulative impacts ROI for this NNSS SWEIS.

Wilderness and Backcountry Management Plan – In September 2009, NPS initiated a combined Wilderness and Backcountry Stewardship Plan for Death Valley National Park (NPS 2009). The purpose of the plan is to guide NPS and to make decisions regarding the future use and protection of the park’s vast wilderness and backcountry lands. As part of the planning effort, over the next 3 to 4 years, NPS will complete a NEPA environmental analysis.

Keane Wonder Mine Complex and Multi-Mine Safety Installations – NPS published two environmental assessments and Findings of No Significant Impact for the installation of safety features at the Keane Wonder Mine Complex and other abandoned mines within Death Valley National Park (NPS 2010a, 2010b, 2010c, 2010d). NPS determined to use a variety of proven techniques to prevent human and undesired wildlife intrusion while allowing adequate ingress and egress by wildlife, principally bats.

Devils Hole Site Plan – Devils Hole is a 40-acre site located within Ash Meadows Wildlife Refuge that is managed by NPS, in close cooperation with USFWS. The site contains a cave pool, formed by the collapse of the top of a stretch fault leading to a flooded cave system. The cave pool is the habitat of the only remaining population of the endangered Devils Hole pupfish (Cyprinodon diabolis). The Devils Hole Site Plan includes improvements to site security, installation of a ladder to improve access to Devils Hole for research and monitoring activities, installation of a webcam to improve visitor interpretation, and revegetation of disturbed areas (NPS 2010e).
Devils Hole Long-Term Ecosystem Monitoring Plan – NPS is proposing to implement a Long-Term Ecosystem Monitoring Plan for Devils Hole. This plan represents a more holistic commitment to greater scientific understanding and effective fulfillment of NPS’s stewardship of Devils Hole and the resident population of Devils Hole pupfish (NPS 2010g).

Scotty’s Castle Waterline Replacement – NPS proposes to replace about 1 mile of waterline that services the Death Valley Scotty Historic District and in June 2010, initiated public scoping to identify potential issues and concerns and determine the appropriate level of NEPA analysis for the project (NPS 2010f).

6.2.8 U.S. Forest Service

Portions of Humboldt-Toiyabe National Forest are located within the cumulative impacts ROI in Nye and Clark Counties. The majority of proposed actions identified for the USFS within the cumulative impacts ROI consist of activities to manage USFS lands, such as vegetation management; development and rehabilitation of trails, campgrounds, and picnic areas; mineral exploration; and livestock grazing (USFS 2007, 2009c, 2010).

On January 14, 2009, the U.S. Department of Agriculture, USFS, signed a ROD for the Energy Corridors PEIS (USFS 2009a) to amend relevant forest management plans and designate Section 368 energy corridors therein. There are no Section 368 energy corridor segments on USFS land within the cumulative impacts ROI.

In 2009, the USFS permitted the Las Vegas Ski and Snowboard Resort to increase the size of the snowmaking water storage pond from an existing full pond water surface area of 0.6 acres to approximately 1.2 acres of water surface area, increase the pond depth by approximately 15 feet, and increase the northeastern embankment by about 15 feet (USFS 2009b).

In a December 2009 ROD for the Final Environmental Impact Statement Middle Kyle Complex, Spring Mountains National Recreation Area, Humboldt Toiyabe National Forest, Clark County, Nevada, USFS decided to implement, with modifications, the Market-Supported Alternative and authorized construction of recreation and administrative facilities in the Kyle Canyon area of the Spring Mountain National Recreation Area. The ROD also provided direction to manage recreation use such as dispersed camping in the Kyle Canyon, Lee Canyon, and Deer Creek areas (USFS 2009d). Construction under the Market-Supported Alternative would permanently disturb approximately 330 acres and temporarily disturb about 580 acres. Forty-four miles of new trails and trail improvements would be constructed, including multi-use trails in previously undisturbed vegetation communities (USFS 2009c).

6.2.9 Nye County

Nye County is proposing several projects within the cumulative impacts ROI that it considers reasonably foreseeable future actions. Most of the following information was derived from input provided by Nye County, which was received in August 2010, and is reproduced in its entirety in Section 6.2.9.4.

6.2.9.1 Nye County Water District

In 2007, the State of Nevada passed a law (Chapter 542, Statutes of Nevada 2007, pp. 3396–3402) creating the Nye County Water District, with jurisdiction consisting of all the land within the boundaries of Nye County. Future actions by the Nye County Water District are likely to involve acquisition of land and water rights and other resources related to water resources management and supply. One of the major environmental and socioeconomic issues associated with residential and commercial development in southern Nye County is the demand and competition for scarce water resources. Groundwater resource limitations have the potential to affect both residential and commercial development in Nye County. Included in these concerns is the quantity and quality of groundwater from the NNSS, which naturally flows into southern Nye County along multiple flow paths, and has the potential to directly impact the quality and quantity of water available to communities, residents, and developers in the area from Beatty.
to Amargosa Valley (see Section 6.3.6.2, Groundwater). Nye County has been participating with DOE/NNSA, the U.S. Geological Survey, and the Desert Research Institute to study and understand groundwater availability and quality in the Amargosa Valley area and southern portions of Nye County.

6.2.9.2 U.S. Route 95 Technology Corridor

Nye County has outlined a strategy for a Technology Corridor along U.S. Route 95 (EDEN 2007). The corridor would extend from Indian Springs in Clark County in the south to Tonopah in the north, passing through the Pahrump Valley, Mercury (entrance to the NNSS), Amargosa Valley, Beatty, and Goldfield (Esmeralda County). Nye County would like to increase industrial space to accommodate new high-technology businesses by completing the Amargosa Valley Science and Technology Park at Lathrop Wells (see Section 6.2.9.3, Nye County’s Amargosa Valley Land Use Concept Plan), assisting Beatty to reuse the Barrick Bullfrog site adaptively for new industry and encouraging Pahrump to facilitate a business park for the Pahrump Valley. As part of its technology corridor, a major goal of Nye County is to pursue development of renewable energy along the U.S. Route 95 corridor (EDEN 2007). There are no specific facilities or other developments proposed as part of this strategy at this time.

6.2.9.3 Nye County’s Amargosa Valley Land Use Concept Plan

Nye County prepared the Yucca Mountain Project Gateway Area Concept Plan with proposed land use designations for an area of about 5,760 acres around the entrance to the former Yucca Mountain Repository site (Giampaoli 2007). The formerly proposed Yucca Mountain Repository Project has been determined to be “not a workable option for a nuclear waste repository” and has been discontinued; however, Nye County’s Yucca Mountain Project Gateway Area Concept Plan presents a proposed multiphase land use plan for the area of the town of Amargosa Valley that is adjacent to the southwest corner of the NNSS. Nye County proposed this plan to ensure that land development in the area occurs in an orderly manner and to increase opportunities for industrial and commercial development consistent with NNSS-related activities and other activities along the U.S. Route 95 Technology Corridor, such as development of renewable energy projects. Nye County also plans to nominate Crater Flat lands for disposal in the BLM resource management plan amendment process.

As the host county for the NNSS and a cooperating agency in development of this NNSS SWEIS, Nye County requested inclusion of their input on cumulative impacts. The following section was prepared by Nye County to present its perspective regarding cumulative impacts within the county. This Nye County perspective should in no way be construed to represent the position of DOE/NNSA on any particular issue.
6.2.9.4 Nye County Input for this Site-Wide Environmental Impact Statement

Nye County Input for the Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada (NNSS SWEIS)

Nye County is proposing several projects that can be considered as reasonably foreseeable future actions and there are other activities, underway or planned, that will impact Nye County.

Water Resources and Nye County Water District

The State of Nevada, in 2007, passed a law (Chapter 542, Statutes of Nevada 2007, pages 3396-3402) creating the Nye County Water District (District), with jurisdiction consisting of all the land within the boundaries of Nye County. The law provides for the acquisition, storage, sale, and distribution of water by the District, and authorizes the District to levy and collect taxes to assist in covering operational expenses. The governing Board of the District was established by the Nye County Board of County Commissioners in 2009. The District has the power to manage water resources and to supply water to any department or agency of the U.S. government, the State of Nevada, Nye County, and any town, corporation, association, or person in Nye County, for an appropriate charge. Although water supply is not a current function, future actions by the District are likely to involve acquisition of land and water rights and other resources related to water resources management and supply.

Under Cooperative Agreements with the DOE Yucca Mountain Project Office, Nye County has conducted over 15 years of geologic and hydrogeologic studies related to characterization of groundwater and groundwater resources in the area southwest (down gradient) of the NNSS. This work involved the drilling of over 40 wells. Related studies include aquifer testing, alluvial tracer testing, geochemistry, structural geology, and surface and borehole geophysical surveys. Much of this work is summarized in reports on each phase of drilling (references from the Nye County Nuclear Waste Repository Project Office [NWRPO] website below).

Currently, Nye County is conducting an evaluation of groundwater resources in southern Nye County under a grant from the DOE. Studies completed to date include shallow geophysical and geologic investigations of sub-surface hydrogeology at Ash Meadows. A groundwater flow model was developed by Desert Research Institute (DRI) for the Pahrump Valley, and is currently in the calibration stage. Additional major tasks planned under this grant include: drilling and construction of 15 water table piezometer wells in the Oasis, Amargosa, and Pahrump valleys; collection and analysis of water samples to establish baseline water quality at selected wells in Amargosa Desert and Pahrump Valley; evaluation of perennial yield in Basin 230, which lies just to the south of the NNSS, through a cooperative Nye County-U.S. Geological Survey (USGS) evapotranspiration study; and simulation/evaluation of the effects of pumping in key areas in Amargosa Valley and Ash Meadows through development and use of a USGS groundwater flow model.
One of the major environmental and socioeconomic issues associated with residential and commercial development in southern Nye County is the demand and competition for scarce water resources, particularly in the case of wet-cooled solar thermal designs that have been proposed. Groundwater resource limitations have the potential to affect both residential and commercial development in Nye County. Included in these concerns is the quantity and quality of groundwater from the NNSS, which naturally flows into southern Nye County along multiple flow paths, and has the potential to directly impact the quality and quantity of water available to communities, residents, and developers in the area from Beatty to Amargosa Valley. Nye County is also concerned about future County access to water resources on the NNSS and is making an effort to work with the Nevada Site Office to increase understanding of water volume, flow paths, and quality. Increased understanding would benefit not only the County, but all agencies and communities downstream from the NNSS.

Continued protest of Nye County’s water rights applications by federal agencies (including the U.S. National Park Service, U.S. Fish & Wildlife Service, U.S. Air Force, and DOE) could result in cessation of development in areas on and/or near the NNSS and in Amargosa Valley, where several renewable energy projects are planned (see Section 6.2.2.x.4). The primary rationale for protesting water rights has been the restrictions on the right to access the land (Nevada State Engineer, 2008a), and the protection of the Devils Hole Pupfish (Nevada State Engineer, 2008b). However, it has not been proven that pumping in the Amargosa Farms area affects the water level in Devils Hole. Based on scientific work by Nye County, Inyo County, and other agencies, it appears that faults in the area (particularly the Gravity fault, which lies between the Amargosa Farms area and Devils Hole) may act as barriers to groundwater flow that would protect Devils Hole from the potential effects of pumping.

Land-Use Planning

Bureau of Land Management and Other Agency Planning. Nye County participates in the updating of the Battle Mountain and Southern Nevada BLM District Resource Management Plans (RMPs). Participation includes discussion of actions and activities as well as the preparation of formal comments concerning current and planned actions that may affect BLM, Nye County, and adjacent counties; and the identification of disposal lands.

Nye County’s experience has shown that the early discussion of federal- and state-agency plans and actions prior to their implementation is frequently beneficial to both the agency and Nye County. These discussions allow the informal introduction of problems and concerns, and the development of solutions to address them. These discussions have proven to be beneficial in that they reduce or eliminate what could otherwise be lengthy and acrimonious legal and political disputes. It also tends to eliminate misunderstandings and hard feelings that would otherwise delay or derail current and future actions and agreements.

Yucca Mountain Project Gateway Area Concept Plan. Nye County has completed a Yucca Mountain Project Gateway Area Concept Plan (Concept Plan) with proposed land use designations for the area around the entrance to the proposed Yucca Mountain repository site (Giampaoli, 2007). Whether or not the repository is developed, this land (nine sections) has been designated by the Bureau of Land Management (BLM) for disposal. The Concept Plan presents Nye County’s proposed multiphase land use plan for the portion of the town of Amargosa Valley that is adjacent to and near the Yucca Mountain site entrance at the southwest corner of the NNSS. Nye County proposed this Concept Plan to ensure orderly land development associated with potential Yucca Mountain and NNSS-related activities, or
with other activities along the U.S. 95 Technology Corridor, such as development of renewable energy projects. Nye County views this plan as a starting point for development of the infrastructure, institutional capacity, and facilities to offset the potential impacts associated with activities in the vicinity, while also benefiting these activities. Nye County developed the plan to use and manage existing initiatives while expanding and improving the area. The stated purposes of the Concept Plan are applicable to development in the vicinity of the NNSS and the proposed Yucca Mountain Project Gateway:

Describe key objectives and methods to manage the expected impacts of reasonably foreseeable activities, which would include growth in neighboring towns;

Review existing conditions and identify necessary planning and infrastructure improvements;

Review financial options for land and utility development; and

Present a land use concept to ensure orderly and compatible development for the area near the Yucca Mountain site entrance at the southwest corner of the NNSS.

Nye County plans to nominate Crater Flat lands for disposal (transfer of land) in the Bureau of Land Management Resource Management Plan amendment process.

U.S. Highway 95 Technology Corridor

Nye County has outlined a strategy for a Technology Corridor along U.S. Highway 95 (EDEN, Inc., 2007). The corridor extends from Indian Springs in Clark County in the south to Tonopah in the north, passing through the Pahrump Valley, Mercury (entrance to the NNSS), Amargosa Valley, Beatty, and Goldfield (Esmeralda County). Nye County would like to increase industrial space to accommodate new high-technology businesses by completing the Amargosa Valley Science and Technology Park at Lathrop Wells, assisting Beatty to adaptively reuse the Barrick Bullfrog site for new industry, and encouraging Pahrump to facilitate a business park for the Pahrump Valley. Nye County's goals for the Technology Corridor are to change economic diversity of the region's industries, transform the regional economy to one more closely associated with national trends, and increase the presence of green energy industry in the region.

As part of its Technology Corridor, a major goal of Nye County is to pursue development of renewable energy along the U.S. Highway 95 corridor (EDEN, Inc., 2007, Goal 1-7, p. C-1). Wide expanses, sunny climate, and high solar incidence offer abundant opportunity to employ solar energy options to meet energy demand and lower operating costs for households and businesses. Nevada has created an incentive for power utilities to invest in alternative energy. To increase renewable energy research and development activities, Nye County plans to work cooperatively with: 1) the DOE National Laboratory for Renewable Energy to provide contracts to regional providers; 2) private industry to attract investments to promote renewable energy projects; 3) installation providers to recruit and provide skill training through Great Basin College to local workers; and 4) utilities to develop additional transmission capacity for renewable energy projects.

Renewable Energy Developments

Nye County is signatory to the Nye County-BLM Memorandum of Understanding (MOU) for Renewable Energy. Signatories include Nye County and each of the four BLM District Offices with responsibilities within Nye County (Battle Mountain, Southern Nevada, Elko, and Carson City). Under the Nye County-BLM MOU for Renewable Energy, the County is a Cooperating
Agency and provides input to all Environmental Impact Statements (EISs) and actions that apply to or affect renewable energy within the County. This includes transmission capacity development in areas outside of Nye County that will have effects upon developments within Nye County. Nye County is also a cooperating agency on the DOE-BLM Programmatic Environmental Impact Statement to Develop and Implement Agency-Specific Programs for Solar Energy Development (74 FR 31307, June 30, 2009), which covers solar energy and transmission development in six western states, of which Nevada is one.

The BLM has received right-of-way permit applications from renewable energy developers for numerous solar, wind, and geothermal energy facilities in Nye County. The locations of the applications by developers for land within a 50-mile area around the NNSS, Nevada Test and Training Range, and Tonapah Test Range are depicted on the map located at the end of this section. The applications are in varying stages of the review process for obtaining Right-of-Way (ROW) leases from BLM. Nye County facilitates communications between the developers and federal, state, and local agencies to ensure information is fully and properly communicated, and to encourage cooperative efforts in moving renewable energy projects forward. This includes communications with transmission developers and providers, and agencies such as the DOE, the U.S. Department of Agriculture, the Public Utilities Commission of Nevada, the Federal Energy Regulatory Commission, the Western Area Power Administration, and similar California agencies that are concerned with the production and transmission of renewable energy.

Nye County coordinates with the Department of Defense regarding the applications submitted by renewable energy developers and related transmission developers and providers, and intends to continue the cooperative effort in the future. Nye County is also working to facilitate development of transmission lines to support transmission of the energy produced by the proposed renewable energy facilities to markets in Nevada, California, and other states. Nye County works closely with federal and state agencies (e.g., the DOE-Energy Efficiency and Renewable Energy Office, the U.S. Environmental Protection Agency, the Nevada State Office of Energy, etc.) to increase the use of renewable energy and increase transmission capacity within Nye County, adjacent counties, and the State of Nevada.

Water resources are of particular interest to Nye County and its communities and residents because of the arid nature of the area. Nye County provides input to and coordination with all state and federal agencies whose actions impact the quantity and quality of water within the County. Renewable energy developers are encouraged to use dry cooling whenever possible. Where dry cooling cannot be used, hybrid technology is recommended and encouraged. Particular attention is paid to blow back, cooling, and storm water diversion ponds because of concern regarding the proper handling and disposal of evaporate products, the condition of brine and ground water at renewable energy sites, and water naturally returning to or reinjected into the water table. Included in these concerns is water from the NNSS, which flows into southern Nye County to the south and west of the NNSS and has the potential to affect the quality and quantity of water available to communities, residents, and developers.

Four of the applications for ROW leases submitted to date in Nye County are drafting or completing Environmental Impact Statements: Solar Reserve, Solar Millennium, Abengoa Solar, and Pacific Solar Investments.

Solar Reserve has submitted a plan of development to BLM for a 100-megawatt (MW) concentrated solar power project (Crescent Dunes) capable of producing approximately
500 gigawatt hours (GWh) of renewable energy annually. The 653-foot power tower and its surrounding heliostats will heat liquid salt, which will be stored and used to generate electrical energy through a conventional steam turbine cycle, after which the cooled salt will be recycled through the system for reheating. The Solar Reserve site is approximately 16 miles north-northwest of the Tonopah Airport.

Solar Millennium has submitted a plan of development for two 242-MW concentrating solar trough projects on approximately 4,350 acres, located north of Amargosa Farm Road and east of Valley View Road, in Amargosa Valley, approximately 5 miles south of U.S. Highway 95 and 5 miles west of State Highway 373. The plan calls for dry cooling towers, which would be approximately 140 feet high.

Abengoa Solar has submitted a plan of development for a 250-MW net parabolic trough solar power plant with an option to expand the facility by adding a second 250-MW unit. Additionally, the Lathrop Wells Solar Facility may include up to 20-MW of photovoltaic (PV) solar power. The Lathrop Wells Solar Facility would be located on 5,336 acres south of US Highway 95 and west of State Highway 373, in Amargosa Valley, at the former Jackass Aeropark. The plan calls for dry cooling towers that would be approximately 140 feet high.

Pacific Solar Investments has submitted a plan of development for a 300-MW photovoltaic (PV) facility north of the Big Dune Area of Critical Environmental Concern (ACEC) in Amargosa Valley, south of U.S. Highway 95. A second facility is proposed to be located to the south of the Big Dune ACEC, which will be a 500-MW PV facility. Both facilities are located on the west side of the town of Amargosa Valley.

In addition, Ewind Farms has submitted a request for a right-of-way lease for a commercial solar power generation facility of 8 gigawatts on land within and adjacent to the Nevada National Security Site, south and west of the Yucca Mountain tunnel.

DOE has advised Nye County that it is considering locating two solar renewable energy sites on 25 square miles of land in Area 25, just north of the area covered by the Yucca Mountain Project Gateway Area Concept Plan. One site would be a solar demonstration facility comprising four to six demonstration plants ranging from 1 to 10 MW each, generating up to 30 MW of power to be used on the NNSS. A second site would be a commercial facility that could possibly generate up to 1 gigawatt of power. Development of the transmission lines being facilitated by Nye County would also be available to support renewable energy and other development on the NNSS.

Several renewable energy developers have entered into agreements with Nye County regarding the development of a PV facility at the Tonopah Airport. Nye County is working with the developers and an EPA contractor to address transmission accessibility at the airport, a former Brownfield’s site.

U.S. Department of Justice Detention Facility

The U.S. Department of Justice (DOJ) Office of the Federal Detention Trustee and the U.S. Marshals Service determined that there was a need to house federal detainees at a facility near Las Vegas. In March 2008, the DOJ published the *Final Environmental Impact Statement for the Proposed Contractor Detention Facility, Las Vegas, Nevada Area* (DOJ, 2008). The preferred alternative identified in the EIS was a 120-acre site in Pahrump, about 25 miles from the NNSS. Facility operation is expected to begin in October 2010 and employ 200 to 250 people. Operation of the detention facility is anticipated to result in a number of new contractor
employees who are either current residents of Nye County or who relocate to Nye County, with the remainder of the new contractor employees expected to be current residents of Clark County who would continue to reside in Clark County within commuting distance.

Coordination and Cooperation with Government Programs

Nye County has worked cooperatively with the DOE Yucca Mountain Project to provide a number of services normally provided by local government to its residents. These services have significantly benefited the Yucca Mountain Project through reduced costs and high-quality service. They have also benefited Nye County by increasing its capability to provide services to both local communities and to DOE for Yucca Mountain. Nye County believes that similar agreements with the NNSS would be equally beneficial to both parties and should be incorporated in future agreements. Those services would be provided on a government-to-government basis and could include normal Public Works, Law Enforcement, and Emergency Services, strengthening the abilities of both Nye County and the NNSS to meet both normal and anticipated emergency needs. Such agreements would also allow better implementation of the National Incident Management System (NIMS), the National Response Framework, and related programs and Presidential Directives.

References

6.2.10 Clark County and Las Vegas Area, Nevada

The Regional Transportation Plan for Clark County (RTCSN 2008) projected that, by 2020, the population of Clark County will increase by 1,143,071, from about 1,912,955 in 2006 to about 3,056,026 in 2020 (RTCSN 2008), an approximate 60 percent increase. A number of factors will influence this projected growth and attendant development, including water availability, air quality, the strength of the tourism industry (particularly the gaming sector), and the cost of housing. The Regional Transportation Plan further projected that about 63,533 acres of land will be developed within Clark County during the 2010 to 2020 time frame (RTCSN 2008). Some of that land is outside the cumulative impacts ROI for this NNSS SWEIS. To refine the estimate of potentially developed land, the acreage for Henderson (14,523 acres) was subtracted, resulting in a conservative estimate of 49,010 acres of land within the ROI that is projected to be developed. This area of potential development is included within the areas that may be developed under the BLM Las Vegas Valley Land Disposal and the USFWS Clark County MSHCP, but was not included in the potential land disturbance areas in this cumulative impacts assessment.

The Clark County Department of Aviation is planning a new international, commercial service airport in the Ivanpah Valley, the Southern Nevada Supplemental Airport, to ensure sufficient commercial aviation capacity in the Las Vegas metropolitan area. In the Ivanpah Valley Airport Public Lands Transfer Act of 2000 (P.L. 106-362), the U.S. Congress identified a 6,000-acre site in the Ivanpah Valley between the towns of Jean and Primm and immediately east of Interstate 15 for the purpose of developing the Southern Nevada Supplemental Airport and related infrastructure. Subsequently, in P.L. 107-272, Congress directed transfer of an additional 17,000 acres surrounding the airport site to Clark County upon final approval of the Southern Nevada Supplemental Airport. The FAA has accepted a proposed airport layout plan for the Southern Nevada Supplemental Airport, and the FAA and BLM, acting as joint lead agencies, have begun preparing an EIS for the proposed airport. Preparation of this EIS is currently suspended due to the downturn in the economy, although Clark County is continuing its planning efforts for the airport, albeit at a slower pace. The proposed Southern Nevada Supplemental Airport is a reasonably foreseeable future action, as defined by CEQ; however, it would be located about 10 miles outside of the ROI for the purpose of cumulative impact analysis in this SWEIS. Although there could be a cumulative impact with traffic traveling to and from the proposed airport and shipments to and from the NNSS along Interstate 15, no data regarding potential traffic volumes are available for the proposed airport; thus, a meaningful analysis is not possible at this time.

Within the cumulative impacts ROI, in rural Clark County and the Las Vegas metropolitan area, no specific projects were identified for analysis from reviews of the following: the Clark County, Nevada, Comprehensive Plan (CCCP 2010), the Northeast Clark County Land Use Plan (CCCP 2006), the Northwest Clark County Land Use Plan (CCCP 2007), planning documents from the City of Las Vegas (LVPC 2000, DFBS 2009), the City of North Las Vegas Downtown Master Plan & Investment Strategy (NLV 2009), and the Coyote Springs Investment Planned Development Project Environmental Impact Statement (USFWS 2008). Most of the proposed or ongoing projects identified during that review were urban development within already disturbed areas, such as Las Vegas and North Las Vegas, and would have little or no cumulative effect combined with DOE/NNSA activities in the state of Nevada. One large proposed project, the Coyote Springs Development, is located outside of the ROI.

6.2.11 Lincoln County, Nevada

BLM has proposed two separate but related potential projects of concern to cattlemen, ranchers, sportsmen, mining companies, and offroad vehicle enthusiasts in Lincoln County (Maxwell 2010). The first is a draft concept for a National Conservation Area consisting of 600,000 acres in Garden and Coal Valleys. The second consists of the consideration of two areas for solar development in Lincoln County: Delamar Valley (approximately 2,850 acres) and Dry Lake Valley (approximately 19,980 acres).
The National Conservation Area that is proposed would not affect existing rights (i.e., roads, rights-of-way, mining claims, or other valid existing rights). Grazing, hunting, fishing, and trapping would continue in the conservation area, in accordance with Federal and state law (Maxwell 2010). Access to and use of other private parcels within the National Conservation Area would not be affected. A management plan for the conservation area is expected to be completed by BLM within 3 years (Maxwell 2010).

A potential solar energy project on Toreson Industries property in Rachel, Nevada, off Nevada State Route 375 heading east on Smith Well Road, may be implemented. No permit applications have been submitted for this project at this time.

A possible upgrade to the Tempiute power line may occur within the next 10 years; no permits for this project have been submitted at this time.

6.2.12 Esmeralda County, Nevada

Several projects that may occur in Esmeralda County are still in a speculative phase and are not considered reasonably foreseeable. These include future storm drain projects in Goldfield and Silver Peak; a potential airport north of Goldfield; and rerouting U.S. Route 95 in the Goldfield area.

6.2.13 Inyo County, California

Almost all of the land in Inyo County, California, that falls within the cumulative impacts ROI for this NNSS SWEIS is Federal (BLM and NPS) or state land (Inyo County 2002). The communities of Shoshone, Tecopa, and Tecopa Springs are the main towns in the area. There were no nonfederally proposed actions identified within the portion of Inyo County that is included in the cumulative impacts ROI. Proposed Federal actions within Inyo County are addressed in Sections 6.2.4, Bureau of Land Management, and 6.2.7, National Park Service.

US Ecology operates a permitted solid waste treatment, storage, and disposal facility near Beatty, Nevada, located about 100 miles northwest of Las Vegas in the Amargosa Desert. Among other waste types, at its Beatty facility, US Ecology accepts Resource Conservation and Recovery Act (RCRA) hazardous wastes, polychlorinated biphenyl (PCB)-contaminated materials, and asbestos or asbestos/RCRA debris. US Ecology is currently not permitted to accept LLW or mixed low-level radioactive waste (MLLW) (US Ecology 2010); however, between September 1962 and December 1992, the site disposed about 4,862,000 cubic feet of radioactive waste containing about 709 curies of byproduct material, about 4,807,000 pounds of source material, and about 606 pounds of special nuclear material (Laney 2010). Since acceptance of radioactive waste ceased at its Beatty facility, US Ecology completed a state-approved closure plan to stabilize the site and establish proper security measures. The plan was intended to ensure that the LLW disposed during the operational phase of the facility continued to remain in a suitable, stable, and safe condition after site closure. The Nevada State Health Division continues to monitor for radioactivity in groundwater, air, soil, and vegetation (NSHD 2010). The US Ecology facility at Beatty is a RCRA-permitted facility with engineered barriers and systems and administrative controls that minimize the potential for offsite migration of hazardous constituents, and the Nevada State Health Division continues to monitor the site. In addition, the regional climate of southern Nevada is very arid, with an evapotranspiration rate that far exceeds precipitation, and the depth to groundwater is several hundred feet. For these reasons, DOE/NNSA determined that cumulative postclosure impacts from the Beatty LLW disposal facility would be very unlikely.

6.3 Cumulative Impacts Analysis

The following analysis addresses the potential cumulative impacts from past, present, and reasonably foreseeable future actions at DOE/NNSA sites and facilities in the state of Nevada and similar actions by other Federal and state agencies, local governments, and private parties. Where appropriate, impacts from
the NNSS (including environmental restoration activities on the Nevada Test and Training Range), RSL, NLVF, and the TTR are considered separately; otherwise they are combined. Table 6–3 shows the area of potential land disturbance for all applicable resources (i.e., land use, geology and soils, surface water, biological resources, and cultural resources). The land disturbance figures were derived from the information contained in Section 6.2, Potentially Cumulative Actions, and Chapter 5, Table 5–1, Potential Area of Land Disturbance at the Nevada National Security Site for Each Mission Area, Program, and Activity by Alternative, and may differ slightly from figures in those tables due to rounding.

Table 6–3 Area of Potential and Existing Ground Disturbance Used in the Cumulative Impacts Analysis

<table>
<thead>
<tr>
<th>Cause of Disturbance</th>
<th>Disturbed Area (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed renewable energy facilities (BLM)</td>
<td>143,000 b</td>
</tr>
<tr>
<td>Yucca Mountain Project Gateway Area (Nye County)</td>
<td>5,800 c</td>
</tr>
<tr>
<td>Targets at Nevada Test and Training Range (U.S. Air Force)</td>
<td>400 d</td>
</tr>
<tr>
<td>GTCC waste disposal (DOE)</td>
<td>110 e</td>
</tr>
<tr>
<td>Las Vegas Valley land disposal (BLM)</td>
<td>36,000 f</td>
</tr>
<tr>
<td>Las Vegas Valley estimated land disturbance under a modified Multi-Species Desert</td>
<td>324,000 g</td>
</tr>
<tr>
<td>Habitat Conservation Plan</td>
<td></td>
</tr>
<tr>
<td>U.S. Forest Service, Middle Kyle Complex</td>
<td>330 h</td>
</tr>
<tr>
<td>Total Potential Non-DOE/NNSA-Related Land Disturbance</td>
<td>509,640</td>
</tr>
<tr>
<td>DOE/NNSA Actions at the NNSS and the TTR (based on Expanded Operations Alternative),</td>
<td></td>
</tr>
<tr>
<td>including one or more potential commercial solar power generation facilities in</td>
<td>No Action</td>
</tr>
<tr>
<td>Area 25 of the NNSS and Geothermal Demonstration Project</td>
<td></td>
</tr>
<tr>
<td>Total Potential Land Disturbance</td>
<td>514,140</td>
</tr>
<tr>
<td>Estimated Existing Land Disturbance Within the Cumulative Impacts Region of Influence</td>
<td></td>
</tr>
<tr>
<td>Estimated Existing Disturbed Area in Clark County</td>
<td>215,000</td>
</tr>
<tr>
<td>Estimated Existing Disturbed Area in Nye County</td>
<td>51,000</td>
</tr>
<tr>
<td>Estimated Existing Disturbed Area at the NNSS</td>
<td>80,000</td>
</tr>
<tr>
<td>Total Estimated Existing Disturbed Land</td>
<td>346,000</td>
</tr>
<tr>
<td>**Estimated Total Potential and Existing Land Disturbance Within the Cumulative</td>
<td>860,140</td>
</tr>
<tr>
<td>Impacts Region of Influence**</td>
<td>881,640</td>
</tr>
<tr>
<td></td>
<td>858,340</td>
</tr>
</tbody>
</table>

BLM = Bureau of Land Management; GTCC = greater-than-Class C; NNSS = Nevada National Security Site; TTR = Tonopah Test Range.

- Numbers of acres of potential and existing land disturbance represent estimates of areas of disturbance and have been rounded.
- From Chapter 6, Table 6–2, Summary of Renewable Energy Projects Within the Cumulative Impacts Region of Influence.
- Yucca Mountain Project Gateway Area Concept Plan (Giampaoli 2007).
- Clark County Multi-Species Habitat Conservation Plan (USFWS 2000) and Notice of Intent to prepare an EIS, as well as notice of public scoping meetings for a proposed Amendment of the Clark County Multi-Species Habitat Conservation Plan and Issuance of an Amended Incidental Take Permit (74 FR 50239).
- Final Environmental Impact Statement Middle Kyle Complex, Spring Mountains National Recreation Area, Humboldt Toiyabe National Forest, Clark County, Nevada (USFS 2009c).
- From Chapter 5, Table 5–1, Potential Area of Land Disturbance at the Nevada National Security Site for Each Mission Area, Program, and Activity by Alternative.
6.3.1 Land Use

Under both the Expanded Operations and Reduced Operations Alternatives, DOE/NNSA is proposing changes in the NNSS land use zones. Under all three alternatives, the name of the Solar Enterprise Zone would be changed to the Renewable Energy Zone. Under the Expanded Operations Alternative, the designation for Area 15 would be changed from Reserved Zone to Research, Test, and Experiment Zone, and the Renewable Energy Zone in Area 25 would expand from about 2,400 acres to 39,600 acres. Under the Reduced Operations Alternative, DOE/NNSA would change the designation of the Nuclear Test Zone for Areas 19 and 20 and the Reserved Zone for Areas 18, 29, and 30 to the Limited Use Zone.

Although land use zones under both alternatives would change, this change is not considered an adverse impact. The NNSS developed the land use zones for internal organizational and functional uses and to group similar uses and activities into specific areas based on the support needs of the NNSS mission as determined by previous and anticipated uses. Because the land use changes that would occur under the Expanded Operations or Reduced Operations Alternative would be consistent with the missions of DOE/NNSA at the NNSS and would not affect land uses outside of the NNSS boundaries, there would be no cumulative impacts on land use from any of the alternatives addressed in this NNSS SWEIS. Although there would be no cumulative impacts on land use from changes of use of NNSS lands, there may be cumulative impacts on other resources, such as wildlife, vegetation, cultural resources, and socioeconomics, which will be addressed under the appropriate resource areas. However, current land use for large areas of undisturbed land in Amargosa Valley would be changed by construction of reasonably foreseeable solar energy generation facilities and Nye County’s Yucca Mountain Project Gateway Area development. The cumulative impacts of these land use changes would be withdrawal of approximately 148,800 acres of land in Nye County from public use and commitment of that land to use for renewable energy facilities or commercial/industrial uses. Additionally, disturbed land at the former Yucca Mountain Repository site would be restored to its approximate preconstruction condition. Land ownership and control of the site would revert to the original controlling authorities (DOE/NNSA, the USAF, and BLM) and would likely return to pre-Yucca Mountain Repository Project uses.

In Clark County, BLM would dispose up to about 36,000 acres of public land. Use of this land would be changed from its current public uses to make it available for private and/or municipal uses.

A very large percentage of the land in Nye County is owned by the Federal Government and administered by several different agencies. Much of the land managed by BLM is available for public use; however, lands managed by the U.S. Department of Defense and DOE have very strict access controls and are not available for any public use. This limits the land available in the county for development of industrial, commercial, municipal, or residential uses. There are no proposals to make large-scale reductions in the amount of land managed by Federal agencies in Nye County; likewise, there are no proposals to increase the amount of such lands. In fact, BLM land disposal actions from time to time make parcels of federally owned land available, thus marginally reducing the proportion of Federal land in the county. It is also important to note there is sufficient undeveloped non-Federal land available in Nye County that growth and development are not being hampered by lack of available land at this time.

6.3.2 Infrastructure and Energy

Impacts on infrastructure are primarily captured in other resource areas. DOE/NNSA would construct new infrastructure as needed and continue to appropriately disposition excess infrastructure. As new infrastructure is added, there would be impacts on various resources, such as soils, biology, air, and socioeconomics. Likewise, when infrastructure is dispositioned, there would be other impacts on some of the same resources. For instance, if a building or road is removed and the disturbed area is revegetated with appropriate native species, there would be a positive impact on wildlife habitat and soils, but also temporary adverse air quality impacts.

Construction of new facilities, particularly large projects, would place cumulative demands on goods and services. All of the proposed renewable energy projects in Amargosa Valley and Area 25 of the NNSS
would have similar needs for large tracts of undeveloped land and water; use earth-moving/grading equipment, cranes, and other construction equipment; require similar materials, such as concrete, steel, wood, wiring, cables, etc.; and require the services of both general and specialized construction workers. The cumulative effects of these impacts are captured in the analyses for each affected resource.

Large-scale construction projects that would create cumulative impacts on traffic and roadways in the region, particularly renewable energy facilities in Amargosa Valley and Area 25 of the NNSS, are addressed in Section 6.3.3, Transportation.

In 2009, DOE/NNSA facilities in Nevada used almost 84,600 megawatt-hours of electricity. During the same year, NV Energy (southern division) and Valley Electric Association provided about 21,200,000 megawatt-hours and 470,000 megawatt-hours, respectively, of electricity to their customers (NSOE 2010), totaling almost 21,670,000 megawatt-hours. DOE/NNSA’s use of electricity represents about 0.4 percent of the total electricity supplied by the two major electrical utilities in southern Nevada. The Nevada Public Utilities Commission forecasts a 1.5 percent growth rate in electricity sales through 2020 (NDEP 2008). Based on that growth rate, by 2020, total electricity sales in southern Nevada would be about 25,530,000 megawatt-hours. Based on the projected level of activities and number of employees at DOE/NNSA facilities in Nevada under the Expanded Operations Alternative, it was estimated that the cumulative demand for electrical energy at the NNSS, RSL, NLVF, and the TTR in 2020 would be about 150,000 megawatt-hours. This would represent about 0.6 percent of the total demand for electrical energy in southern Nevada by 2020, which represents a slight increase in the proportion of electrical energy consumed by DOE/NNSA-related activities in the region. This estimate did not take into account energy conservation measures that are being implemented, nor did it consider the reduction in commercial electrical service demand at the NNSS due to construction of a proposed 5-megawatt photovoltaic electrical generating facility in Area 6, from the DOE Office of Energy Efficiency and Renewable Energy-proposed CSP Validation Project, or from any commercial solar power generation facilities that would be constructed at the NNSS. Any one of these factors could result in a decrease in the proportion of DOE/NNSA’s demand for electrical power in the region.

Currently, in southern Nevada, there are about 7,800 megawatts of electrical generating capacity available. Based on projected southern Nevada electrical energy demand in 2020, the available generating capacity would be adequate; however, much of that capacity is owned by or contractually obligated to electrical utilities in other regions such as Arizona and southern California. For instance, most of the electricity generated at Hoover Dam is transmitted for use outside of Nevada. However, with development of up to about 5,800 megawatts of solar power generation facilities in the Amargosa Valley area, electrical generating capacity in southern Nevada would continue to be adequate to meet projected demand, provided adequate electrical transmission line capacity is developed to transmit the power (see Section 6.2.2.4).

6.3.3 Transportation

Increased traffic on U.S. Route 95 and other local roadways, primarily in Nye County, resulting from construction and operation of renewable energy projects in Amargosa Valley (including one or more commercial solar power generation facilities in Area 25 of the NNSS); remediation activities at the former Yucca Mountain Repository site; and development of the Yucca Mountain Project Gateway Area would increase wear and tear on the roads and, consequently, maintenance requirements. During construction and site remediation, roads in Nye County could experience a 2- to 5-fold increase in daily traffic on primary roads such as U.S. Route 95 and Nevada State Route 160, which could degrade levels of service from A to D during peak commuting hours. During operations, primary roadways could experience 30 to 50 percent increases in daily traffic, and levels of service could degrade one level during peak commuting hours. The degradation in levels of service caused by increased traffic volumes on these roads could generate the need for additional travel lanes and other improvements. There would be no operational/post-remediation impacts on roadways associated with the former Yucca Mountain Repository site.
Transportation of radioactive waste and other materials to the NNSS increases the burden on local community emergency responders to establish and maintain the capabilities necessary to respond to an accident involving a radioactive waste shipment. To mitigate that increased burden, the DOE/NNSA Nevada Site Office (NSO), working jointly with the State of Nevada, established the Emergency Preparedness Working Group to provide a forum for coordination of the LLW grant program between NNSA, the State of Nevada (Division of Emergency Management), and six counties (Clark, Elko, Esmeralda, Lincoln, Nye, White Pine). In addition, the DOE/NNSA NSO placed a 50-cent-per-square-foot surcharge on radioactive waste disposed at the NNSS that, as it accumulates, is provided directly to the state for distribution to the affected counties. Since 2000, the Emergency Preparedness Working Group has distributed annual grants, funded by the surcharge, among the southern Nevada counties through which LLW and MLLW shipments travel en route to the NNSS. These grants, totaling about $10 million as of 2011, have allowed the counties to undertake emergency preparedness planning and response capability assessments and to acquire emergency response resources such as ambulances, fire trucks, and communication equipment, as well as to construct training facilities and emergency services buildings. The DOE/NNSA NSO also offers training to first responders for emergency situations involving radioactive waste and materials.

The assessment of cumulative impacts for past, present, and reasonably foreseeable future actions involving radioactive material transports concentrates on impacts from offsite transportation throughout the Nation that would result in potential radiation exposure to a greater portion of the general population than onsite and NNSS-vicinity transportation; transportation of radioactive materials could also result in fatalities from traffic accidents. Cumulative radiological impacts from transportation are measured using the collective dose to the general population and workers because dose can be directly related to latent cancer fatalities (LCFs) using a cancer risk coefficient, as described in Appendix D, Section D.5.1, of this NNSS SWEIS.

In addition to those impacts addressed in this NNSS SWEIS (see Chapter 5, Section 5.1.3), the cumulative impacts of the transportation of radioactive material consist of impacts from historical shipments of radioactive waste and spent nuclear fuel; reasonably foreseeable future actions that include transportation of radioactive material identified in Federal, non-Federal, and private environmental impact analyses; and general radioactive material transportation that is not related to a particular action. The time frame of the impacts was assumed to begin in 1943 and continue to some foreseeable future date. The current list of reasonably foreseeable DOE activities estimates risks up to 2042 (DOE 1999d). Projections for commercial radioactive material transport extend to 2073.

Table 6–4 provides a summary of total worker and general population collective doses from past, present, and reasonably foreseeable future transportation activities, as estimated in published NEPA documents. Impacts from these activities are not included in the analysis presented in Chapter 5 of this NNSS SWEIS.

Historical Shipments.

The impact values provided for historical shipments to the NNSS include shipments of spent nuclear fuel from 1951 through 1993 and the impacts from radioactive waste shipments to the NNSS from 1974 through 1994 (DOE 1996c). The impact values also include historical shipments of spent nuclear fuel from the NNSS to Idaho National Laboratory, the Savannah River Site, the Hanford Site, and the Oak Ridge Reservation, as well as shipments of naval spent fuel and test specimens (DOE 1996a).
Table 6–4 Transportation-Related Radiological Collective Doses and Risks from Other U.S. Department of Energy/National Nuclear Security Administration Actions

<table>
<thead>
<tr>
<th>Category</th>
<th>Worker Collective Dose (person-rem)</th>
<th>Worker Risk (LCF)</th>
<th>General Population Collective Dose (person-rem)</th>
<th>Risk (LCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical Shipments (1943–1994) a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spent Nuclear Fuel Shipments to the NNSS</td>
<td>1.4</td>
<td>0.00</td>
<td>0.70</td>
<td>0.00</td>
</tr>
<tr>
<td>Radioactive Waste to the NNSS</td>
<td>82</td>
<td>0.05</td>
<td>100</td>
<td>0.06</td>
</tr>
<tr>
<td>Other Spent Nuclear Fuel Shipments</td>
<td>250</td>
<td>0.15</td>
<td>130</td>
<td>0.08</td>
</tr>
<tr>
<td>Subtotal</td>
<td>330</td>
<td>0.20</td>
<td>230</td>
<td>0.14</td>
</tr>
<tr>
<td>Reasonably Foreseeable Future Actions b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surplus Plutonium Disposition EIS</td>
<td>60</td>
<td>0.04</td>
<td>67</td>
<td>0.04</td>
</tr>
<tr>
<td>Naval Reactor Disposal</td>
<td>5.8</td>
<td>0.00</td>
<td>5.8</td>
<td>0.00</td>
</tr>
<tr>
<td>Treatment of Mixed Low-level Radioactive Waste EIS c</td>
<td>18</td>
<td>0.01</td>
<td>1.34</td>
<td>0.00</td>
</tr>
<tr>
<td>Waste Management PEIS d</td>
<td>15,000</td>
<td>9.0</td>
<td>17,700</td>
<td>10.6</td>
</tr>
<tr>
<td>WIPP SEIS II</td>
<td>790</td>
<td>0.47</td>
<td>5,900</td>
<td>3.54</td>
</tr>
<tr>
<td>Idaho High-Level Waste and Facilities Disposition Final EIS</td>
<td>520</td>
<td>0.31</td>
<td>590</td>
<td>0.35</td>
</tr>
<tr>
<td>Sandia National Laboratories SWEIS</td>
<td>94</td>
<td>0.06</td>
<td>90</td>
<td>0.05</td>
</tr>
<tr>
<td>Tritium Production in Commercial Light Water Reactor EIS</td>
<td>16</td>
<td>0.01</td>
<td>80</td>
<td>0.05</td>
</tr>
<tr>
<td>LANL SWEIS c</td>
<td>580</td>
<td>0.35</td>
<td>310</td>
<td>0.19</td>
</tr>
<tr>
<td>Plutonium Residues at Rocky Flat EIS</td>
<td>2.1</td>
<td>0.00</td>
<td>1.3</td>
<td>0.00</td>
</tr>
<tr>
<td>Disposition of Surplus Highly Enriched Uranium Final EIS</td>
<td>2.1</td>
<td>0.00</td>
<td>1.3</td>
<td>0.00</td>
</tr>
<tr>
<td>Molybdenum-99 Production EIS</td>
<td>240</td>
<td>0.14</td>
<td>520</td>
<td>0.31</td>
</tr>
<tr>
<td>Import of Russian Plutonium-238 EA</td>
<td>1.8</td>
<td>0.00</td>
<td>4.4</td>
<td>0.00</td>
</tr>
<tr>
<td>Pantex SWEIS</td>
<td>250</td>
<td>0.15</td>
<td>490</td>
<td>0.29</td>
</tr>
<tr>
<td>Storage and Disposition of Fissile Material</td>
<td>N/A</td>
<td>N/A</td>
<td>2,400</td>
<td>1.44</td>
</tr>
<tr>
<td>Stockpile Stewardship</td>
<td>N/A</td>
<td>N/A</td>
<td>38</td>
<td>0.02</td>
</tr>
<tr>
<td>Container System for Naval Spent Nuclear Fuel</td>
<td>11</td>
<td>0.01</td>
<td>15</td>
<td>0.01</td>
</tr>
<tr>
<td>S3G and D1G Prototype Reactor Plant Disposal EIS</td>
<td>2.9</td>
<td>0.00</td>
<td>2.2</td>
<td>0.00</td>
</tr>
<tr>
<td>SIC Prototype Reactor Plant Disposal EIS</td>
<td>6.7</td>
<td>0.00</td>
<td>1.9</td>
<td>0.00</td>
</tr>
<tr>
<td>ETTP DUF₆ Transport to Portsmouth g</td>
<td>99</td>
<td>0.06</td>
<td>3.2</td>
<td>0.00</td>
</tr>
<tr>
<td>Spent Nuclear Fuel PEIS</td>
<td>360</td>
<td>0.22</td>
<td>810</td>
<td>0.49</td>
</tr>
<tr>
<td>Foreign Research Reactor Spent Nuclear Fuel EIS b</td>
<td>90</td>
<td>0.05</td>
<td>222</td>
<td>0.13</td>
</tr>
<tr>
<td>Private Fuel Storage Facility Final EIS i</td>
<td>30</td>
<td>0.02</td>
<td>190</td>
<td>0.11</td>
</tr>
<tr>
<td>Mixed Oxide Fuel Fabrication at Savannah River Site j</td>
<td>530</td>
<td>0.32</td>
<td>560</td>
<td>0.34</td>
</tr>
<tr>
<td>Enrichment Facility in Lea County EIS k</td>
<td>1,500</td>
<td>0.9</td>
<td>450</td>
<td>0.27</td>
</tr>
<tr>
<td>GTCC EIS i</td>
<td>500</td>
<td>0.32</td>
<td>180</td>
<td>0.1</td>
</tr>
<tr>
<td>Draft TC&WM EIS m</td>
<td>2,884</td>
<td>1.7</td>
<td>425</td>
<td>0.3</td>
</tr>
<tr>
<td>West Valley Demonstration Project Waste Management Environmental Impact Statement</td>
<td>520</td>
<td>0.31</td>
<td>410</td>
<td>0.25</td>
</tr>
<tr>
<td>West Valley Demonstration Project Environmental Assessment for the Decontamination & Decommissioning and Removal of Certain Facilities</td>
<td></td>
<td></td>
<td>14</td>
<td>0.01</td>
</tr>
<tr>
<td>Draft Y-12 SWEIS a</td>
<td>Not listed</td>
<td>Not listed</td>
<td>Not listed</td>
<td>0.18</td>
</tr>
<tr>
<td>West Valley Decommissioning EIS a</td>
<td>1,900</td>
<td>1</td>
<td>310</td>
<td>0.2</td>
</tr>
<tr>
<td>Paducah DUF₆ Conversion Final EIS b</td>
<td>174</td>
<td>0.06</td>
<td>120</td>
<td>0.06</td>
</tr>
<tr>
<td>Portsmouth DUF₆ Conversion Final EIS d</td>
<td>93</td>
<td>0.04</td>
<td>62</td>
<td>0.04</td>
</tr>
<tr>
<td>Subtotal</td>
<td>24,800</td>
<td>15</td>
<td>35,000</td>
<td>21</td>
</tr>
<tr>
<td>General Radioactive Material Transport b,r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1943–1982 j</td>
<td>220,000</td>
<td>322</td>
<td>170,000</td>
<td>102</td>
</tr>
<tr>
<td>1983–2073 k</td>
<td>154,000</td>
<td>92</td>
<td>168,000</td>
<td>101</td>
</tr>
<tr>
<td>1943–2073</td>
<td>374,000</td>
<td>224</td>
<td>338,000</td>
<td>203</td>
</tr>
</tbody>
</table>
The annual dose estimates are similar to those for the period 1975–1982. These estimates are very conservative because few shipments were made in the 1950s and 1960s. In addition, the summed values are rounded to three significant figures.

DUF₆ = depleted uranium hexafluoride; ETTP = Eastern Tennessee Technology Park; LCF = latent cancer fatality; N/A = not available (the data are provided as a sum for workers and the public); NNSS = Nevada National Security Site; rem = roentgen equivalent man.

* Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (DOE 1996c).

Estimates for NNSS transportation impacts for the years 1995 to 2010 are not available.

Unless it is specified otherwise, all values are taken from the Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DOE 2002e) and the Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DOE 2008g).

Includes worker and general population doses.

DOE/EIS-0360, Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site, June 2004 (DOE 2004e).

NUREG-1714, Final Environmental Impact Statement for the Construction and Operation of an Independent Spent Fuel Storage Installation on the Reservation of the Skull Valley Band of Goshute Indians and the Related Transportation Facility in Tooele County, Utah, December 2001 (NRC 2001). The impacts shown in this table reflect only those impacts associated with radioactive waste being transported to disposal sites other than the NNSS.

NUREG-1790, Environmental Impact Statement for the Proposed National Enrichment Facility in Lea County, New Mexico, June 2005 (NRC 2005b). The risk values presented in this report are per year of operation. The values presented in this table are for 30 years of operation.

DOE/EIS-0226, Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center, January 2010 (DOE 2010c). The impacts between 2011 and 2020 are included in the discussion of transportation impacts in Chapter 5, and reflect the preferred alternative with eventual clean closure. Impacts beyond 2020 are not included because no decision has been made as to the activities to be conducted beyond 2020.

DOE/EIS-0359, Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE 2004d). Includes those transportation impacts occurring beyond the next 10 years.

DOE/EIS-0360, Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site (DOE 2004e). Includes those transportation impacts occurring beyond the next 10 years.

The summed values are rounded to three significant figures.

These estimates are very conservative because few shipments were made in the 1950s and 1960s. In addition, the nonexclusive shipment dose estimates are based on a very conservative method. See the text under General Radioactive Materials Transports for dose estimates for shipments performed in 1975 and 1983. Totals are rounded.

The annual dose estimates are similar to those for the period 1975–1982.

Total Transportation Impacts Unrelated to this NNSS SWEIS

<table>
<thead>
<tr>
<th>Category</th>
<th>Worker</th>
<th>General Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Collective Dose (person-rem)</td>
<td>Risk (LCF)</td>
</tr>
<tr>
<td>Total Impacts (up to 2073)</td>
<td>399,000 *</td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Worker</th>
<th>General Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Collective Dose (person-rem)</td>
<td>Risk (LCF)</td>
</tr>
<tr>
<td>Total Impacts (up to 2073)</td>
<td>399,000 *</td>
<td>240</td>
</tr>
</tbody>
</table>
There are considerable uncertainties in these historical estimates of collective dose. For example, the population densities and transportation routes used in the dose assessment were based on the data from the 1990 U.S. census and the U.S. highway network as it existed in 1995. The U.S. population has continuously increased over the time covered in this assessment, thereby increasing the cumulative population dose. In addition, using interstate highway routes as they existed in 1995 may slightly underestimate doses for shipments that occurred in the 1950s and 1960s, because a larger portion of the transport routes would have been on noninterstate highways, where the population may have been closer to the road. By the 1970s, the structure of the interstate highway system was largely fixed, and most shipments would have been made using interstate routing.

Reasonably Foreseeable Future Actions. The values provided for reasonably foreseeable actions could lead to some double counting of impacts. For example, the LLW transportation impacts in the *Final Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste* may also be included in the individual DOE facilities’ site-wide EISs. In addition, for reasonably foreseeable actions where no preferred alternative was identified or no ROD was issued, impact values were included for the alternative that has the largest transportation impacts. It was assumed that this *NNSS SWEIS* and other NEPA documents listed in Table 6–5, such as the *Final Sitewide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory, Los Alamos, New Mexico*, and the *Sitewide Environmental Impact Statement for the Y-12 National Security Complex*, would address transportation impacts associated with the *Complex Transformation Supplemental Programmatic Environmental Impact Statement*; therefore, that NEPA document is not included in Table 6–5.

| Table 6–5 Cumulative Transportation Impacts Under the Expanded Operations Alternative |
|--------------------------------------|---------------------------------|-----------------|-----------------|
| | **Worker** | **General Population** |
| | Collective Dose (person-rem) | Risk (LCF) | Collective Dose (person-rem) | Risk (LCF) |
| NNSS Transportation Risk (2011–2020) | | | | |
| *NNSS SWEIS* | 5,600 | 3 | 1,400 | 0.8 |
| Other Transportation Impacts Not Related to this NNSS SWEIS | | | | |
| Historical Shipments to the NNSS | 330 | 0.20 | 230 | 0.14 |
| Reasonably Foreseeable Actions | 24,800 | 15 | 35,000 | 21 |
| General Radioactive Material Transport | 374,000 | 224 | 338,000 | 203 |
| Total | 399,000 | 240 | 373,000 | 224 |
| Cumulative Total b | 405,000 | 243 | 374,000 | 225 |

LCF = latent cancer fatality; NNSS = Nevada National Security Site; rem = roentgen equivalent man.

a The values provided are for the Expanded Operations Alternative, which has the greatest impacts.

b The cumulative total is the sum of the projected impacts for this NNSS SWEIS and the impacts from the other nonrelated transportation activities.

c Totals are rounded to three significant digits.

General Radioactive Materials Transports. General radioactive material transports are shipments not related to a particular action; they include shipments of radiopharmaceuticals, industrial and radiography sources, and uranium fuel cycle materials, as well as shipments of commercial LLW to commercial disposal facilities. The collective dose estimates from transportation of these types of materials were based on the following: (1) for the period 1943 through 1982, an NRC analysis documented in U.S. Nuclear Regulatory Commission Regulation (NUREG) 0170 for shipments made in 1975 (NRC 1977) and (2) for the period 1983 through 2043, an analysis of unclassified shipments in 1983, documented in the *Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement* (DOE 1995). The NRC report estimated collective doses to the workers and population of 5,600 and 4,200 person-rem, respectively, for transports in 1975. The modes of
transportation included truck, rail, and plane. The collective doses to workers and the general public for 1943 through 1982 (39 years) were estimated to be 220,000 and 170,000 person-rem, respectively (NRC 1977). The estimated collective doses to workers and populations for shipments in 1983 using a combination of truck and plane shipments were 1,690 and 1,850 person-rem, respectively (DOE 1995). These doses were calculated using more-refined models than those used in the 1977 NRC report. Even though the number of shipments was larger than those of the 1977 NRC report, the estimated doses are smaller by a factor of 2 to 3. As shown in Table 6–4, the collective doses over 91 years, from 1983 through 2073, would be 154,000 and 168,000 person-rem for workers and population, respectively.

Table 6–5 provides impacts on transport workers and the general population from future transportation activities considered in this NNSS SWEIS in comparison to the total worker and general population collective doses estimated in Table 6–4. The impacts from transportation in this NNSS SWEIS are quite small compared with the overall cumulative transportation impacts. The estimated total collective worker dose from all types of shipments (historical, reasonably foreseeable future actions, and general transportation) is about 399,000 person-rem (240 LCFs) for the period from 1943 through 2073 (131 years). The estimated total general population collective dose is about 373,000 person-rem (224 LCFs). To place these numbers in perspective, the National Center for Health Statistics indicates that the average annual number of cancer deaths in the United States from 1999 through 2004 was about 554,000, with less than a 1 percent fluctuation in the number of deaths in any given year (CDC 2007). The total number of LCFs (among the workers and general population) estimated to result from radioactive material transportation over the period between 1943 and 2073 is 468, or an average of about 4 LCFs per year. The transportation-related LCFs are about 0.0007 percent of the annual number of cancer deaths; therefore, this number is indistinguishable from the natural fluctuation in the total annual death rate from cancer. Note that the majority of the cumulative risks to workers and the general population were due to the general transportation of radioactive material unrelated to activities evaluated in this NNSS SWEIS.

6.3.4 Socioeconomics

Cumulative socioeconomic impacts are the impacts that result from the incremental impact of the action added to other past, present, and reasonably foreseeable future actions in Clark and Nye Counties. Because either expanding or reducing operations may have adverse impacts on different aspects of the socioeconomic environment, information from the Expanded Operations and Reduced Operations Alternatives was considered, as appropriate, in this analysis.

Under the Expanded Operations Alternative, there would be a net increase of 723 jobs to support DOE/NNSA activities over the next 10 years. In addition, operation of up to 1,000 megawatts of commercial solar power generation facilities would require an estimated 200 employees. This increase in the number of jobs would have an overall beneficial impact on economic activity in the area, as described in Chapter 5, Section 5.1.2. This increase in economic activity would have a minor contribution to overall cumulative economic impacts in Clark and Nye Counties.

Approximately 10 percent (about 92) of the individuals hired to support both DOE/NNSA activities and to operate of commercial solar power generation facilities on the NNSS under the Expanded Operations Alternative are expected to relocate to Clark and Nye Counties from other areas. Given the economic downturn, the population of Clark and Nye Counties decreased by 0.8 and 2.1 percent, respectively, in 2009 (NSBDC 2010), as noted in Chapter 2, Section 2.5.2, and Las Vegas had one of the highest home foreclosure rates in the Nation. In the short term, the increased DOE/NNSA-related workforce would likely slightly reduce the adverse impacts of the economic downturn due to new employees purchasing or renting housing and purchasing goods and services in Clark and Nye Counties. In the longer term, this increase would be so small as to be easily absorbed with almost undetectable impacts on local economies. In addition, because there would only be a small increase in population, the need for additional public services would be negligible. Therefore, this increase would not contribute to cumulative impacts on public services.
Under the Reduced Operations Alternative, a net decrease in DOE/NNSA jobs of approximately 381, relative to the No Action Alternative would occur over the next 10 years. This decrease would have an overall minor adverse economic impact in the area, as described in Chapter 5, Section 5.1.2. However, due to the high current unemployment rate, this decrease in economic activity would have a negligible contribution to overall cumulative impacts on the economy in Clark and Nye Counties. The demand for public services is expected to remain the same under the Reduced Operations Alternative. Therefore, no cumulative impacts on public services would occur.

6.3.5 Geology and Soils

Dynamic experiments using plutonium or other radioactive materials not conducted within a containment vessel would result in incremental increases in the deposition of radioactive material in the mined cavities at the U1a Complex. Dynamic experiments would not cause radiologic contamination of the land surface under normal circumstances. These types of activities are not conducted at any other locations in the United States. Therefore, the resulting cumulative impacts on geologic media would be incremental to the direct impacts and confined to the NNSS.

As shown in Table 6–3, construction of new facilities and other infrastructure by DOE/NNSA at the NNSS would result in long-term disturbance of up to 26,000 acres of previously undisturbed soils and near-surface geologic media. This disturbance, when added to previous similar disturbance at the NNSS (an estimated 80,000 acres), would amount to about 13 percent of the total area of the NNSS. Based on reviews of available documentation, potential non-DOE/NNSA land disturbance within the cumulative impacts ROI would be approximately 509,640 acres; the total area of the cumulative impacts ROI is about 15,737,760 acres. This potential disturbance includes areas specified in EISs, environmental assessments, and other planning documents and the analysis assumed that all land that would be disposed by BLM in the Las Vegas Valley would be developed. This new land surface disturbance represents about 3.2 percent of the cumulative impacts ROI. The area of existing land disturbance in the cumulative impacts ROI is about 346,000 acres, or 2.2 percent of the total area. When potential land disturbance resulting from DOE/NNSA actions (26,000 acres) is considered, the existing and potential land disturbance within the ROI would be about 881,640 acres, or 5.6 percent of the ROI. Remediation of the former Yucca Mountain Repository site would result in about 350 acres of currently disturbed lands being returned to near pre-disturbance contours and reclaimed using native species.

In addition to direct impacts on soils and geologic media resulting from DOE/NNSA and other agencies, limited access to large areas of land in Nye County would have impacts related to geological resources. Access to almost all of the NNSS and the Nevada Test and Training Range has been restricted since October 1940, when land was withdrawn for establishment of the Tonopah Bombing and Gunnery Range (Kral 1951). Since 1940, additional lands have been added to the withdrawn areas and the agencies responsible for management of various portions of the withdrawn lands have changed, resulting in the most recent configuration of the NNSS and Nevada Test and Training Range.

Based on review of existing data, the Special Nevada Report (SAIC/DRI 1991) concluded that, in areas at the NNSS that are outside of known mining districts, the following base and precious metals could occur: one small-to-medium-sized precious metal deposit, one or two tungsten skarn deposits and/or polymetallic replacement deposits, and one gold deposit. Possible deposits within known mining districts include the following: (1) a low-to-moderate potential for a precious metal or a porphyry-molybdenum deposit in the Calico Hills mining district (in the northern portion of Area 25), (2) a high potential for gold-silver resources in the Wahmonie district (generally located in Area 26) that could support a moderate-sized mining operation, (3) a high potential for skarn tungsten mineralization and porphyry molybdenum mineralization in the Oak Spring district (in the northeastern portion of the NNSS), and (4) disseminated gold deposits in the Mine Mountain district (generally located in the northwestern portion of Area 6). The Nevada Test and Training Range, including the TTR, has the following known and potential minable mineral deposits: (1) up to three small, low-to-moderate potential base-metal replacement deposits, as well as one Carlin-type gold deposit; (2) a moderate-to-high potential for
discovery one or more precious metal deposits in volcanic rocks at any of the 10 established mining districts within the Nevada Test and Training Range; (3) a low-to-moderate potential for small base-metal replacement deposits; and (4) a moderate-to-high potential for small vein deposits of precious metals in parts of the Groom Mountain Range.

Certain commercial activities would not be inconsistent with DOE/NNSA activities at the NNSS. Proposed commercial activities at the NNSS would be subject to the safeguards and security protocols of DOE/NNSA, which could restrict the commercial activities from time to time. Proposals for conducting a commercial activity, such as mineral or oil and gas exploration and extraction on the NNSS, would be evaluated in accordance with DOE/NNSA NSO procedures and, if found to be compatible, could be permitted. In this way, DOE/NNSA could allow the development of commercial projects without hindering its national security activities and continue to protect the offsite public.

Continued mining restrictions on the NNSS and Nevada Test and Training Range would result in the continued exclusion of potential mineral resources from evaluation or extraction. Although the potential exists for extractable minerals and precious metals on the NNSS and Nevada Test and Training Range, extensive exploration and testing would be required to determine whether this potential is realizable and, if so, what the potential quantities of those resources would be. Since 1951, there have been no proposals by any entity to conduct mineral exploration or extraction activities at the NNSS. Therefore, it was not possible to further analyze the impact of restricted access to these potential mineral resources.

As noted in Chapter 4, Section 4.1.5.2.5, the presence of oil deposits at Railroad Valley, about 50 miles north of the NNSS, has led some researchers to hypothesize that large petroleum deposits could be present under similar conditions at the NNSS (Chamberlain 1991). However, Trexler et al. (1996) states that the likeliest formation (Chainman shale) is less extensive than previously thought and may have lost as much as 80 percent of its original hydrocarbon content from migration. Other investigations (Garside et al. 1988; SAIC/DRI 1991) also determined that large-scale hydrocarbon resources would be very unlikely because (1) there are few laterally extensive carbon-bearing formations; (2) the thermal maturity of the region is just within acceptability; and (3) the large fault complexes throughout the NNSS are likely to have fractured the confining bedrock. There are no known surface occurrences of oil, gas, coal, tar, sand, or oil shale at the NNSS, and numerous boreholes drilled at the site have not revealed any hydrocarbon shows within the likeliest formations. Further, since 1951, there have been no proposals by any entity to conduct oil and gas exploration at the NNSS. Because no exploration activities have been conducted, it is not possible to determine whether economically viable oil or gas reserves exist beneath the NNSS or to ascertain the impact of the lack of exploration and/or production.

Disposal of BLM land in Las Vegas Valley could affect access to mineral resources; however, there are no economically viable locatable or leasable minerals located within the disposal area (BLM 2004b). The use of aggregate resources on the NNSS would result in a cumulative impact on regional aggregate supply; however, aggregate resources on the NNSS are more than adequate to meet projected needs. No new sand and gravel operations would be developed within the BLM land disposal area in Las Vegas Valley (BLM 2004b). There are abundant sand and gravel resources available outside of the BLM land disposal area throughout southern Nevada.

6.3.6 Hydrology
6.3.6.1 Surface Water

Aside from seeps and springs, there are no perennial water bodies on the NNSS. Closed basins capture surface runoff for the eastern portion of the NNSS (Frenchman Flat and Yucca Flat). The western and southern portions of the NNSS are within the Amargosa River Basin. The Amargosa River (also known as the Amargosa Arroyo) is atypical of most North American rivers because it seldom flows; runoff is infrequent because much of the basin receives less than 6 inches of precipitation annually (Hardman 1965). The Amargosa River originates in the mountains surrounding Beatty, Nevada, flows through the Amargosa Desert region, and terminates at Bad Water in Death Valley National Park.
of the river course is underground, but about 17 miles of surface flow exist in the areas of Shoshone, Tecopa, and the Amargosa Canyon in California. This perennial surface flow has created lush riparian and wetland habitats that support endemic and sensitive species such as the endangered Amargosa vole (*Microtus californicus scirpensis*). The Amargosa Canyon contains some of the lusher cottonwood–willow gallery forest in the Mojave Desert (BLM 2006b). Under some conditions, unusually heavy precipitation events can produce sufficient runoff to cause the Amargosa River to have flowing water from its headwaters to its terminus (Tanko and Glancy 2001).

The major tributaries to the northern reach of the Amargosa River are Thirsty Canyon Wash and Beatty Wash, which drain the northwestern part of the NNSS. Major tributaries to the central reach of the Amargosa River are Fortymile Wash, Topopah Wash, Rock Valley Wash, and Carson Slough. Fortymile Wash drains the southern part of Pahute Mesa, the western part of Jackass Flats, and the eastern slopes of Yucca Mountain. Topopah Wash drains the eastern part of Jackass Flats. Rock Valley Wash drains the southernmost part of the NNSS in the Rock Valley basin. Carson Slough drains the Ash Meadows area off the NNSS.

Because the only flows off the NNSS go to the Amargosa River via Fortymile Wash and Topopah Wash, this is the only contribution that is made to regional surface waters from the NNSS. In addition, ephemeral surface flows on the NNSS are infrequent, with no flow in some years, while in other years, flows may occur for only a few days. For example, measurements of stream flows in Fortymile Wash near the NNSS boundary from 2002 through 2004 showed no flow at all (USGS 2002, 2004). In 2003, a discharge of less than 0.1 cubic feet per second was measured as the yearly maximum, and the flow was not sufficient to measure a water height (USGS 2003).

In the southwestern portion of Area 25, this NNSS SWEIS assumed development of 100 to 1,000 megawatts of commercial solar power generation in the Renewable Energy Zone. These renewable energy activities would result in disturbance of about 1,200 to about 10,300 acres of land by construction activities in the short term and covered by solar-power-related facilities in the long term. During the construction period, land surface disturbance would likely result in some erosion of soil into Fortymile and Topopah Washes, although implementation of best management practices would minimize this impact. Once construction is complete, soil erosion and movement of any contaminants from the solar sites would be controlled by a combination of engineered features, such as berms, as well as implementation of administrative measures such as spill control plans. As part of the reclamation activities at the former Yucca Mountain Repository site, DOE would recontour the landscape to match its precharacterization conditions, ensuring natural drainage patterns. Adherence to best management practices, such as stormwater pollution prevention plans, would ensure that cleared areas and exposed earth would be seeded, graveled, or paved to control runoff and minimize soil erosion. Any sediment or contamination that reaches either Fortymile Wash or Topopah Wash from DOE/NNSA activities at the NNSS or remediation of the former Yucca Mountain Repository site potentially could be transported off the NNSS. This would have a cumulative impact on erosion from other developed areas, such as Nye County’s proposed Yucca Mountain Project Gateway Area development and other renewable energy projects, that would disturb up to 94,300 acres in the drainage area of the Amargosa River in southern Nevada and increase the potential for erosion during the construction period; however, implementation of best management practices would minimize this impact.

In addition to the areas affected by the proposed actions analyzed in this SWEIS, a number of areas of the NNSS contain radioactive and/or chemical contaminants from past tests and experiments. These contaminated sites are discussed in detail in Chapter 5, Section 5.1.6.1. Because of the low potential for flooding, minimal flows from the NNSS, use of engineered flood control features, and condition of the contaminated sites on the NNSS, there is a negligible potential for existing onsite contamination to be transported off site via surface water or flood events to affect offsite areas such as the Amargosa River or Death Valley National Park.
6.3.6.2 Groundwater

Past underground nuclear testing resulted in a cumulative impact on groundwater under the NNSS. From 1951 to 1992, 828 underground nuclear tests were conducted at the NNSS. Most were conducted hundreds of feet above the groundwater table; however, about one-third of these tests were detonated in proximity of or within the water table in the saturated zone (DOE/NV 2010). These underground tests were conducted primarily on Pahute Mesa, Rainier Mesa, Frenchman Flat, and Yucca Flat (see Figure 6–2). Between 1965 and 1992, 82 underground nuclear tests were conducted in deep vertical boreholes on Pahute Mesa. Sixty-four of these tests were conducted on Central Pahute Mesa and 18 on Western Pahute Mesa (SNJV 2006). In the Frenchman Flat area, 10 underground tests were conducted (Navarro-Intera 2010b). In a 2001 report, scientists from Los Alamos National Laboratory and Lawrence Livermore National Laboratory calculated the underground inventory of radionuclides resulting from underground nuclear testing at the NNSS between 1951 and 1992 (Bowen et al. 2001). That report estimated the remaining underground inventory of radionuclides as of September 23, 1992 to be about 132 million curies. A general description of underground nuclear testing and its effects is provided in Appendix H.

As discussed in Chapter 4, Section 4.1.6.2, DOE/NNSA’s Underground Test Area (UGTA) Project was established to assess and evaluate the effects of underground nuclear tests on local and regional groundwater through the Federal Facilities Agreement and Consent Order (FFACO). In compliance with the FFACO and in consultation with the Nevada Division of Environmental Protection (NDEP), the UGTA currently uses 89 wells to obtain characterization data (63 on the NNSS, 11 on the Nevada Test and Training Range, and 15 on public land) and will construct additional wells as needed. The purpose of these wells is to obtain data to improve understanding of groundwater flow paths, flow velocities, and transport of radioactive contamination resulting from underground nuclear testing. As new information is obtained, DOE/NNSA, in consultation with NDEP, identifies new locations for characterization and monitoring wells. The ultimate purpose of the UGTA Project is to evaluate whether there is a potential risk to the public from contaminated groundwater or radionuclide migration off the NNSS.

The UGTA has established five corrective action units (CAUs) for system characterization and preparation of groundwater flow and transport models: (1) Yucca Flat-Climax Mine (CAU 97), (2) Frenchman Flat (CAU 98), (3) Rainier Mesa-Shoshone Mountain (CAU 99), (4) Central Pahute Mesa (CAU 101), and (5) Western Pahute Mesa (CAU 102). Of these CAUs, Western Pahute Mesa is the only one at which radioactive contamination has been detected off the NNSS. In October 2009, DOE/NNSA recorded the first detectable amount of underground nuclear testing-related tritium in the newly constructed groundwater characterization well ER-EC-11, located less than one-half mile off the NNSS on lands managed by the USAF as part of the Nevada Test and Training Range (DOE/NV 2010). The results showed the level of tritium in the groundwater at that location to be about 12,000 picocuries per liter, i.e., about 60 percent of the U.S. Environmental Protection Agency (EPA) National Drinking Water Standard of 20,000 picocuries per liter. Groundwater beneath Pahute Mesa generally flows in a southwesterly direction, primarily through fractures in lava-flow and welded tuff aquifers. The ER-EC-11 characterization well is located along the interpreted groundwater flow path from western Pahute Mesa (NSTec 2010k; SNJV 2006). As shown in Figure 6–2, well ER-EC-11 is located about 14 miles from the nearest public or private water supply well along the expected primary groundwater flow path from studied testing areas on western Pahute Mesa.
Figure 6–2 Location of Underground Test Area Corrective Action Units, Projected Groundwater Flow Directions, Characterization Well ER-EC-11, and the Nearest Private Water Well
It is difficult to reasonably estimate the volume of groundwater that may have some level of radionuclide contamination resulting from past underground nuclear testing. However, to date, the only radioactively contaminated groundwater that has been detected outside of the boundaries of the NNSS is that mentioned above, which meets EPA national drinking water standards. Because tritium is an isotope of hydrogen, it combines readily in water, is mobile in groundwater, and probably moves at the approximate velocity of groundwater flow.

A Phase I transport model has been completed for the Western and Central Pahute Mesa CAUs (SNJV 2009); however, this model still requires development prior to defining contaminant boundaries for these CAUs. The Phase I transport model needs to address a considerable amount of uncertainty regarding groundwater flow rates and direction and contaminant transport for the Pahute Mesa CAUs. Nevertheless, because tritium has been detected in an offsite characterization well, some discussion is warranted. Groundwater travel times for various flow paths between Pahute Mesa and Oasis Valley were estimated using variations in carbon and radioactive carbon isotopic values in 2002 (Rose et al. 2002). In that study, travel times for all flow paths between Pahute Mesa and Oasis Valley were estimated to range from less than 1,000 years to over 3,900 years. In the 2009 transport model study for Pahute Mesa-Oasis Valley, travel times for flow paths were estimated based on radioactive carbon data (SNJV 2009). Travel time for groundwater was calculated for one segment of a flow path (from well U-20-WW in east-central Pahute Mesa to characterization well ER-EC-6, located a short distance west of the NNSS on the Nevada Test and Training Range), yielding estimated travel times of about 3,264 years (with 95 percent confidence limits of 337 to 6,191 years). Contaminant transport in groundwater is a very complex problem; however, for the purpose of providing an example, a simple calculation may be used. The length of the flow path segment just noted is about 5.7 miles (30,096 feet). By assuming a straight-line flow path, groundwater velocity may be estimated by dividing the length of the flow path segment by the travel time, which yields about 9.2 feet per year (30,096 feet/3,264 years = 9.2 feet per year), with a range from 4.8 feet per year (6,191 year travel time to 89 feet per year (337 year travel time). As noted, there is considerable uncertainty in this flow rate. In order to help resolve this uncertainty, DOE/NNSA, in consultation with NDEP, is developing additional characterization wells to obtain additional data to help refine Phase I model predictions for groundwater flow and transport.

DOE/NNSA completed a Phase II transport model for the Frenchman Flat CAU, and contaminant boundaries have been established. Figure 6–3 depicts the modeled contaminant boundary in 1,000 years for the Frenchman Flat CAU. As that figure shows, groundwater contamination from underground nuclear tests conducted in the Frenchman Flat area are not expected to be transported any appreciable distance off of the NNSS and would not threaten any current water sources available to the public or used by livestock or wildlife.

Because some of the groundwater beneath the NNSS is thought to flow in a southwesterly direction and surface in the Amargosa River Valley or in Death Valley, there is a potential for impacts on springs and seeps from radioactive contamination. As discussed above, based on the most current understanding of groundwater flow rates and directions and modeling of contaminant transport, it is unlikely that any radioactive contamination from the NNSS would reach Death Valley in the reasonably foreseeable future.

Cumulative impacts on groundwater availability and quality may result from activities at DOE/NNSA facilities in Nevada. RSL and NLVF acquire water from Nellis Air Force Base and Las Vegas Valley Water District, respectively (see Chapter 4, Sections 4.2.2.2 and 4.3.2.2, respectively, for additional information). The water demand by these facilities is a very small proportion of the overall water demand in the Las Vegas region and contributes minimally to the cumulative impact on that system.
Figure 6–3 Modeled Extent of the Contaminant Boundary in the Frenchman Flat Corrective Action Unit in 1,000 Years
This cumulative impacts analysis considers groundwater contamination resulting from past underground nuclear testing but also considers potential impacts associated with the proposed actions addressed in this SWEIS. Proposed activities that would release chemicals and/or radiological materials to the soil or underground environment include disposal of LLW and MLLW, radiological tracer experiments, and chemical release experiments. These activities would all occur well above the water table, which is hundreds to thousands of feet below the ground surface at all locations on the NNSS. The NNSS is located in a very arid region with low precipitation and high rates of evapotranspiration, which result in a net upward movement of soil moisture in the upper portion of the vadose zone (NSTec 2011a). As noted in Chapter 5, Sections 5.1.6.2.1 and 5.1.6.2.2, a number of factors would preclude contamination of the groundwater beneath the NNSS from activities that release chemicals and/or radiological materials, including containment measures and/or aboveground nature of most experiments, depth to groundwater, operational controls, and groundwater monitoring programs.

As described in Chapter 4, Section 4.1.11.1.1.3, DOE/NNSA disposes of radioactive waste at the NNSS and, in accordance with DOE requirements, conducts analyses of possible long-term (over thousands of years) impacts on the public and environment after the disposal facilities are closed, i.e., performance assessments and composite analyses. Chapter 5, Section 5.1.12.1.4, notes that these analyses for radioactive waste disposal sites on the NNSS determined that, because of site-specific factors such as the predominance of evapotranspiration over precipitation, there is little or no potential for transport of disposed radionuclides to the groundwater. Further, the Intergovernmental Panel on Climate Change Fourth Assessment Report, *Climate Change 2007* (IPCC 2007a), estimates that, although increases in precipitation extremes (such as storms associated with “El Niño” events) are possible for the Great Basin, annual-mean precipitation is projected to decrease in the southwest United States (IPCC 2007b). This would tend to make it even more unlikely that a path to groundwater would develop in the future. Support for this conclusion may be found in DOE/NNSA’s monitoring program for the Area 3 Radioactive Waste Management Site (RWMS) and Area 5 RWMC. Since 1993, DOE/NNSA has been conducting groundwater monitoring at pilot wells at the Area 5 RWMC (annual groundwater reports are available at the Office of Scientific and Technical Information [www.osti.gov] and the DOE/NNSA NSO website [www.doe.nv.gov]). Lysimeters have been used to monitor the vadose zone (the zone of aeration in the upper levels of the soil) since 1994 at two locations at the Area 5 RWMC; since 1999 at a few disposal cells at the Area 5 RWMC; since 2001 at the closed mixed waste cell (U3-ax/bl) at the Area 3 RWMS; and since 2004 at eight drainage lysimeters at the Area 3 RWMS. Annual summary reports since 2004 are available online at the Office of Scientific and Technical Information and DOE/NNSA NSO websites. Cumulative monitoring results of the vadose zone are summarized in annual waste management monitoring reports. Monitoring of the vadose zone at waste pits, covers, and lysimeters shows no percolation below the root zone (about 6 feet). Precipitation infiltrating into the root zone is taken by evapotranspiration, i.e., water movement in the upper few meters of alluvium occurs by root uptake, liquid advection, thermal vapor transport, and isothermal vapor transport. Upward liquid fluxes dominate at depth through the waste zone at both facilities. Of particular note in relation to the likelihood of an “El Niño” event creating a pathway to groundwater, a 25-year, 24-hour storm occurred in February 1998, and several short-duration, high-intensity storms occurred during September 2007 and December 2010. None of these precipitation events resulted in producing a pathway to groundwater.

The NNSS and TTR are located in different groundwater basins (Death Valley Basin and Central Region, respectively), and there is likely not a groundwater connection between them. Because of their geographical proximity, however, their combined use of groundwater, together with that of other ongoing and reasonably foreseeable uses, could have cumulative impacts on overall groundwater availability in southern Nevada. The cumulative analysis for groundwater availability is focused on locations either up- or down-gradient from the NNSS and the TTR. The NNSS and the TTR both acquire potable and nonpotable water from onsite water wells (see Chapter 4, Sections 4.1.2.2 and 4.4.2.2, respectively, for more information). Table 6–6 shows potential groundwater demand at the NNSS and the TTR under the Expanded Operations Alternative.
Table 6–6 Annual Cumulative Water Demand at the Nevada National Security Site and the Tonopah Test Range Under the Expanded Operations Alternative

<table>
<thead>
<tr>
<th></th>
<th>NNSS</th>
<th>TTR a</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable Site Capacity (acre-feet)</td>
<td>5,844 to 8,964</td>
<td>200</td>
<td>6,044 to 9,164</td>
</tr>
<tr>
<td>Operational Water Requirements b (acre-feet)</td>
<td>1,562</td>
<td>18</td>
<td>1,580</td>
</tr>
<tr>
<td>Percent of Sustainable Site Capacity</td>
<td>17.4 to 26.7</td>
<td>9.0</td>
<td>17.2 to 26.1</td>
</tr>
</tbody>
</table>

NNSS = Nevada National Security Site, TTR = Tonopah Test Range.

a TTR sustainable site capacity is based on water appropriations rather than the perennial yield of the underlying hydrographic basins. TTR water requirements include both DOE/NNSA and U.S. Air Force uses.
b Total water demand for the NNSS includes assumed operation of 1,000 megawatts of commercial power generation.

Note: 1 acre-foot of water is equal to 325,851 gallons.
Source: Chapter 4, Table 4–29, and Chapter 5, Table 5–21.

Proposed activities under the Expanded Operations Alternative at the NNSS and the TTR would cumulatively use up to 1,580 acre-feet of water each year, assuming operation of up to 1,000 megawatts of commercial solar power generation in Area 25 of the NNSS. While the water used by DOE/NNSA at the NNSS and the TTR would not be available for use by others, such DOE/NNSA water use would not preclude down-gradient uses of an aquifer by others because DOE/NNSA activities would only use a maximum of 17.2 to 26.1 percent of the sustainable capacity.

The town of Beatty, Nevada, is located to the west and downgradient of the northwestern portion of the NNSS. During 2006, the annual water use for Beatty was about 138,210,050 gallons (BWSD 2008), or approximately 424 acre-feet. The town of Beatty is situated in the Oasis Valley Hydrographic Basin, and most of its water is assumed to be withdrawn from that basin. DOE/NNSA does not withdraw any groundwater from the Oasis Valley Hydrographic Basin but it is assumed that groundwater flows from the Gold Flat and Fortymile Canyon–Buckboard Mesa Hydrographic Basins into that basin. Of these two basins, DOE/NNSA would withdraw about 53 acre-feet of groundwater (about 1 percent of the sustainable yield of the basin) from the Fortymile Canyon–Buckboard Mesa Hydrographic Basin.

As shown in Table 6–2, proposed renewable energy projects within the cumulative impacts ROI in southern Nevada would require almost 5,400 acre-feet per year of water for operations. However, only four of the proposed projects have either completed the BLM permitting process or are actively pursuing a land use permit. If only those four projects were considered, the total water use would be only about 2,800 acre-feet per year.

The volume of potential groundwater withdrawn for use at the NNSS and the TTR, as well as by the town of Beatty and for proposed renewable energy projects, would represent from about 4,800 acre-feet per year to over 7,300 acre-feet per year of groundwater withdrawals. These combined withdrawals could represent a significant impact on the groundwater resource. As discussed below, the total amount of groundwater rights currently approved in the Amargosa Desert Hydrographic Basin is not likely to increase due to implementation of Nevada State Engineer Order 1197.

The majority of reasonably foreseeable future actions that could have cumulative groundwater impacts associated with DOE/NNSA actions at the NNSS and TTR are solar energy developments on Federal lands in the Amargosa Desert Hydrographic Basin and are generally downgradient from the NNSS. The inferred northern boundary of the Amargosa Desert Hydrographic Basin in the vicinity of the NNSS generally follows the southern boundary of the NNSS. Nevada State Engineer Order 1197 states in part, “…any applications to appropriate additional underground water and any application to change the point of diversion of an existing ground-water right to a point of diversion closer to Devils Hole, described as being within a 25-mile radius from Devils Hole within the Amargosa Desert Hydrographic Basin, will be denied.” For any project needing a stable water supply within the area subject to Nevada State Engineer Order 1197, the developer would need to either lease or purchase water currently being pumped under an existing certified water right. As the water user can only pump up to the authorized duty of the water right, there would be no net increase in groundwater pumping within the basin. Converting agricultural
water rights to industrial water rights could reduce return flow (recharge) from irrigation because the water would be used primarily for cooling instead of being applied to the ground, as it would if used for irrigation of crops.

As of September 2010, only two proposed solar projects within the Amargosa Desert Hydrographic Basin, the Lathrop Wells Solar Facility and Amargosa North Solar Project, had reached the Federal permitting stage (BLM 2010a), and only the Amargosa Farm Road Solar Energy Project had been approved by BLM (BLM 2010i). Information about each project’s water needs is limited. However, based on industry standards, it is anticipated that the two projects using parabolic trough concentrating solar technology, the Amargosa Farm Road Solar Energy Project and the Lathrop Wells Solar Facility, would require about 400 acre-feet and 200 to 405 acre-feet of water per year, respectively. The Amargosa North Solar Project, a multiphase photovoltaic project, would require substantially less water (5 to 10 acre-feet per year) (BLM 2010a). The water used for the three solar projects would result in a conversion of almost 1,000 acre-feet per year of existing water rights from their current permitted use to industrial use.

In addition to converting existing water rights from their current use to use in a solar energy project, the Amargosa Farm Road Solar Energy Project was required, as mitigation, to acquire no less than 236 acre-feet per year of water rights to hold in abeyance (BLM 2010i). To avoid significant impacts on water resources, both resulting from an individual project and in terms of cumulative impacts of multiple projects, it is likely that NPS, USFWS, and BLM would require other solar developers to agree to water mitigation measures like those required for the Amargosa Farm Road Solar Energy Project. This may result in additional groundwater being retired or held in abeyance until it can be proven that its use would not affect sensitive resources at Ash Meadows National Wildlife Refuge or Devils Hole. No net increase (and a possible decrease) in water usage resulting from these restrictions would avoid significant cumulative impacts on water resources and potential impacts on sensitive species. However, because water must be obtained from an existing water right holder and there are limited senior water rights within the basin, implementation of such measures would reduce the amount of water that is available for other uses, which might constrain other types of economic development in the region.

Because new water rights would not be granted to potential or proposed projects that would be located within the Amargosa Desert Hydrographic Basin, there would be no cumulative impacts from DOE/NNSA’s use of groundwater at the NNSS. Further, the likely requirement that future projects acquire existing water rights in addition to their needs and hold those rights in abeyance will reduce the overall potential use of groundwater resources in the Amargosa Desert Hydrographic Basin and result in net positive cumulative impacts on those resources; however, as noted above, this requirement could constrain some types of development in the region.

As described in Chapter 4, Section 4.1.6.2, Groundwater, there are 10 hydrographic basins underlying the NNSS. The total available, or uncommitted, groundwater within these 10 basins is estimated to be in excess of 32,000 acre-feet per year. In addition, there over 1,800 acre-feet per year are committed to non-DOE/NNSA users. DOE/NNSA withdraws water for use on the NNSS from 4 of the 10 hydrographic basins: Yucca Flat, Frenchman Flat, Fortymile Canyon–Buckboard Mesa, and Fortymile Canyon–Jackass Flats). As noted in Table 6–6, there are conservatively about 5,844 acre-feet per year of groundwater available in the four hydrographic basins that currently provide the source for water on the NNSS. Under the Expanded Operations Alternative, DOE/NNSA would use up to 1,562 acre-feet per year, or less than 27 percent, of that available groundwater. Theoretically, this would leave 4,282 acre-feet per year available for other uses. Because the NNSS is a secure facility and may not be accessed by the public, non-DOE/NNSA access to available resources is precluded. Therefore, to use groundwater that flows beneath the NNSS, a potential user would need to withdraw that resource at a down-gradient point off the NNSS. DOE/NNSA, along with other Federal agencies involved in land and resource management in the region (i.e., BLM, USFS, and NPS), have for various reasons protested applications for water withdrawals by others. In DOE/NNSA’s case, the protests were based on the need to protect its Federal
reserve water rights where the requested withdrawals could affect those rights. To date, it has not been demonstrated that lack of access to NNSS groundwater has adversely affected development in the region. However, it is possible that the restrictions imposed on future groundwater withdrawals within the Amargosa Desert Hydrographic Basin by Nevada State Engineer Order 1197, combined with a lack of access to other sources of water, could constrain certain types of development.

6.3.7 Biological Resources

Cumulative impacts on desert tortoises would occur throughout the region, although the intensity of the impacts would vary from location to location depending on the habitat. Under the Clark County MSHCP, 145,000 acres out of an estimated 4,000,000 acres of desert tortoise habitat may be developed for other purposes, equal to approximately 3.6 percent of available desert tortoise habitat in Clark County (USFWS 2000). USFWS is evaluating a proposal by the permitted parties to amend the permit to increase the take of covered species on 215,000 additional acres (74 FR 50239) (for more information regarding the Clark County MSHCP, see Section 6.2.3.2). If approved as requested, the modified permit would be for a period of 50 years and allow for incidental take on about 360,000 acres, or about 9 percent of available desert tortoise habitat in the county. The Las Vegas Valley does not have large “islands” of habitat capable of sustaining viable desert tortoise populations; such habitat is randomly dispersed across the valley, and the tortoises are unable to move between habitat areas in most cases. As a result, this loss of habitat is not expected to jeopardize the continued existence of the Mojave population of the desert tortoise.

Within Nye County, desert tortoise habitat would be affected by a number of reasonably foreseeable future actions. The development of solar energy projects would remove up to about 131,500 acres of desert tortoise habitat (the two geothermal projects and the Crescent Dunes Solar Energy Project are located outside of the range of the desert tortoise), and development of the Nye County Yucca Mountain Project Gateway Area would remove up to 5,800 acres. Although some desert tortoises may be affected by remediation of the former Yucca Mountain Repository site, once completed, about 350 acres of tortoise habitat would again be available for use by that species.

DOE/NNSA activities at the NNSS would affect up to 3,300 acres of desert tortoise habitat. Development of up to 1,000 megawatts of solar power electric generation and associated transmission lines would affect an additional approximately 10,300 acres of tortoise habitat. Up to 507,600 acres of desert tortoise habitat in southern Nevada could be impacted by activities related to DOE/NNSA and other reasonably foreseeable future actions in Clark and Nye Counties.

Between August 1996 and February 2009, DOE/NNSA activities at the NNSS were covered under a Biological Opinion issued by USFWS (USFWS 1996). In February 2009, USFWS issued a new Biological Opinion for the NNSS (USFWS 2009a). Both of these Biological Opinions concluded that, under the terms and conditions set forth, the proposed DOE/NNSA activities would not likely jeopardize the continued existence of the Mojave population of the desert tortoise and no critical habitat would be destroyed or adversely modified (DOE/NV 2009d). DOE/NNSA established a Desert Tortoise Compliance Program to implement the terms and conditions applicable under any Biological Opinion (DOE/NV 2009d). The Desert Tortoise Compliance Program documents compliance actions taken under the Biological Opinion, conducts pre-activity surveys of potentially disturbed areas within the distribution range of the desert tortoise on the NNSS, and assists the DOE/NNSA NSO in consultations with USFWS.

Table 6–7 shows the Biological Opinion compliance measures and cumulative impacts between 1992 and 2008.
Table 6–7 Cumulative Incidental Take and Desert Tortoise Habitat Disturbance from 1992 to 2008 at the Nevada National Security Site

<table>
<thead>
<tr>
<th>Compliance Measure</th>
<th>Threshold Value from 1996 NNSS Biological Opinion</th>
<th>Cumulative Total a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number accidentally injured or killed due to NNSS activities</td>
<td>3 per year</td>
<td>0</td>
</tr>
<tr>
<td>Number captured and displaced from NNSS project sites</td>
<td>10 per year</td>
<td>102</td>
</tr>
<tr>
<td>Number taken by injury or mortality on paved roads on the NNSS by vehicles other than those in use during a project</td>
<td>Unlimited</td>
<td>12</td>
</tr>
<tr>
<td>Number of acres of habitat disturbed by NNSS project construction</td>
<td>3,015 acres</td>
<td>311.46 acres</td>
</tr>
</tbody>
</table>

NNSS = Nevada National Security Site.

a Cumulative totals were derived from Table 2 of USFWS 2009a.

Between 1992 and the end of 2008, a cumulative total of about 312 acres was disturbed, or about 10.3 percent of allowable disturbance of tortoise habitat and less than 0.1 percent of the 328,400 acres of desert tortoise habitat on the NNSS. Overall, about 7,350 acres, or 2 percent of NNSS land within desert tortoise range, have been disturbed in the past by construction of facilities and infrastructure and other activities. Disturbance of desert tortoise habitat by DOE/NNSA activities is mitigated in one of two ways. Between 1992 and 2004, DOE/NNSA paid a designated dollar amount into the Clark County Desert Conservation Fund for each acre, or portion thereof, of desert tortoise habitat that was disturbed on the NNSS. Since 2005, with USFWS’s approval, DOE/NNSA has, as an alternative to payment into the conservation fund, reclaimed previously disturbed areas of tortoise habitat. Between 2005 and the end of 2007, 67.11 acres of desert tortoise habitat were disturbed and 14.08 acres were reclaimed under this program.

In addition to cumulative impacts on the desert tortoise through direct impacts and indirectly through conversion of habitat into solar power generation facilities, commercial/industrial uses, or other potential activities, other species of wildlife, as well as vegetation, would be subject to cumulative impacts. The development of about 535,750 acres of land in the region would cumulatively affect wildlife and wildlife habitat, although remediation of the former Yucca Mountain Repository site would provide about 350 acres of reclaimed wildlife habitat. While it is not likely that all of the projects addressed in Section 6.2 would be implemented, the loss of large areas of habitat could have a number of adverse cumulative effects. These adverse effects would include reduction of the available habitat for native wildlife; federally listed species such as the desert tortoise; and other special status species, such as Le Conte’s thrasher and burrowing owl. Cumulative impacts would contribute to the loss, fragmentation, and degradation of Mojave Desert scrub habitat, which would result in impacts on habitat connectivity, the genetic integrity of wildlife populations, and wildlife movement corridors, as well as fragmentation of species populations, significant alteration of natural riparian habitat and function, and loss of occupied habitat for a variety of animals. Cumulative impacts would also encourage nonnative invasive species of plants, thereby eliminating or degrading natural plant communities on which wildlife depend. Wildlife species occupying small, isolated patches of habitat are more susceptible to disturbance than species that are more widely distributed over the landscape.

As part of the Expanded Operations Alternative in this NNSS SWEIS, use of depleted uranium with explosives in up to three locations and radioisotope tracer experiments could add an increment of radioactive contamination at the NNSS. The radioisotopes used in the tracer experiments would have very short half-lives and would not likely have any cumulative impact with existing radioactive contamination at the NNSS. Experiments involving detonations of explosives in combination with depleted uranium would add a small increment of added radioactive contamination in the soil at specific locations on the NNSS. As noted in Chapter 5, Section 5.1.7.2.2, inhalation is the most likely pathway for depleted uranium to be internalized in wildlife. In general, wildlife species do not have sufficiently long enough life spans to experience the adverse effects of inhaling depleted uranium (damage to lung...
cells and an increase in the possibility of lung cancer) therefore, there would be no additional impacts on NNSS wildlife populations.

Perhaps the longest-lived species of wildlife that inhabits the NNSS is the desert tortoise. Given its long lifespan, it is conceivable that inhaled radioactive particles could cause cancer in affected desert tortoises. Although there have been studies of impacts of radionuclides on vegetation and wildlife at the NNSS and DOE/NNSA is conducting ongoing monitoring, as noted in Chapter 4, Section 4.1.7.5 and 4.1.7.5, there is no specific data addressing the desert tortoise. However, the only area on the NNSS within desert tortoise habitat where there is radiological contamination in the soil is Frenchman Flat, which provides very poor habitat for the species. Because radioactive contamination within the range of the desert tortoise on the NNSS is in poor habitat for the species and proposed experiments using depleted uranium in combination with explosives would be conducted only in the more northerly portions of the NNSS and outside of desert tortoise habitat, there would be no cumulative impact on that threatened species.

6.3.8 Air Quality and Climate

The analysis criterion for cumulative impacts on air quality and climate is the potential for emissions of criteria or hazardous air pollutants to contribute to or create a nonattainment with applicable National Ambient Air Quality Standards (NAAQS). Based on that threshold, only DOE/NNSA-related emissions sources in Clark County received detailed analysis. Greenhouse gas emissions were also analyzed for cumulative impact.

6.3.8.1 Criteria and Hazardous Air Pollutants

Table 6–8 displays the criteria and hazardous air pollutants emissions that would be generated by DOE/NNSA activities in Nevada, including those that are unregulated, such as employee commuting, vendor transportation, and shipments of waste to or from the NNSS.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>NNSS (^a)</th>
<th>RSL (^b)</th>
<th>NLVF (^c)</th>
<th>TTR (^d)</th>
<th>Total DOE/NNSA (^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(tons per year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>20.1</td>
<td>0.084</td>
<td>0.44</td>
<td><3.8</td>
<td>24.42</td>
</tr>
<tr>
<td>PM(_{2.5})</td>
<td>8.1</td>
<td>0.067</td>
<td>0.28</td>
<td><3.8</td>
<td>12.25</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>160.9</td>
<td>4.1</td>
<td>30.5</td>
<td><6.1</td>
<td>201.60</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>56.6</td>
<td>1.6</td>
<td>7.2</td>
<td><14.8</td>
<td>80.20</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>1.1</td>
<td>0.034</td>
<td>0.095</td>
<td><0.92</td>
<td>2.15</td>
</tr>
<tr>
<td>Volatile organic compounds</td>
<td>11.0</td>
<td>~0.3</td>
<td>0.096</td>
<td><1.1</td>
<td>12.50</td>
</tr>
<tr>
<td>Lead</td>
<td>~0.010</td>
<td>~0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Criteria Pollutant Total</td>
<td>249.7</td>
<td>~6.1</td>
<td>39.2</td>
<td><26.8</td>
<td>321.80</td>
</tr>
<tr>
<td>Hazardous air pollutants</td>
<td>~0.53</td>
<td>~0.19</td>
<td>0.078</td>
<td><1.1</td>
<td>1.90</td>
</tr>
</tbody>
</table>

\(^<\) = less than; NLVF = North Las Vegas Facility; NNSS = Nevada National Security Site; PM\(_n\) = particulate matter with an aerodynamic diameter less than or equal to \(n\) micrometers; RSL = Remote Sensing Laboratory; TTR = Tonopah Test Range.

\(^a\) From Chapter 5, Table 5–37.
\(^b\) From Table 5–58.
\(^c\) From Table 5–62.
\(^d\) From Table 5–68.
\(^e\) Values rounded.

Cumulative diesel emissions from DOE/NNSA sources in southern Nevada in 2015 were estimated to be about 3.3 tons per year. This estimate was derived by summing PM\(_{10}\) and PM\(_{2.5}\) [particulate matter with an aerodynamic diameter less than or equal to 10 and 2.5 micrometers, respectively] emissions for commercial vendors and trucks transporting radioactive waste, all of which were assumed to be powered by diesel engines, from Chapter 5, Tables 5–32, 5–50, 5–56, and 5–58.
6.3.8.1.1 Nye County

DOE/NNSA activities at the NNSS and the TTR would produce emissions of criteria and hazardous air pollutants in Nye County, as shown in Table 6–9. DOE/NNSA estimated potential emissions of criteria air pollutants for operations of a GTCC disposal facility at the NNSS, which is one of the alternative sites being considered for such a facility (DOE 2011a). The estimated annual emissions of air pollutants from DOE/NNSA activities at the NNSS and TTR, combined with those of a GTCC disposal facility, are shown in Table 6–9.

Table 6–9 Current and Projected Annual Emissions of Criteria and Hazardous Air Pollutants in Nye County, Nevada, from Activities Associated With the Nevada National Security Site and the Tonopah Test Range Under the Expanded Operations Alternative Compared with Current Reported Criteria Air Pollutant Emissions in Nye County

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>NNSS 2008 Actual Emissions (tons per year)</th>
<th>TTR 2008 Actual Emissions (tons per year)</th>
<th>Total 2008 DOE/NNSA Air Emissions in Nye County (tons per year)</th>
<th>Total Air Emissions in Nye County in 2008 (includes DOE/NNSA Emissions) (tons per year)</th>
<th>Projected Total DOE/NNSA Air Emissions in Nye County (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2,752</td>
<td>23</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>471</td>
<td>11</td>
</tr>
<tr>
<td>CO</td>
<td>83</td>
<td>13</td>
<td>96</td>
<td>11,675</td>
<td>82</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>36</td>
<td>20</td>
<td>56</td>
<td>1,247</td>
<td>50</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>90</td>
<td>2</td>
</tr>
<tr>
<td>VOCs</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2,016</td>
<td>10</td>
</tr>
<tr>
<td>Lead</td>
<td>0.001</td>
<td>0.04</td>
<td>0.04</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>HAPs</td>
<td>0.03</td>
<td>1</td>
<td>1</td>
<td>NR</td>
<td>1</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; HAP = hazardous air pollutant; NNSS = Nevada National Security Site; NO$_x$ = nitrogen oxides; NR = not reported; PM$_{2.5}$ = particulate matter with an aerodynamic diameter less than or equal to 2.5 micrometers; SO$_2$ = sulfur dioxide; TTR = Tonopah Test Range; VOC = volatile organic compound.

a Emissions taken from Chapter 4, Tables 4–40 and 4–71; numbers are rounded and may not match original tables.
b Nye County criteria air emissions source: U.S. Environmental Protection Agency “State and County Emissions Summaries” (www.epa.gov/air/emissions/where.htm).
c Projected emissions from Chapter 5, Tables 5–38 and 5–69; numbers for each pollutant are summed and rounded.

Cumulative diesel emissions from DOE/NNSA sources in Nye County in 2015 were estimated to be about 2.6 tons per year. This estimate was derived by summing PM$_{10}$ and PM$_{2.5}$ emissions for commercial vendors and trucks transporting radioactive waste, all of which were assumed to be powered by diesel engines (see Chapter 5, Tables 5–32, 5–56, and 5–58).

Table 6–10 compares the total estimated annual air emissions from DOE/NNSA activities at the NNSS and TTR resulting from operation of a GTCC disposal facility and all proposed solar energy projects shown in Table 6–2 with similar emissions within Nye County in 2008, using the most recent available data on the EPA “State and County Emissions Summaries” (www.epa.gov/air/emissions/where.htm). Due to the large geographic area these projects occupy and the minimal emissions expected, these projects would have minor impacts both individually and cumulatively. Most of the cumulative impacts on air quality from the projects listed in Table 6–10 would be from renewable energy facilities, which could potentially displace electricity generation that otherwise likely would occur with higher-polluting fossil fuels. Although there would be air quality impacts associated with remediation of the former Yucca Mountain Repository site, they would be temporary, occurring over the course of about 1 year, and there would be no post-remediation man-caused air emissions associated with the site.

Nye County has been designated by EPA as an attainment/non-designated area for purposes of compliance with NAAQS. The projected cumulative levels of air pollutant emissions shown in Table 6–10 are not considered to be sufficient to precipitate a change in Nye County’s designation relative to NAAQS.
Table 6–10 Cumulative Estimated Emissions of Criteria Air Pollutants from U.S. Department of Energy/National Nuclear Security Administration Facilities and Major Reasonably Foreseeable Future Actions in Nye County, Nevada

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Projected Total DOE/NNSA Air Emissions in Nye County (tons)</th>
<th>Projected Annual Air Emissions from GTCC Operations (tons)</th>
<th>Projected Annual Air Emissions from All Solar Energy Projects Proposed in Nye County (tons)</th>
<th>Cumulative Total Criteria Air Pollutant Emissions (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>23</td>
<td>2.5</td>
<td>576.2</td>
<td>601.7</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>11</td>
<td>2.2</td>
<td>67.9</td>
<td>81.1</td>
</tr>
<tr>
<td>CO</td>
<td>82</td>
<td>15</td>
<td>40.3</td>
<td>137.3</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>50</td>
<td>27</td>
<td>39.1</td>
<td>116.1</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>2</td>
<td>3.3</td>
<td>8.1</td>
<td>13.4</td>
</tr>
<tr>
<td>VOCs</td>
<td>10</td>
<td>3.1</td>
<td>27.6</td>
<td>40.7</td>
</tr>
<tr>
<td>Lead</td>
<td>0.2</td>
<td>Not reported</td>
<td>Not reported</td>
<td>0.2</td>
</tr>
</tbody>
</table>

CO = carbon monoxide; GTCC = greater-than-Class C; NNSS = Nevada National Security Site; NO$_x$ = nitrogen oxides; PM$_n$ = particulate matter with an aerodynamic diameter less than or equal to n micrometers; SO$_2$ = sulfur dioxide; VOC = volatile organic compound.

a From Table 6–9.
b Source of projected annual air emissions from GTCC disposal facility operations is Chapter 9, Table 9.2.1-2, of the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D), February 2011. GTCC projected emissions in this table are the largest amount, regardless of type of land disposal facility.
c Projected annual air emissions from all solar energy projects proposed in Nye County were estimated by summing the potential onsite and offsite emissions for each criteria pollutant from the Amargosa Farm Road Solar Energy Project Final Environmental Impact Statement (BLM 2010c) (Chapter 4, Table 4–12, page 4–11), then dividing the totals by 500 to obtain an approximate per-megawatt rate of emission for each pollutant. The per-megawatt emission rate was then multiplied by 5,750 (i.e., the total potential generating capacity of proposed solar energy generation projects in Nye County from Table 6–2).

Although there would be increases in PM$_{10}$ emissions of up to 22 percent and PM$_{2.5}$ emissions of up to 17 percent, as well as lesser increases in emissions of other criteria pollutants over 2008 levels, it is unlikely that cumulative air emissions from activities at the NNSS, TTR, and other reasonably foreseeable future actions in Nye County would change the county’s designation relative to the NAAQS. Under some conditions, there may be a potential for air pollutants from the area to be transported to Death Valley National Park. Due to the low amounts of anticipated air pollutants and the distances from the sources of pollutants, the impacts of pollutant transport to Death Valley would be very slight.

6.3.8.1.2 Clark County

Of the air sheds within which DOE/NNSA-related activities are located, only parts of Clark County, principally the Las Vegas Valley metropolitan area, are classed as nonattainment areas for compliance with NAAQS. The Las Vegas Valley is designated as a nonattainment area for carbon monoxide and PM$_{10}$. A larger area, comprising about 60 percent of Clark County, is in nonattainment for ozone (RTCSN 2008). Quantities of these three pollutants generated by DOE/NNSA-related mobile sources activities in Clark County would by 2015 annually contribute about 1.87 tons of PM$_{10}$, 119.26 tons of carbon monoxide, and up to 31.786 tons of ozone (determined by summing ozone precursors nitrogen oxides and volatile organic compounds), as shown in Table 6–11. Additional quantities of these pollutants would be generated in Clark County by mobile sources associated with DOE/NNSA-related construction, but these would be short-term effects and would likely be spread over several years. Table 6–11 also shows the total quantity of construction-related emissions of PM$_{10}$, carbon monoxide, nitrogen oxides, and volatile organic compounds.
Table 6–11 Estimated Annual Mobile Source Emissions of Criteria Pollutants that have been in Nonattainment from U.S. Department of Energy/National Nuclear Security Administration Activities in Clark County, Nevada, Under the Expanded Operations Alternative

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>NNSS a</th>
<th>RSL b</th>
<th>NLVF c</th>
<th>TTR d</th>
<th>Total (10-year total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>1.4</td>
<td>0.046</td>
<td>0.403</td>
<td>0.022</td>
<td>1.87</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>84.8</td>
<td>3.740</td>
<td>30.310</td>
<td>0.410</td>
<td>119.26</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>21.4</td>
<td>0.700</td>
<td>6.470</td>
<td>0.250</td>
<td>28.820</td>
</tr>
<tr>
<td>VOCs</td>
<td>2.6</td>
<td>0.270</td>
<td>0.068</td>
<td>0.028</td>
<td>2.966</td>
</tr>
</tbody>
</table>

NLVF = North Las Vegas Facility; NNSS = Nevada National Security Site; PM$_{10}$ = particulate matter with an aerodynamic diameter less than or equal to 10 micrometers; RSL = Remote Sensing Laboratory; TTR = Tonopah Test Range; VOC = volatile organic compound.

State implementation plans prepared by Clark County Air Quality and Environmental Management contain modeled nonattainment pollutant emissions from mobile sources in specific horizon years. Table 6–12 compares these modeled emissions with DOE/NNSA-related emissions of the nonattainment pollutants.

Emissions of PM$_{10}$, carbon monoxide, volatile organic compounds, and nitrogen oxides would contribute only a very small fraction of the total projected emissions of these pollutants by 2015.

Cumulative diesel particulate matter emissions from DOE/NNSA sources in Clark County in 2015 were estimated to be about 0.7 tons per year. This estimate was derived by summing PM$_{10}$ and PM$_{2.5}$ emissions for commercial vendors and trucks transporting radioactive waste, all of which were assumed to be powered by diesel engines, from Chapter 5, Tables 5–32, 5–50, 5–56, and 5–58. The Regional Transportation Plan (RTCSN 2008), which provided the data for estimating future air emissions in Clark County, did not include an estimate of diesel particulate matter emissions.

Table 6–12 Comparison of Estimated U.S. Department of Energy/National Nuclear Security Administration-Related Mobile Source Emissions of Nonattainment Pollutants in Clark County with Emissions Projected for All Clark County Mobile Sources

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Regional Transportation Plan Modeled Emissions a, b (tons per year)</th>
<th>DOE/NNSA-Related Emissions c (tons per year)</th>
<th>Percentage of Regional Transportation Plan-Modeled Emissions (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>28,744</td>
<td>2</td>
<td>0.07</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>140,160</td>
<td>119</td>
<td>0.09</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>11,625</td>
<td>29</td>
<td>0.26</td>
</tr>
<tr>
<td>VOCs</td>
<td>12,399</td>
<td>3</td>
<td>0.02</td>
</tr>
</tbody>
</table>

PM$_{10}$ = particulate matter with an aerodynamic diameter less than or equal to 10 micrometers; VOC = volatile organic compound.

a RTCSN 2008, Appendix 4, page 58.
b RTCSN 2008 values were in tons per day. The annual emissions displayed in this column were derived by multiplying the tons per day by 365. These values are rounded to the nearest whole number.
c Values from Table 6–11 rounded to the nearest whole number.
6.3.8.1.3 Inyo County

Inyo County, California, is part of the Great Basin Unified Air Pollution Control District (GBUAPCD), which also includes Mono and Alpine Counties. Owens Lake, located in the west-central area of Inyo County, is the largest single source of PM10 in the United States. The GBUAPCD, in compliance with the Clean Air Act, developed a state implementation plan for dealing with PM10 at Owens Lake and has installed dust control measures to meet NAAQS (GBUAPCD 2010). Because the prevailing winds at the NNSS are generally from the southwest or north-northwest (see Chapter 4, Section 4.1.8), it is not likely that emissions of criteria or hazardous air pollutants would create a cumulative effect with similar emissions in Inyo County, leading to a violation of NAAQS.

6.3.8.2 Greenhouse Gas Emissions

Nevada’s estimated total gross emissions of greenhouse gases in 2010 were 55.8 million metric tons; these emissions are expected to rise to 78.4 million metric tons by 2020 (NDEP 2008). These estimated emission levels were for the state as a whole. To estimate greenhouse gas production for the cumulative impacts ROI, the proportions of the population of the state residing in Nye, Clark, Esmeralda, and Lincoln Counties were identified. In 2009, the Nevada state demographer estimated the population of the state to be 2,711,206 and the populations of the selected counties as follows: Clark, 1,952,040; Nye, 46,360; Lincoln, 4,317; and Esmeralda, 1,187 (NSBDC 2010), for a total of 2,003,904. These four counties contain about 74 percent of the population of Nevada. By using population as a rough way to apportion greenhouse gas production for the state, approximately 41.3 and 58 million metric tons per year of greenhouse gases would be produced in the four counties in 2010 and 2020, respectively.

DOE/NNSA activities in Nevada would generate about 63,272 tons of greenhouse gases by 2015 under the Expanded Operations Alternative (see Chapter 5, Tables 5–33, 5–60, 5–64, and 5–70). Greenhouse gas emissions from operation of a GTCC disposal facility in Area 5 of the NNSS were estimated to be up to 3,300 tons of carbon dioxide per year. This would result in a total DOE/NNSA greenhouse gas emission rate of about 66,572 tons per year. To compare greenhouse gas generation from proposed DOE/NNSA activities to the amounts estimated for the four counties, the metric tons values of the state estimates were converted to short tons by multiplying by 1.10. This yielded 45.43 and 63.8 million tons of greenhouse gas emissions for the four counties in 2010 and 2020, respectively. Choosing the midpoint between the 2010 and 2020 levels for the four counties to represent the estimated emissions rate in 2015 yielded 54.6 million tons per year. DOE/NNSA greenhouse gas emissions in 2015 would account for about 0.12 percent (63,272/54,600,000 = 0.115 percent) of the combined greenhouse gas emissions for Clark, Nye, Esmeralda, and Lincoln Counties. Thus, the DOE/NNSA greenhouse gas contribution would be small compared to the four-county greenhouse gas emissions.

6.3.9 Visual Resources

As analyzed in Chapter 5, Section 5.1.9, construction and operation of one or more commercial solar power generation facilities in Area 25 would have adverse visual effects because the facilities would introduce considerable infrastructure on up to 10,000 acres of land, a large portion of which would be directly visible in middleground views from U.S. Route 95 (see Chapter 3, Figure 3–2). Under the Expanded Operations Alternative, a new 500-kilovolt electrical transmission line also would be required to interconnect commercial solar facilities with the main transmission system (under the No Action Alternative, a 230-kilovolt transmission line would be required); most of that new transmission line and attendant visual impacts would be located outside the NNSS boundaries. The transmission line may occur within the foreground and middleground of views from U.S. Route 95 or other sensitive viewing areas. Portions of the study area visible from U.S. Route 95 have a Class B scenic quality rating, and the viewer sensitivity is moderate (see Chapter 4, Section 4.1.9, Visual Resources, for a description of scenic quality and viewer sensitivity ratings). Viewer sensitivity would remain the same under the No Action and Reduced Operations Alternatives and would change from moderate to high under the Expanded Operations Alternative due to an increase in the number of average daily trips over time. CSP generation facilities covering up to 10,000 acres of land would introduce a considerable source of glare from the
reflective surfaces of the solar collectors, alter the existing visual character of the landscape that is largely undeveloped, and reduce the existing visual quality to a Class C rating because of the intrusion of manmade elements. There is no mitigation to reduce adverse effects associated with a solar array of this size and, therefore, this effect would be adverse and unavoidable.

Viewsheds in Amargosa Valley are extensive given the topography, lack of vegetative screening, and dispersed nature of sensitive viewers, and much of the Amargosa Valley may be visible from key viewpoints in Death Valley National Park. According to the Final Environmental Impact Statement for the Amargosa Farm Road Solar Energy Project (BLM 2010a), over 106,000 acres of land could be developed for commercial solar power generation facilities in Amargosa Valley. The potential additional conversion of over 10,000 acres of land to commercial solar power generation in Area 25 would make the total potentially affected land area over 116,000 acres, primarily located along U.S. Route 95 in the Amargosa Valley. All of the potential and proposed solar power generation facilities would require new transmission lines to be constructed to integrate the power they produce into the main electrical transmission system, introducing another cumulative impact on the visual environment. In addition, Nye County is proposing to develop the Yucca Mountain Project Gateway Area in an approximately 5,800 acre area surrounding the intersection of U.S. Route 95 and Nevada State Route 373. This development would result in a large commercial/light industrial area interposed between the closest viewpoints from U.S. Route 95 of the potential commercial solar power generation facilities in Area 25 of the NNSS. Cumulatively, such projects would incrementally modify the landscape, giving it an industrial character and negatively impacting the visual quality of views from public roadways, residential areas, and recreation areas, including key observation points on mountain peaks within Death Valley National Park. As such, potential commercial solar power generation on and off the NNSS and development of the Yucca Mountain Project Gateway Area, together with past, present, and reasonably foreseeable future actions, would substantially alter the visual character of the areas within Amargosa Valley, resulting in adverse cumulative visual impacts.

Construction and operation of commercial solar power generation facilities at the NNSS would require a project-specific NEPA review (including a visual impacts analysis) if such a project were proposed. Site decommissioning and reclamation activities at the former Yucca Mountain Repository site would improve the scenic value of the site.

6.3.10 Cultural Resources

As noted in Chapter 5, Table 5–38, the overall density of cultural resources sites at the NNSS is 0.051 sites per acre, and the density of sites eligible for inclusion in the National Register of Historic Places (NRHP) is 0.026 sites per acre. However, it is important to note that the potential for an area to contain cultural resource sites is strongly site specific and is influenced by factors such as presence of water, a food source, shelter, and less tangible but equally important factors such as features that may have spiritual value to a culture. While all areas of the NNSS have the potential to possess cultural resources, areas with the highest number of recorded cultural resources are Rainier and Pahute Mesas in the northwest, followed by Jackass Flats in the southwest, and Yucca Flat in the east (DOE 2010a). Prehistoric archaeological sites make up 90 percent of recorded cultural resources on the NNSS. The remaining 10 percent are historic period archaeological sites and structures, more-recent facilities and locations associated with recent scientific research, or sites of unknown age (DOE 2010a). Numerous evaluations of nuclear testing facilities and events have been conducted since the 1996 NTS EIS was completed, resulting in 38 sites and historic districts associated with NNSS activities becoming eligible for listing in the NRHP.
BLM estimated site density for the southern Nevada region to be about 0.024 sites per acre, and the Nevada State Historic Preservation Officer estimated that approximately 12 percent of all sites identified in Nevada are eligible for inclusion in the NRHP (DOE 1996c). For purposes of this cumulative impacts analysis, it was assumed that, for non-DOE/NNSA programs and projects, approximately 509,750 acres of previously undeveloped land are likely to be disturbed over the next decade. Using the more conservative site density value derived from the NNSS, almost 26,000 cultural resource sites may be located within the potentially disturbed area of the cumulative impacts ROI (excluding the NNSS and the TTR) for this NNSS SWEIS. Over 13,000 of these sites could be eligible for inclusion in the NRHP. When potentially affected cultural resources sites from DOE/NNSA activities (including commercial solar power generation facilities) (see Chapter 5, Section 5.1.10.2, Cultural Resources, Expanded Operations Alternative) are included, the overall number of sites that may be affected would be almost 34,000, of which almost 15,500 would be considered eligible for inclusion in the NRHP.

Because no additional land would be required for decommissioning and reclamation activities at the former Yucca Mountain Repository site, disturbances to cultural resources on undisturbed land in the area would be unlikely.

Cultural resources associated with Federal and state undertakings are subject to Section 106 of the National Historic Preservation Act. For these cultural resources, identification, evaluation, and data recovery, when appropriate, are likely to occur, resulting in increases of cultural resources information in the regional database. Cultural resources on about 20 percent of the potentially disturbed acreage (the estimated amount of privately held land) may be destroyed without data recovery, resulting in a serious loss of the information those resources may contain.

6.3.11 Waste Management

DOE/NNSA activities at the NNSS and other in-state locations generate and manage radioactive and nonradioactive wastes.

Radioactive waste

Table 6–13 presents the estimated quantities of radioactive and nonradioactive solid wastes that have been disposed at the NNSS, both historically and since the 1996 NTS EIS, as well as the quantities of wastes that could be generated for disposal over the next 10 years. The waste volumes projected for disposal reflect those for the Expanded Operations Alternative (see Chapter 5, Section 5.1.11.2).

The estimates of LLW and MLLW in the table include wastes that are projected from environmental restoration activities at contaminated sites at the NNSS and offsite in-state locations. Generation of these wastes is uncertain and depends on future regulatory actions or agreements. In addition, there may be other options for management of the contaminated sites, including closure in place or development of new disposal units for this waste that are nearer the contaminated sites than the Area 5 RWMC or Area 3 RWMS.

The estimates in the table do not include waste that could result from incidents involving nuclear or radioactive materials, such as an accident involving a nuclear weapon or remediation of a site contaminated due to a possible intentional destructive act. Generation of such waste would be unplanned and episodic, but is expected to consist mostly of soil and debris. If the waste were generated, the NNSS could be considered a disposal location.

LLW and MLLW generation at the NNSS and offsite locations is expected to continue beyond the next 10 years, as is disposal of these wastes at the NNSS along with wastes received from authorized out-of-state generators, consistent with applicable disposal authorizations and permits. Assuming implementation of the Expanded Operations Alternative, up to 52 million cubic feet of combined LLW and MLLW would be received for disposal.
Table 6–13 Historical and Projected Waste Disposal at the Nevada National Security Site

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste historically disposed at the NNSS through 1995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,300 a</td>
<td>17,600,000 d</td>
<td>283,000 e</td>
<td>No information</td>
</tr>
<tr>
<td>Waste volumes from 1996 through 2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 f</td>
<td>21,700,000 g</td>
<td>395,000 g</td>
<td>8,660,000 b</td>
</tr>
<tr>
<td>Waste projected over the next 10 years for NNSS disposal under the Expanded Operations Alternative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 f</td>
<td>48,000,001 h</td>
<td>4,000,000 i</td>
<td>9,200,001 i</td>
</tr>
<tr>
<td>Total historical and projected NNSS waste disposal over the next 10 years j</td>
<td>11,300</td>
<td>87,400,000</td>
<td>4,720,000</td>
</tr>
</tbody>
</table>

NNSS = Nevada National Security Site.

a Includes radioactive materials regulated under the Atomic Energy Act of 1954, as amended, as well as constituents regulated under the Resource Conservation and Recovery Act and some substances regulated under the Toxic Substances Control Act.
b Includes sanitary solid waste and construction and demolition debris.
c Includes all waste disposed in the greater confinement disposal boreholes (about 10,347 cubic feet) and about 1,959 cubic feet of TRU waste inadvertently disposed at the Area 5 Radioactive Waste Management Complex.
d Volume as of December 31, 1995 (DOE 2008a); disposal in both the Area 5 Radioactive Waste Management Complex and the Area 3 Radioactive Waste Management Site.
e Source: DOE 1996c.
f No TRU (including mixed TRU) waste is projected for NNSS disposal.
g Source: Denton 2011.
i From Chapter 5, Section 5.1.11.1; includes 630,000 cubic feet of solid waste that would be generated by commercial solar power generation facilities in Area 25 of the NNSS. Sanitary solid waste generated by a commercial entity could not be disposed on the NNSS under current permit conditions.
j Totals may not add precisely because of rounding to three significant figures.

It is expected that available disposal capacity at the Area 5 RWMC would be eventually used and disposal operations would continue at the NNSS by expanding the acreage of the Area 5 RWMC, transferring disposal operations elsewhere at the NNSS, or reopening the Area 3 RWMC. Additional disposal capacity could be developed on the NNSS or offsite locations to address disposal of wastes generated from in-state environmental restoration or decontamination and decommissioning activities. It is expected that permitted in-state treatment of MLLW would continue, as would offsite shipment of those mixed wastes generated within Nevada that lack in-state treatment capacity.

Current GTCC waste volumes and radionuclide activities projected for generation through 2083 are listed in Table 6–14, as are wastes owned or generated by DOE that have characteristics similar to GTCC waste and could be considered for disposal at the NNSS. Only about 24 percent of the total stored and projected waste volume and 1 percent of the total stored and projected activity in this table would be generated by DOE waste generators. Note that these projections include wastes that may never be generated depending on the outcome of decisions that are independent of this NNSS SWEIS. In addition, there may be other options for managing the identified wastes. For example, it is possible that, rather than being declared waste, sealed sources could be recycled or reused. (Decisions to recycle or reuse sealed sources would be made by others outside of the DOE/NNSA NSO and are not part of this NNSS SWEIS.) Furthermore, additional disposal options may be available for DOE wastes having characteristics similar to GTCC waste.
A commercial LLW disposal facility operated from 1962 to the end of 1992 in Beatty, Nevada, about 45 miles west of Mercury on the NNSS, and about 102 miles northwest of Las Vegas, Nevada. (A hazardous waste disposal facility still operates adjacent to the closed LLW facility.) During operation, the Beatty facility disposed about 4,862,000 cubic feet of radioactive waste containing about 709,000 curies of byproduct material, about 4,807,000 pounds of source material, and about 606 pounds of special nuclear material (Laney 2010).1 Because of the lack of a groundwater pathway from NNSS radioactive waste management facilities and the large distances between this facility and DOE/NNSA waste management operations at the NNSS, the TTR, RSL, and NLVF, this closed disposal facility is not expected to have any projected operational or long-term cumulative impacts on members of the public with DOE/NNSA waste management activities.

Additional disposal of TRU waste at the NNSS is not expected, and there are no active TRU waste disposal facilities within Nevada. It is expected that generation of TRU (including mixed TRU) waste would continue beyond the next 10 years as a result of DOE/NNSA operations or environmental restoration or decontamination and decommissioning activities. This waste would be characterized, packaged, and prepared for disposal at the Waste Isolation Pilot Plant.

Nonradioactive waste

DOE/NNSA is expected to continue generating and managing nonradioactive hazardous and nonhazardous wastes at the NNSS and other in-state facilities. With respect to hazardous waste, after the next 10 years, DOE/NNSA would continue temporary storage of hazardous wastes in permitted storage facilities, as needed, pending shipment to offsite recycle or treatment, storage, or disposal facilities. No operating hazardous waste disposal facilities are located at the NNSS or other in-state DOE/NNSA facilities, although there are numerous hazardous waste recycle or treatment, storage, or disposal facilities in operation within Nevada and other nearby states (see Chapter 5, Section 5.1.11.1). None of these facilities would affect DOE/NNSA waste management infrastructure at the NNSS or other in-state locations, and their existence assures that adequate capacity for offsite disposition of hazardous waste would continue. If needed, permitted treatment capacity at the NNSS or offsite locations could be developed consistent with the existing DOE pollution prevention and waste minimizations programs and Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance.

1 As-disposed (un-decayed) activities.
The quantities of solid waste disposed at the NNSS over the next 10 years are projected to be about 8.5 million cubic feet, as shown in Table 6–13. In addition, for purposes of analysis, about 630,000 cubic feet of solid waste would be generated by commercial solar power generation facilities in Area 25, but would not be disposed at the NNSS. Following the next 10 years, DOE/NNSA is expected to continue disposal of sanitary solid waste and construction and demolition debris within permitted landfills at the NNSS or other in-state DOE/NNSA locations, as well as recycling of solid wastes as appropriate, consistent with DOE pollution prevention and waste minimization programs and Executive Order 13514. In addition to as-needed augmentation of permitted solid waste disposal capacity at the NNSS or other DOE/NNSA in-state locations (e.g., a possible new sanitary waste facility in Area 23 and a possible construction/demolition landfill in Area 25), DOE/NNSA is expected to continue to use offsite disposal facilities as needed. As discussed in Chapter 5, Section 5.1.11.1, any hazardous or nonhazardous waste generated by construction or operation of a commercial solar power generation facility would be managed by the commercial operator of the facility, who would be required to comply with applicable laws and regulations related to waste recycling, treatment, and/or disposal. Because there are numerous permitted facilities in Nevada and nearby states for recycling hazardous materials and treatment, storage, and disposal of hazardous waste, as well as numerous landfills for industrial and sanitary solid waste, offsite disposal capacity would be adequate for the waste projected from a commercial solar power generation facility. None of these facilities would affect the DOE/NNSA waste management infrastructure at the NNSS or other in-state locations, and their existence assures that adequate capacity for offsite disposition of solid waste would continue as needed.

In its 2002 Yucca Mountain EIS (DOE 2002e), DOE did not estimate the volume of waste that would be generated by remediation of the former Yucca Mountain Repository site; however, the EIS did state that DOE would minimize waste generation by salvaging most of the equipment and many materials and redistributing them to other DOE sites or selling them at public auction. DOE anticipates that sanitary and industrial solid waste and demolition debris would be disposed in existing NNSS landfills.

6.3.12 Human Health

Nuclear testing began at the NNSS in 1951. There were 100 atmospheric nuclear explosions before the Limited Test Ban Treaty was implemented in August 1963. Residents who were present during the periods when nuclear weapons testing occurred (in particular, atmospheric weapons testing from 1951 to the early 1960s) would have received up to 5 rem to the thyroid gland from iodine-131 releases, equal to an effective dose of approximately 250 millirem (SNL 2007). Because of the length of time since the end of atmospheric weapons testing, this potential legacy dose would not apply to current residents that were not in the ROI at the time of the testing.
Nuclear tests were conducted underground until October 1992, when the nuclear testing moratorium was implemented. Between 1970 and 1992, 126 nuclear tests released approximately 54,000 curies of radioactivity to the atmosphere. Of this amount, 11,500 curies were accidental due to containment failure (massive releases or seeps) and late-time seeps (seeps are small releases after a test when gases diffuse through pore spaces of overlying soil and rock). The remaining 42,500 curies were operational releases. From the perspective of human health risk, if the same person stood at the boundary of the NNSS in the area of maximum concentration of radioactivity for every test since 1970, that person’s total exposure would be equivalent to 32 extra minutes of normal background exposure, or the equivalent of one-thousandth of a single chest x-ray (OTA-ISC-414).

The annual radiation dose received by the offsite population within about 50 miles of the NNSS would be 0.89 person-rem per year; the annual dose received by the population with 50 miles of NLVF would be 4.1×10^5 person-rem. The 10-year cumulative population dose would be 8.9 person-rem. This cumulative population dose over the next 10 years are expected to result in no (actual estimated number = 0.005) LCFs. Statistically, the probability of a single LCF occurring in the population within 50 miles of the NNSS as a result of this cumulative dose would be 1 in 200. DOE estimated that remediation of the former Yucca Mountain Repository site would result in a collective dose to the public of 1.7 person-rem, which could cause 0.00085 LCFs. These totals would not represent an appreciable level of additional cumulative impact on the public.

Based on the distance between potential sources of contamination and the nearest public or private water supply wells, no impacts on the public are expected from exposure to groundwater containing radioactivity from underground nuclear testing or other NNSS sources (see Section 6.3.6.2, Groundwater).

As addressed in Chapter 4, Section 4.1.11.1.1.3, and Chapter 5, Section 5.1.12.1.4, radioactive waste disposal occurs at the NNSS in accordance with authorizations issued by DOE that consider analyses of possible long-term (over thousands of years) impacts on the public and the environment after the disposal facilities are closed.

LLW management performance. A combined Area 3 RWMS performance assessment and composite analysis was completed in July 2000. The Area 5 RWMC performance assessment was completed in 1998, and the Area 5 RWMC composite analysis was completed in 2001. These analyses are updated annually to reflect new information such as revised estimates of disposed waste inventories or modifications to waste disposal operations. The analyses determined that, because of the great excess of evapotranspiration over precipitation and other site-specific factors, there was little to no potential for transport of disposed radionuclides to groundwater. The analyses also concluded that all performance objectives would be met. As noted in Chapter 5, Section 5.1.12.1.4, the results of the initial composite analyses were well below the 30-millirem-per-year decision criterion for both the Area 3 RWMS and Area 5 RWMC. The most recent review and update of the Area 3 and 5 performance assessments and composite analyses concluded that the results and conclusions of the performance assessments and composite analyses remained valid (NSTec 2010f).

TRU waste management performance. As discussed in Chapter 4, Section 4.1.11.1.1.3 and Chapter 5, Section 5.1.12.1.4, DOE/NNSA conducted analyses of compliance with EPA’s TRU waste disposal requirements in 40 CFR Part 191 for the TRU waste disposed both intentionally in greater confinement disposal (GCD) boreholes and inadvertently in an Area 5 RWMC trench. It was determined that disposal of TRU waste in the GCD boreholes and disposal trench would meet all applicable EPA containment, individual protection, and groundwater protection requirements. For both analyses, it was determined that the projected cumulative releases would meet the probabilities specified in the EPA standard of exceeding specified quantities of radionuclides. Regarding the EPA individual protection requirement, the mean annual dose to a member of the public from all waste in the boreholes over 1,000 years was about 0.0062 millirem to the whole body and 0.12 millirem to bone. For the TRU waste inadvertently disposed in the trench, the maximum total effective dose equivalent for a member of the public over 10,000 years
was about 1.4 millirem in a year, predominantly from assumed inhalation of radon-222 progeny in air produced by LLW in the same trench. The results of both assessments indicated compliance with applicable EPA requirements. Regarding the EPA groundwater protection requirement, hydrologic processes modeling supported a conclusion of no groundwater pathway within 10,000 years (SNL 2001; Shott et al. 2008).

Industrial accidents. Based on occupational injury and fatality rates for industrial activities inclusive of construction (DOL 2010a, DOE 2010b), construction activities at the NNSS, including construction of one or more solar power generation facilities with a combined capacity of 1,000 megawatts, would result in less than 1 (actual calculated number = 0.08) fatality over the next 10 years. Assuming an average construction period of 36 months for all of the renewable energy projects in Amargosa Valley and a total average number of construction workers of 6,025, a single (actual calculated number = 0.69) worker fatality could be expected during the construction period. There would be a cumulative total of 1 (calculated number = 0.77) worker fatality for large-scale construction projects in the area over the 10-year period. Based on incidence rates for total recordable cases (TRCs) and days away, restricted or transferred (DART) cases as a result of accidents (DOL 2010b, DOE 2010b) across a broad range of activities, projected TRC and DART cases for 10 years of activities (operations and construction) at the NNSS, RSL, NLVF, and the TTR were estimated. The estimate includes the construction and 5 years of operation of one or more solar power generation facilities. Over a 10-year period, there would be an estimated 810 TRCs and 370 DART cases. Based on the estimated number of workers and construction duration for renewable energy projects in Amargosa Valley (see above), an additional 750 TRCs and 380 DART cases are expected, totaling 1,560 TRCs and 750 DART cases.

Noise

At the regional level, it is expected that ambient noise levels would increase, especially in those areas undergoing urban development and those that are adjacent to industrial and mineral extraction activities. Noise impacts associated with activities at the NNSS would be restricted to the geographical area contained therein and would not affect residents in adjacent areas or add measurably to regional noise levels.

6.3.13 Environmental Justice

American Indian environmental justice concerns, as identified by the Consolidated Group of Tribes and Organizations, include holy land violations, perceived risks from radiation, and cultural survival. Increased land disturbance associated with all forms of development in the ROI could result in a decrease in access to these areas for American Indians. Limiting access could reduce the traditional use of the area and affect its sacred nature. Increased development throughout the ROI has the potential for greater disturbance and vandalism of American Indian cultural resources. Such impacts would be primarily perceived by American Indian groups, the population most likely to experience disproportionate impacts of project implementation.

6.4 Summary of Cumulative Impacts

Table 6–15 contains a summary of cumulative impacts addressed in Section 6.3. As noted at the beginning of this chapter, the impacts associated with the NNSS in the preceding analyses are based on the Expanded Operations Alternative, unless otherwise noted. Table 6–15 includes summary information for all three alternatives addressed in this NNSS SWEIS, i.e., No Action, Expanded Operations, and Reduced Operations.
Table 6–15 Summary of Cumulative Impacts

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Non-DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>The following land use changes would occur under the noted NNSS SWEIS alternatives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Action</td>
<td>• There would be no changes to NNSS Land Use Zones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Construction of a commercial solar power generation facility would affect land use patterns outside of the NNSS due to construction of a 230-kilovolt transmission line.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanded Operations</td>
<td>• Area 15 – Change from Reserved Zone to Research, Test and Experiment Zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Area 25 – Designate about 39,600 acres as a Renewable Energy Zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Construction of commercial solar power generation facilities would affect land use patterns outside of the NNSS due to construction of a 500-kilovolt transmission line.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Operations</td>
<td>• Areas 19 and 20 – Change from Nuclear Test Zone to Limited Use Zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Areas 18, 29, and 30 – Change from Reserved Zone to Limited Use Zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Construction of a commercial solar power generation facility would not affect land use patterns outside of the NNSS.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Nye County, approximately 149,000 acres of public land managed by the U.S. Bureau of Land Management would be committed to use for renewable energy facilities or commercial/industrial uses.

In Clark County, the U.S. Bureau of Land Management would dispose up to about 36,000 acres of public land. Use of this land would be changed from its current public uses to private and/or municipal uses.

Regardless of the implementation of any alternative in this NNSS SWEIS, changes in NNSS land use zone designations or functions are not expected to affect land use patterns in areas outside of the NNSS, except for the potential construction of interconnecting transmission lines for commercial solar power generation facilities under the No Action (250 acres) and Expanded Operations (300 acres) Alternatives. Land uses at RSL, NLVF, and the TTR are expected to remain unchanged and would not affect land uses in other areas.

Over 185,000 acres of public land managed by the U.S. Bureau of Land Management would be either disposed or withdrawn for non-public uses within Clark and Nye Counties.
<table>
<thead>
<tr>
<th>Resource Area</th>
<th>DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Non-DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure and Energy</td>
<td>Construction of new facilities at the NNSS, particularly one or more solar power generation facilities with a capacity of 240 megawatts under the No Action Alternative, a combined capacity of 1,000 megawatts under the Expanded Operations Alternative, and 100 megawatts under the Reduced Operations Alternative, would cause a demand for construction materials and skilled labor, in proportion to their size, similar to those of other large construction projects.</td>
<td>Construction of new facilities, particularly large projects, would place cumulative demands on goods and services. The proposed renewable energy projects in Amargosa Valley and Area 25 of the NNSS would all have similar needs for large tracts of undeveloped land and water; use earthmoving/grading equipment, cranes, and other construction equipment; require similar materials, such as concrete, steel, wood, wiring and cables, etc.; and require the services of both general and specialized construction workers.</td>
<td>Large-scale construction projects, particularly renewable energy facilities in the Jackass Flats area of the NNSS and in Amargosa Valley and construction of new high-voltage transmission lines would create an increase in demand for and cumulatively affect availability of construction materials, supplies, and labor. Because of the relative number and/or size of new facility construction considered in this NNSS SWEIS, the noted cumulative impact would be substantially greater for the Expanded Operations Alternative than for the No Action Alternative. The Reduced Operations Alternative would create the least demand on construction materials, supplies, and labor and would contribute the least to cumulative impacts.</td>
</tr>
<tr>
<td>Energy</td>
<td>The 2020 projected cumulative annual electrical energy demand for DOE/NNSA activities in Nevada under the No Action Alternative is about 113,000 megawatt-hours; under the Expanded Operations Alternative, about 127,000 megawatt-hours; and under the Reduced Operations Alternative, about 96,000 megawatt-hours. A portion of the electrical energy demand under the Expanded Operations Alternative would be offset by development of a 5-megawatt photovoltaic solar power generation facility in Area 6 of the NNSS.</td>
<td>In 2009, NV Energy (southern division) and Valley Electric Association provided a total of about 21,670,000 megawatt-hours of electricity to their customers (NSOE 2010). The Nevada Public Utilities Commission forecasts a 1.5 percent growth rate in electricity sales through 2020 (NDEP 2008). Based on that growth rate, by 2020, total electricity sales in southern Nevada would be about 25,500,000 megawatt-hours, an increase of almost 4,000,000 megawatt-hours. There are proposals for renewable energy projects in southern Nevada that would produce a total of about 5,800 megawatts of new generating capacity.</td>
<td>Cumulatively, the projected increase in electrical energy demand, regardless of the demand under any of the alternatives, would be offset by development of up to 5,800 megawatts of new generating capacity from proposed renewable energy facilities. In addition, construction of new high-voltage transmission lines, such as the Solar Express Transmission Line Project and the Transwest Express Transmission Project, would provide a stronger connection with other regions to support electrical demand in southern Nevada.</td>
</tr>
<tr>
<td>Resource Area</td>
<td>DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Non-DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Traffic</td>
<td>Personnel and trucks associated with one or more commercial solar power generation facilities in Area 25 would increase daily vehicle trips on local roadways by 500 to 1,000 through the 36-month construction period under the No Action Alternative; by 750 to 1,500 through the 42-month construction period under the Expanded Operations Alternative; and by 400 to 800 under the Reduced Operations Alternative. The addition of these vehicles and associated construction trucks on a daily basis would increase the rate of pavement deterioration, degrade levels of service, and could require increased road maintenance and upgrades for roads in the project area.</td>
<td>During construction of proposed renewable energy projects in Amargosa Valley and the Yucca Mountain Project Gateway Area development, roads in Nye County could experience increases in daily traffic ranging from a two- to a fivefold increase on primary roads such as U.S. Route 95 and Nevada State Route 160, which could degrade levels of service from A to D during peak commuting hours. Personnel and trucks associated with one or more commercial solar power generation facilities in Area 25 would increase daily vehicle trips on local roadways by 500 to 1,000 through the 35-month construction period. During operations, primary roadways could experience increases in daily traffic, and levels of service could degrade one level during peak commuting hours. The degradation in levels of service caused by increased traffic volumes on these roads could generate the need for additional travel lanes and other improvements.</td>
<td>The cumulative impact of increased traffic on local roadways in southern Nye County, nearby the NNSS, associated with NNSS operations and construction and operation of one or more commercial solar power generation facilities in Area 25 would be a reduction in level of service on U.S. Route 95 from B to C, relative to the 2008 baseline, regardless of the traffic increases resulting from implementation of any of the alternatives. When combined with increased traffic from other large construction projects in Amargosa Valley, the level of service would degrade to D, causing accelerated deterioration and associated increased need for maintenance and repair. Some roadways and traffic control measures would need to be upgraded.</td>
</tr>
</tbody>
</table>
| Radiological Transportation | **No Action Alternative**
 - Worker dose = 2,100 person-rem, equivalent to 1.3 latent cancer fatalities.
 - Population dose = 400 person-rem, equivalent to 0.2 latent cancer fatalities.

Expanded Operations Alternative
 - Worker dose = 5,600 person-rem, equivalent to 3 latent cancer fatalities.
 - Population dose = 1,400 person-rem, equivalent to 1 latent cancer fatality.

Reduced Operations Alternative
 - Worker dose = 2,100 person-rem, equivalent to 1.3 latent cancer fatalities.
 - Population dose = 400 person-rem, equivalent to 0.2 latent cancer fatalities. | **Radiological Transportation**
 Collective worker dose (1943 to 2073) = 399,000 person-rem, equivalent to 240 latent cancer fatalities over 130 years.
 Collective general population dose (1943 to 2073) = 373,000 person-rem, equivalent to 224 latent cancer fatalities over 130 years. | **Radiological Transportation**
 No Action Alternative
 - Worker dose = 401,000 person-rem, equivalent to 241 latent cancer fatalities over 130 years.
 - Population dose = 373,000 person-rem, equivalent to 224 latent cancer fatalities over 130 years.

Expanded Operations Alternative
 - Worker dose = 405,000 person-rem, equivalent to 243 latent cancer fatalities over 130 years.
 - Population dose = 374,000 person-rem, equivalent to 225 latent cancer fatalities over 130 years.

Reduced Operations Alternative
 - Worker dose = 401,000 person-rem, equivalent to 241 latent cancer fatalities over 130 years.
 - Population dose = 373,000 person-rem, equivalent to 224 latent cancer fatalities over 130 years. |
<table>
<thead>
<tr>
<th>Resource Area</th>
<th>DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Non-DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology and Soils</td>
<td>An unknown but substantial amount of deep subsurface geologic media has been affected by underground nuclear tests conducted on the NNSS. Approximately 80,000 acres of land on the NNSS has been disturbed by previous DOE/NNSA activities. Overall, new disturbance of soils and near-surface geological media resulting from proposed DOE/NNSA actions at the NNSS would be as follows: No Action: About 1,800 acres plus an additional 2,650 acres for a commercial solar power generation facility. Expanded Operations: About 15,500 acres, plus an additional 10,350 acres for commercial solar power generation facilities and a Geothermal Demonstration Project. Reduced Operations: About 1,540 acres plus an additional 1,200 acres for a commercial solar power generation facility.</td>
<td>Within the cumulative impacts region of influence, about 215,000 acres of Clark County and 51,000 acres of Nye County have been disturbed by previous development. A total of about 509,750 acres of additional soil and near-surface geologic media would be affected by reasonably foreseeable land development activities in Nye and Clark Counties. This would result in a total of about 775,750 acres of soil and near-surface geologic media being disturbed.</td>
<td>Previous combined actions within the cumulative impacts region of influence have disturbed about 346,000 acres. Reasonably foreseeable actions would disturb additional soil and near-surface geological media within the region of influence, as follows: No Action: About 514,250 acres Expanded Operations: About 535,750 acres Reduced Operations: About 512,450 acres The total potential cumulative area of land disturbance would range from about 858,450 to 881,750 acres, which represents about 5.5 to 5.6 percent of the total area of the region of influence (15,737,760 acres).</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Surface Water</td>
<td>Surface Water</td>
<td>Surface Water</td>
</tr>
<tr>
<td></td>
<td>Within areas that drain off the NNSS, under the No Action, Expanded Operations, and Reduced Operations Alternatives, a total of 2,650, 10,300, and 1,200 acres, respectively, of land could be disturbed for construction of one or more commercial solar power generation facilities. During construction of these facilities, the potential for soil erosion affecting surface waters would be greater due to removal of vegetation and other earth-disturbing activities. If such erosion were to occur it would likely result in increased sediments being transported into FortyMile Wash and eventually into the Amargosa River. However, implementation of erosion control measures would reduce the likelihood of such erosion.</td>
<td>Disturbing about 94,300 acres in Amargosa Valley for constructing one or more solar power generation facilities and developing the Yucca Mountain Project Gateway Area could result in erosion and slightly increase sedimentation in the Amargosa River during the construction period. However, U.S. Bureau of Land Management-prescribed and enforced erosion control measures would reduce the likelihood of such an impact.</td>
<td>Although the potential for increased sedimentation in the Amargosa River drainage is a potential cumulative impact regardless of alternative considered in this NNSS SWEIS, implementation of recognized measures to prevent erosion would reduce the likelihood of such impacts occurring.</td>
</tr>
</tbody>
</table>
Cumulative Impacts

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Non-DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
</table>
| **Groundwater** | Past underground nuclear testing has contaminated an unknown volume of groundwater beneath the NNSS. That contamination is not expected to impact publicly available water supplies within the next 100 years, based on estimated groundwater travel times between the NNSS and Oasis Valley that range from 337 to over 6,191 years (95 percent confidence limits) (Rose et al. 2002). DOE/NNSA proposed activities under this NNSS SWEIS would not cause new or additional groundwater contamination. DOE/NNSA activities at the NNSS and the TTR, as well as operation of one or more solar power generation facilities in Area 25 of the NNSS, under all three alternatives addressed in this NNSS SWEIS, would require withdrawal of groundwater, as follows:
No Action: 959 acre-feet
Expanded Operations: 1,580 acre-feet
Reduced Operations: 815 acre-feet
This volume of groundwater represents about 16 percent, 27 percent, and 14 percent, respectively, of the cumulative sustainable yield for all of the affected hydrographic basins. DOE/NNSA would not withdraw groundwater from the Oasis Valley, Crater Flats, or Amargosa Valley Hydrographic Basins. | Groundwater
The town of Beatty, Nevada, uses just under 500 acre-feet of water per year obtained from the Oasis Valley Hydrographic Basin. Operational water requirements for one or more solar power generation facilities proposed in Amargosa Valley would require almost 6,000 acre-feet of groundwater each year, primarily from the Amargosa Desert, Oasis Valley, and Crater Flats Hydrographic Basins. Nevada State Engineer Order 1197 requires that water for new uses in the Amargosa Desert Hydrographic Basin be obtained by acquisition of existing water rights. | Groundwater
Regardless of alternative considered in this NNSS SWEIS, groundwater monitoring programs conducted by DOE/NNSA and other organizations, such as the U.S. Geological Survey and Desert Research Institute, would ensure that there would be sufficient lead-time for DOE/NNSA to identify and implement appropriate protective and mitigative measures if contamination associated with underground nuclear testing were to affect any water supply located off Federal land. Due to the implementation of Nevada State Engineer Order 1197, there would be no new cumulative impacts associated with groundwater availability resulting from DOE/NNSA proposed actions and reasonably foreseeable projects in the Amargosa Desert Hydrographic Basin. |
<table>
<thead>
<tr>
<th>Resource Area</th>
<th>DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Non-DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
</table>
| **Biological Resources** | Currently, approximately 80,000 acres of the NNSS are considered disturbed. Overall, new wildlife habitat disturbed by DOE/NNSA actions would be as follows:
No Action: About 1,810 acres, plus an additional 2,650 acres for a commercial solar power generation facility.
Expanded Operations: About 15,500 acres, plus an additional 10,350 acres for commercial solar power generation facilities and a Geothermal Demonstration Project.
Reduced Operations: About 1,540 acres, plus an additional 1,200 acres for a commercial solar power generation facility. | Reasonably foreseeable actions by the U.S. Fish and Wildlife Service would result in a total of about 360,000 acres of desert tortoise habitat in Clark County, Nevada, being permitted under the Endangered Species Act for incidental take of desert tortoises (USFWS 2000; 74 FR 50239). This represents about 9 percent of the estimated 4,000,000 acres of tortoise habitat in Clark County. | The development of from about 512,000 (Reduced Operations Alternative) to 535,750 acres (Expanded Operations Alternative) of currently open land in the region would cumulatively affect wildlife and wildlife habitat. The loss of large areas of habitat would reduce the available habitat for native wildlife, including federally listed species and other special status species. Development of undisturbed land would contribute to loss, fragmentation, and degradation of habitat and encourage nonnative invasive species, thereby eliminating or degrading natural plant communities on which wildlife depend. DOE/NNSA proposed actions and reasonably foreseeable actions by others within the cumulative impacts region of influence would result in the loss of over 522,000 acres of tortoise habitat under the Expanded Operations Alternative or about 508,000 acres under the No Action and Reduced Operations Alternatives. However, because a large portion of that habitat loss would be permitted by USFWS under the Endangered Species Act, pursuant to Section 10(a)(1)(B) for non-Federal entities and Section 7 for Federal agencies, this habitat loss would not threaten the continued existence of the desert tortoise. |
| | Impacts on the threatened desert tortoise under all alternatives would be the result of harassment.
No Action: DOE/NNSA activities at the NNSS would affect about 1,055 acres of desert tortoise habitat and impact up to 47 tortoises; a commercial solar power generation facility would affect an additional 2,650 acres of tortoise habitat and up to 41 tortoises.
Expanded Operations: DOE/NNSA activities at the NNSS would affect about 3,370 acres of desert tortoise habitat and impact up to 60 tortoises; commercial solar power generation facilities would disturb about 10,300 acres of tortoise habitat and up to 161 desert tortoises.
Reduced Operations: DOE/NNSA activities at the NNSS would disturb about 920 acres of desert tortoise habitat and impact up to 37 tortoises; a commercial solar power generation facility would affect an additional 1,200 acres of tortoise habitat and up to 19 tortoises. An additional 125 tortoises may experience impacts due to harassment on NNSS roads under all three alternatives. | Within Nye County, desert tortoise habitat would be affected by a number of reasonably foreseeable actions. The development of solar energy projects in Nye County would remove up to about 131,500 acres of desert tortoise habitat; development of the Nye County Yucca Mountain Project Gateway Area would remove up to 5,800 acres. The development of over 509,000 acres of open land in the region would cumulatively affect wildlife and wildlife habitat. The loss of large areas of habitat would reduce the available habitat for native wildlife, including federally listed species and other special status species. Development of undisturbed land would contribute to loss, fragmentation, and degradation of habitat and encourage nonnative invasive species, thereby eliminating or degrading natural plant communities on which wildlife depend. | |
| | Overall, wildlife habitat disturbed by DOE/NNSA actions would total about 26,000 acres. | | |
Air Quality and Climate

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Non-DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nye County</td>
<td>Annual DOE/NNSA air emissions in Nye County from all sources in 2015:</td>
<td>Nye County Because Nye County is considered an attainment/nondesignated area for purposes of compliance with National Ambient Air Quality Standards, no countywide air monitoring data are available.</td>
<td>Nye County Cumulatively, the annual air emissions from Federal and non-Federal activities in Nye County from all sources in 2015, regardless of the level of projected emissions under any of the alternatives considered in this NNSS SWEIS, are not expected to cause a nonattainment condition with respect to National Ambient Air Quality Standards.</td>
</tr>
<tr>
<td>No Action Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate Matter_{10} = 9.8 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate Matter_{2.5} = 6.8 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide = 66 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrogen Oxides = 40 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfur Dioxide = 1.3 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile Organic Compounds = 5.2 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead = 0.04 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hazardous Air Pollutants = 1.4 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanded Operations Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate Matter_{10} = 22.6 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate Matter_{2.5} = 11 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide = 82 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrogen Oxides = 50 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfur Dioxide = 2 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile Organic Compounds = 10 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead = 0.2 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hazardous Air Pollutants = 1.4 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Operations Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate Matter_{10} = 7.2 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate Matter_{2.5} = 5.8 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide = 55 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrogen Oxides = 36 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfur Dioxide = 1.2 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile Organic Compounds = 4.1 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead = 0.01 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hazardous Air Pollutants = 1.3 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource Area</td>
<td>DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Non-DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Air Quality and Climate (cont’d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clark County</td>
<td>Estimated annual mobile source emissions related to DOE/NNSA activities in Clark County, including worker commuting, for the criteria pollutants that are in nonattainment in the Las Vegas Valley are:</td>
<td>Clark County, principally the Las Vegas Valley, is classed as a nonattainment area for some air pollutants, i.e., not in compliance with National Ambient Air Quality Standards. Criteria pollutants for which the Las Vegas Valley have been out of attainment and the projected (2013) annual mobile source emissions are:</td>
<td>Clark County</td>
</tr>
<tr>
<td></td>
<td>No Action Alternative:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate Matter<sub>10</sub> = 1.5 tons</td>
<td>Particulate Matter<sub>10</sub> = 28,744 tons</td>
<td>The estimated 2015 cumulative total of annual mobile source emissions of criteria pollutants that are currently in nonattainment in the Las Vegas Valley are:</td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide = 97 tons</td>
<td>Carbon Monoxide = 140,160 tons</td>
<td>No Action Alternative:</td>
</tr>
<tr>
<td></td>
<td>Nitrogen Oxides = 24 tons</td>
<td>Nitrogen Oxides = 11,625 tons</td>
<td>Particulate Matter<sub>10</sub> = 28,746 tons</td>
</tr>
<tr>
<td></td>
<td>Volatile Organic Compounds = 3.1 tons</td>
<td>Volatile Organic Compounds = 12,399</td>
<td>Carbon Monoxide = 140,257 tons</td>
</tr>
<tr>
<td></td>
<td>Expanded Operations Alternative:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate Matter<sub>10</sub> = 2 tons</td>
<td>Particulate Matter<sub>10</sub> = 28,746 tons</td>
<td>Expanded Operations Alternative:</td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide = 119 tons</td>
<td>Carbon Monoxide = 140,279 tons</td>
<td>Particulate Matter<sub>10</sub> = 28,746 tons</td>
</tr>
<tr>
<td></td>
<td>Nitrogen Oxides = 29 tons</td>
<td>Nitrogen Oxides = 11,654 tons</td>
<td>Carbon Monoxide = 140,246 tons</td>
</tr>
<tr>
<td></td>
<td>Volatile Organic Compounds = 3.9 tons</td>
<td>Volatile Organic Compounds = 12,403 tons</td>
<td>Nitrogen Oxides = 11,647 tons</td>
</tr>
<tr>
<td></td>
<td>Reduced Operations Alternative:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate Matter<sub>10</sub> = 2 tons</td>
<td>Particulate Matter<sub>10</sub> = 28,746 tons</td>
<td>Reduced Operations Alternative:</td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide = 86 tons</td>
<td>Carbon Monoxide = 140,246 tons</td>
<td>Particulate Matter<sub>10</sub> = 28,746 tons</td>
</tr>
<tr>
<td></td>
<td>Nitrogen Oxides = 22 tons</td>
<td>Nitrogen Oxides = 11,647 tons</td>
<td>Carbon Monoxide = 140,246 tons</td>
</tr>
<tr>
<td></td>
<td>Volatile Organic Compounds = 3 tons</td>
<td>Volatile Organic Compounds = 12,402 tons</td>
<td>Nitrogen Oxides = 11,647 tons</td>
</tr>
</tbody>
</table>

Greenhouse Gas Emissions

DOE/NNSA activities in Nye and Clark County were estimated to annually generate the following estimated amounts of greenhouse gas emissions in 2015:

- **No Action Alternative:** 60,555 tons
- **Expanded Operations Alternative:** 88,679 tons
- **Reduced Operations Alternative:** 53,755 tons

In Nye County, in the vicinity of the NNSS, development of one or more solar power generation facilities would substantially alter the visual character along U.S. Route 95 in Amargosa Valley.

Regardless of the alternative considered in this NNSS SWEIS, development of one or more solar power generation facilities, the Yucca Mountain Gateway Project, and new facilities at Desert Rock Airport (only under the Expanded Operations Alternative) would substantially alter the visual character along U.S. Route 95 in Amargosa and Mercury Valleys, reducing the visual quality rating from Class B to Class C.

Visual Resources

Under all three alternatives addressed in this NNSS SWEIS, the development of one or more solar power generation facilities with generating capacities ranging from 100 to 1,000 megawatts in Area 25 of the NNSS would reduce the visual quality rating of that viewshed from Class B to Class C due to intrusion of manmade elements. Under the Expanded Operations Alternative, construction of additional facilities at Desert Rock Airport would adversely impact the viewshed along U.S. Route 95 in Mercury Valley.

Annual cumulative greenhouse gas emissions in Nye, Clark, Lincoln, and Esmeralda Counties are projected to be as follows:

- **No Action:** 54,661,000 tons
- **Expanded Operations:** 54,689,000 tons
- **Reduced Operations:** 54,654,000 tons
<table>
<thead>
<tr>
<th>Resource Area</th>
<th>DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Non-DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Resources</td>
<td>The estimated number of cultural resources sites potentially affected by DOE/NNSA activities and development of one or more commercial solar power generation facilities under each alternative are as follows:</td>
<td>An estimated 26,000 cultural resources sites would be affected by land-disturbing activities within the cumulative impacts region of influence, with about 13,000 of those sites being considered eligible for inclusion in the National Register of Historic Places.</td>
<td>The estimated cumulative total of potentially affected cultural resources sites, including both proposed and reasonably foreseeable future actions under each alternative, are as follows:</td>
</tr>
<tr>
<td></td>
<td>No Action Alternative:</td>
<td></td>
<td>No Action Alternative:</td>
</tr>
<tr>
<td></td>
<td>DOE/NNSA activities would potentially affect up to 53 sites; 18 could be considered eligible for inclusion in the National Register of Historic Places.</td>
<td>Development of a 100-megawatt commercial solar power generation facility would potentially affect up to 802 sites; 557 could be considered eligible for inclusion in the National Register of Historic Places.</td>
<td>Total sites—26,855</td>
</tr>
<tr>
<td></td>
<td>Development of a 100-megawatt commercial solar power generation facility would potentially affect up to 802 sites; 557 could be considered eligible for inclusion in the National Register of Historic Places.</td>
<td>Expanded Operations Alternative:</td>
<td>National Register of Historic Places-eligible sites—13,565</td>
</tr>
<tr>
<td></td>
<td>Expanded Operations Alternative:</td>
<td>Development of up to 1,000 megawatts of commercial solar power generation facilities and a Geothermal Demonstration Project would potentially affect up to 7,006 sites; 2,163 could be considered eligible for inclusion in the National Register of Historic Places.</td>
<td>Expanded Operations Alternative:</td>
</tr>
<tr>
<td></td>
<td>DOE/NNSA activities would potentially affect up to 682 sites; 283 could be considered eligible for inclusion in the National Register of Historic Places.</td>
<td>Development of of up to 1,000 megawatts of commercial solar power generation facilities and a Geothermal Demonstration Project would potentially affect up to 7,006 sites; 2,163 could be considered eligible for inclusion in the National Register of Historic Places.</td>
<td>Total sites—33,688</td>
</tr>
<tr>
<td></td>
<td>Development of of up to 1,000 megawatts of commercial solar power generation facilities and a Geothermal Demonstration Project would potentially affect up to 7,006 sites; 2,163 could be considered eligible for inclusion in the National Register of Historic Places.</td>
<td>Reduced Operations Alternative:</td>
<td>National Register of Historic Places-eligible sites—15,446</td>
</tr>
<tr>
<td></td>
<td>Reduced Operations Alternative:</td>
<td>DOE/NNSA activities would potentially affect up to 45 sites; 14 could be considered eligible for inclusion in the National Register of Historic Places.</td>
<td>Reduced Operations Alternative:</td>
</tr>
<tr>
<td></td>
<td>DOE/NNSA activities would potentially affect up to 45 sites; 14 could be considered eligible for inclusion in the National Register of Historic Places.</td>
<td>Development of a 100-megawatt commercial solar power generation facility would potentially affect up to 816 sites; 252 could be eligible for inclusion in the National Register of Historic Places.</td>
<td>Total sites—26,861</td>
</tr>
<tr>
<td></td>
<td>Development of a 100-megawatt commercial solar power generation facility would potentially affect up to 816 sites; 252 could be eligible for inclusion in the National Register of Historic Places.</td>
<td></td>
<td>National Register of Historic Places-eligible sites—13,266</td>
</tr>
<tr>
<td>Resource Area</td>
<td>DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Non-DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Historic disposal of low-level and mixed low-level radioactive waste, and some transuranic waste at the NNSS totaled about 40,000,000 cubic feet through 2010. During the next 10 years, the following estimated volumes of radioactive waste would potentially be disposed at the NNSS:</td>
<td>The NNSS is the only active disposal facility for low-level radioactive waste and mixed low-level radioactive waste in Nevada. It accepts for disposal only low-level radioactive waste and mixed low-level radioactive waste that meet the NNSS waste acceptance criteria. A commercial low-level radioactive waste disposal facility operated from 1962 to the end of 1992 in Beatty, Nevada, about 45 miles west of Mercury on the NNSS. Because of a lack of a groundwater pathway from NNSS radioactive waste management facilities, the large distances between this facility and DOE/NNSA waste management operations, depth to groundwater, the high evaporation rate in the region, and monitoring by the Nevada Division of Environmental Protection to ensure continued proper function of closure/containment measures, this closed disposal facility is not expected to have any cumulative impacts with DOE/NNSA waste management activities.</td>
<td>Because the NNSS operates the only low-level radioactive waste/mixed low-level radioactive waste disposal facilities in Nevada, there would be no cumulative impacts from management of such wastes outside of the NNSS.</td>
</tr>
<tr>
<td></td>
<td>No Action and Reduced Operations Alternatives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low-level radioactive waste = 15,000,000 cubic feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mixed low-level radioactive waste = 900,000 cubic feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expanded Operations Alternative:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low-level radioactive waste = 48,000,000 cubic feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mixed low-level radioactive waste = 4,000,000 cubic feet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Waste Management (cont’d)

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Non-DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonradioactive Waste</td>
<td>The following estimated volumes of hazardous waste would be generated by DOE/NNSA activities and one or more commercial solar power generation facilities over the next 10 years:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Action Alternative:</td>
<td></td>
<td>Nonradioactive Waste</td>
</tr>
<tr>
<td></td>
<td>• DOE/NNSA activities—170,000 cubic feet</td>
<td></td>
<td>The volume of hazardous waste that DOE/NNSA and one or more commercial solar power generation facilities would dispose at commercial treatment, storage, and disposal facilities in Nevada and neighboring states that treat and dispose such wastes from many generators.</td>
</tr>
<tr>
<td></td>
<td>• Commercial solar power generation facility—42,000 cubic feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expanded Operations Alternative:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DOE/NNSA activities—170,000 cubic feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Commercial solar power generation facilities—170,000 cubic feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduced Operations Alternative:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DOE/NNSA activities—170,000 cubic feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Commercial solar power generation facility—17,000 cubic feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All hazardous waste generated by DOE/NNSA activities would be transported to commercial treatment, storage, and disposal facilities for treatment and/or disposal. Hazardous waste generated by one or more commercial solar power generation facilities would be managed by the operator in accordance with applicable statutes and regulations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource Area</td>
<td>DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Non-DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>Human Health</td>
<td>Radiological</td>
<td>Radiological</td>
<td>Radiological</td>
</tr>
<tr>
<td></td>
<td>The dose to the offsite population resulting from DOE/NNSA activities in southern Nevada under each alternative addressed in this NNSS SWEIS would be:</td>
<td>There are no other non-background sources of potential radiological exposure for an offsite member of the public within the cumulative impacts region of influence.</td>
<td>Because there is no other source for above-background level of exposure to radioactivity in the cumulative impacts region of influence, DOE/NNSA is the sole contributor to the cumulative dose analyzed in this NNSS SWEIS. Cumulatively, the impacts would then be as follows:</td>
</tr>
<tr>
<td></td>
<td>No Action Alternative:</td>
<td></td>
<td>No Action Alternative:</td>
</tr>
<tr>
<td></td>
<td>• Dose = 5.0 person-rem over 10 years</td>
<td></td>
<td>• Dose = 5.0 person-rem over 10 years</td>
</tr>
<tr>
<td></td>
<td>• Consequences = No (0.003) latent cancer fatality</td>
<td></td>
<td>• Consequences = No (0.003) latent cancer fatality</td>
</tr>
<tr>
<td></td>
<td>Expanded Operations Alternative:</td>
<td></td>
<td>Expanded Operations Alternative:</td>
</tr>
<tr>
<td></td>
<td>• Dose = 8.9 person-rem over 10 years</td>
<td></td>
<td>• Dose = 8.9 person-rem over 10 years</td>
</tr>
<tr>
<td></td>
<td>• Consequences = No (0.005) latent cancer fatality</td>
<td></td>
<td>• Consequences = No (0.005) latent cancer fatality</td>
</tr>
<tr>
<td></td>
<td>Reduced Operations Alternative:</td>
<td></td>
<td>Reduced Operations Alternative:</td>
</tr>
<tr>
<td></td>
<td>• Dose = 4.8 person-rem over 10 years</td>
<td></td>
<td>• Dose = 4.8 person-rem over 10 years</td>
</tr>
<tr>
<td></td>
<td>• Consequences = No (0.003) latent cancer fatality</td>
<td></td>
<td>• Consequences = No (0.003) latent cancer fatality</td>
</tr>
</tbody>
</table>
Human Health (cont’d)

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Non-DOE/NNSA Contribution to Cumulative Impacts</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonradiological</td>
<td>The following estimated nonradiological consequences would occur over a 10-year period from DOE/NNSA activities at the NNSS, RSL, NLVF, and the TTR and construction of one or more commercial solar power generation facilities at the NNSS under each alternative addressed in this NNSS SWEIS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Action Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>Total recordable cases = 578</td>
<td>Days away, restricted, or transferred = 253</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Total recordable cases = 60</td>
<td>Days away, restricted, or transferred = 31</td>
<td></td>
</tr>
<tr>
<td>TOTAL for Alternative</td>
<td>Total recordable cases = 638</td>
<td>Days away, restricted, or transferred = 314</td>
<td></td>
</tr>
<tr>
<td>Expanded Operations Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>Total recordable cases = 700</td>
<td>Days away, restricted, or transferred = 314</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Total recordable cases = 148</td>
<td>Days away, restricted, or transferred = 48</td>
<td></td>
</tr>
<tr>
<td>TOTAL for Alternative</td>
<td>Total recordable cases = 848</td>
<td>Days away, restricted, or transferred = 362</td>
<td></td>
</tr>
<tr>
<td>Reduced Operations Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>Total recordable cases = 508</td>
<td>Days away, restricted, or transferred = 225</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Total recordable cases = 44</td>
<td>Days away, restricted, or transferred = 23</td>
<td></td>
</tr>
<tr>
<td>TOTAL for Alternative</td>
<td>Total recordable cases = 552</td>
<td>Days away, restricted, or transferred = 248</td>
<td></td>
</tr>
<tr>
<td>Nonradiological</td>
<td>During construction of proposed renewable energy projects in Amargosa Valley, industrial accidents could result in an estimated fatality to one worker in 750 total recordable cases and 380 days away, restricted, or transferred.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonradiological</td>
<td>Industrial accidents from all activities at DOE/NNSA sites over a 10-year period, and construction of renewable energy projects in Amargosa Valley could result in the following total recordable cases and days away, restricted or transferred for each alternative:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Action Alternative:</td>
<td>Total recordable cases = 1,328</td>
<td>Days away, restricted, or transferred = 633</td>
<td></td>
</tr>
<tr>
<td>Expanded Operations Alternative:</td>
<td>Total recordable cases = 1,598</td>
<td>Days away, restricted, or transferred = 742</td>
<td></td>
</tr>
<tr>
<td>Reduced Operations Alternative:</td>
<td>Total recordable cases = 1,302</td>
<td>Days away, restricted, or transferred = 628</td>
<td></td>
</tr>
<tr>
<td>Resource Area</td>
<td>DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Non-DOE/NNSA Contribution to Cumulative Impacts</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>Potential new land disturbances on the NNSS for both DOE/NNSA activities and development of one or more commercial solar power generation facilities would result in new land disturbance on up to about 4,500 acres, 26,000 acres, and 2,700 acres, respectively under the No Action, Expanded Operations, and Reduced Operations Alternatives. Previously undisturbed lands may be important to American Indians. Land disturbances on the NNSS could affect traditional cultural properties of concern for various American Indian tribes with a cultural affiliation with the NNSS.</td>
<td>Non-DOE/NNSA actions would account for approximately 509,750 acres of new land disturbances within the cumulative impacts region of influence. Land disturbance of this magnitude would likely have adverse impacts on American Indian traditional cultural properties by destroying places important to the continuation of those cultures.</td>
<td>The potential disturbance of up to 514,250 acres (No Action Alternative), 535,750 acres (Expanded Operations Alternative), or 512,450 acres (Reduced Operations Alternative) of currently undisturbed land within the cumulative impacts region of influence would likely have adverse impacts on American Indian traditional cultural properties by affecting places important to the continuation of those cultures.</td>
</tr>
</tbody>
</table>

NLVF = North Las Vegas Facility; Particulate Matter$_{10}$ = particulate matter with an aerodynamic diameter less than or equal to 10 micrometers; Particulate Matter$_{2.5}$ = particulate matter with an aerodynamic diameter less than or equal to 2.5 micrometers; rem = roentgen equivalent man; RSL = Remote Sensing Laboratory; TTR = Tonopah Test Range.
Chapter 7 presents the proposed mitigation measures that would be implemented by the U.S. Department of Energy's Nuclear Management Administration (DOE/NNSA) to avoid, minimize, rectify, reduce, or compensate for potential adverse impacts on the environment resulting from any of the three alternatives analyzed in this site-wide environmental impact statement (SWEIS). These proposed mitigation measures are listed by resource area and are described in this chapter. The proposed mitigation measures are derived from the results of the environmental analysis process. This SWEIS represents the latest phase of DOE/NNSA's environmental analysis of activities occurring at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, and other Nevada sites managed by DOE/NNSA. As such, these mitigation measures build on those developed through prior environmental analyses covering the history of the NNSS and other DOE/NNSA-managed sites in Nevada.

In accordance with DOE regulations (10 CFR 1021.331), DOE/NNSA will prepare a mitigation action plan for those mitigation commitments made in a future Record of Decision associated with the continued management and operation of the NNSS and other DOE/NNSA-managed sites in Nevada. This mitigation action plan will identify specific mitigation measures associated with the alternative selected in the Record of Decision and describe plans for implementing the mitigation measures, monitoring their implementation and effectiveness, and reporting the results of mitigation efforts to DOE/NNSA and the public. DOE/NNSA may revise the mitigation action plan as more-specific and -detailed information regarding the various missions, programs, capabilities, and projects at the NNSS and other DOE/NNSA-managed sites in Nevada becomes available.

Mitigation Measures—American Indian Perspective

The American Indian Writers Subgroup (AIWS) provides input regarding the potential impacts and mitigation measures that would be implemented by DOE/NNSA to avoid, minimize, rectify, reduce, or compensate for potential adverse impacts on the environment (in accordance with 40 Code of Federal Regulations [CFR] 1508.20) resulting from any of the three alternatives analyzed in this SWEIS. These proposed mitigation measures are listed by resource category and address specific adverse environmental impacts identified in Chapter 5. Where the potential impacts and mitigation measures vary across the three alternatives, measures specific to each alternative are described. Some of these mitigation measures were prepared by the AIWS, and the input is provided in text boxes identified with a Consolidated Group of Tribes and Organizations (CGTO) feather icon.
7.1 Land Use

No adverse impacts on land use that would require mitigation have been identified at the NNSS or at offsite locations under the No Action, Expanded Operations, or Reduced Operations Alternatives. In addition, no adverse airspace impacts that would require mitigation at any project location have been identified under any of the alternatives.

Additional projects that are conceptual in nature but are anticipated to be located on the NNSS, such as the development of a commercial solar power generation facility, would be subject to additional National Environmental Policy Act (NEPA) review. These future reviews would require identification of environmental impacts, including land use impacts, as well as formulation of measures to mitigate these impacts to the extent practicable.

DOE/NNSA will continue working with CGTO to provide access for tribal members to the NNSS for the purpose of visiting culturally significant sites for studies and ceremonial activities.

![Land Use—American Indian Perspective](image)

Since the early 1990's, DOE has funded representatives of the CGTO to visit portions of the NNSS (formerly NTS). This involvement has allowed tribal representatives to identify places, spiritual trails, and cultural landscapes of traditional and contemporary cultural significance. CGTO remains committed in our assertion that portions of the NNSS must be set aside for traditional and contemporary ceremonial use.

In order to fulfill the Holy Land use expectations, the CGTO also recommends continuing to identify special places, spiritual trails, and landscapes, and setting aside these places for unique and innovative co-stewardship activities and ceremonial access. For example, studies have begun regarding the identification of places, spiritual trails and cultural landscapes in the Timber Mountain Caldera. We strongly encourage DOE to pursue these studies, which, when completed, will add an American Indian cultural component that will broaden the understanding and importance of this National Natural Landmark. The CGTO recommends the Gold Meadows area continue to be set aside for exclusive Indian use because of significant cultural resources. Similarly, the CGTO recommends DOE set aside Water Bottle Canyon, Sorghum Peak, Prow Pass, Timber Mountain, select areas within the Calico Hills and portions of Shoshone Mountain for exclusive Indian use. As such, areas should be made to forego any additional land disturbances within these areas and provide reasonable access for Indian people. The CGTO also recommends tribal visits to areas designated for repatriation such as Paiute Mesa, and periodic assessments conducted to compliance with the Native American Graves Protection and Repatriation Act (NAGPRA).

See Appendix C for more details.

7.2 Infrastructure and Energy

The NNSS will continue utilizing measures for energy and water conservation, including the following:

- Implementing strategies and policies to support energy-efficient commuting and travel.

- Identifying, promoting, and implementing water reuse strategies that reduce potable water consumption (Water efficiency practices could include water management planning; system audits; repairs of water leaks; water-efficient landscaping and irrigation; and installation of water-efficient [WaterSense™] products, including toilets and urinals, faucets and showerheads, boiler systems, and other water-using equipment.)
• Increasing diversion of compostable and organic material from waste streams to reduce energy used in disposal

• Managing existing building systems to reduce consumption of energy, water, and materials

• Identifying opportunities to consolidate and dispose existing assets to optimize real property portfolios

7.3 Transportation

Radiological and nonradiological risks to the public would result from overland transport of radioactive and nonradioactive wastes. These risks would be reduced by choosing (to the extent practicable) waste transportation routes that minimize impacts from potential exposure to radiation during incident-free transport, as well as impacts from postulated accidents and the potential for traffic accidents. Other measures to mitigate impacts could include (to the extent practicable) scheduling transports of wastes during periods of lighter traffic volume and training local emergency response personnel. To mitigate potential impacts on American Indian reservations and tribal enterprises, DOE/NNSA would collaborate with potentially affected tribes to develop appropriate emergency response measures.

7.4 Socioeconomics

No adverse impacts are expected over the course of the next 10 years. Therefore, no mitigation measures are proposed. DOE/NNSA will continue, using CGTO as a conduit, where appropriate, to identify employment opportunities for American Indian people and American Indian–owned businesses at the NNSS.

7.5 Geology and Soils

Impacts related to surface disturbance would be mitigated on a site-specific basis, depending on factors such as the size of the area of disturbance, future use of the site, soil characteristics, annual precipitation, and site slope. Where possible, DOE/NNSA would use areas disturbed by past activities for staging, parking, and equipment storage during construction to minimize erosion.

Following removal of soils and vegetation, disturbed sites would be stabilized using water or commercially available soil stabilizers, such as polymers. Potential mitigation measures could include restoring slope stability by shoring, bolting, and grouting; planting natural vegetation; gravel re-armoring; chemical stabilization; and seeding. Where intensive revegetation techniques are necessary, subsoils could be amended and irrigation may be used to encourage germination and plant establishment. DOE/NNSA would make provisions for American Indian people to participate in stabilization and revegetation efforts on the NNSS, including identifying culturally appropriate stabilization efforts and revegetation techniques based on traditional ecological knowledge.
7.6 Hydrology

During development projects, DOE/NNSA would use site planning, design, construction, and maintenance strategies to maintain or restore, to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to the temperature, rate, volume, and duration of flow. Such strategies could include use of biological systems and engineered systems such as, but not necessarily limited to, the following:

- Rain gardens, bioretention, and infiltration planters
- Porous pavements
- Vegetated swales and bioswales
- Trees and tree boxes
- Pocket wetlands
- Reforestation/revegetation using native plants
- Protection and enhancement of riparian buffers and floodplains
• Rainwater harvesting for use (e.g., irrigation; heating, ventilation, and air-conditioning; nonpotable indoor uses)
• Avoiding placing support structures in washes or desert dry wash woodlands, where feasible
• Use of existing natural drainage channels and natural features, such as earthen berms or channels, rather than concretelined channels, where feasible
• Road crossings over washes (where needed) that provide adequate flow-through during storm events
• Fencing that does not impede flows and sediment transport through drainages

Surface-water resources could be affected by disposal unit construction or environmental restoration activities that could alter drainage patterns, leading to possible erosion and deposition of sediments and inundation of areas or ponding of water. Impacts of sediment generation could be minimized by limiting exposed surfaces and intercepting runoff from exposed surfaces prior to discharge. Erosion and sediment controls would include use of runoff interceptor trenches or swales, filter or silt berms or fences, sediment barriers or basins, rock-lined ditches or swales, or stormwater drainage structures, as well as timely revegetation of exposed surfaces. Where practicable, DOE/NNSA would use areas disturbed by past activities for staging, parking, and equipment storage during construction to minimize erosion.

DOE/NNSA would delineate a Wellhead Protection Area using site-specific modeling or a standard 1,000-foot radius around all drinking water source wells to protect against the introduction of contaminants. No experiments, construction, placement of facilities, parking, or hazardous material storage would occur in this area. DOE/NNSA would also continue to perform detailed hydrographic studies of its water supply system to ensure that new withdrawals of groundwater would allow sufficient groundwater aquifer recharge for future uses.

DOE/NNSA would utilize water conservation measures to the maximum extent practicable (for example, efficient landscaping and recycling of wastewater).

When scheduling experiments, DOE/NNSA would consider weather and ground conditions to minimize certain potential impacts that may be exacerbated by sheet flow during storm events, such as erosion and the spread of contaminants.

DOE/NNSA would consider requests by CGTO for American Indian people to access the “pohs” and natural tanks found throughout the NNSS for ceremonial purposes.
7.7 Biological Resources

In February 2009, the U.S. Fish and Wildlife Service (USFWS) issued the Final Programmatic Biological Opinion for Implementation of Actions Proposed on the Nevada Test Site, Nye County, Nevada (2009 Biological Opinion) (USFWS 2009a) to the DOE/NNSA Nevada Site Office (NSO) that authorized the incidental “take” (accidental killing, injury, harassment, etc.) of desert tortoises that may occur during NNSS activities. Before implementing any new activity in desert tortoise habitat, DOE/NNSA provides specified information and consults with USFWS to determine whether the anticipated incidental take for each action, at the project level, complies with the 2009 Biological Opinion. The 2009 Biological Opinion concluded that activities anticipated to occur on the NNSS would not jeopardize the continued existence of the Mojave population of desert tortoises and that no critical habitat would be destroyed or adversely modified. NNSS activities occurring within the range of the desert tortoise must comply with the terms and conditions outlined in the 2009 Biological Opinion, as shown in Chapter 5, Table 5–27. The 2009 Biological Opinion also states that, if the level of incidental take is reached and anticipated to be exceeded during the course of actions, such an incidental take would represent new information requiring reinitiation of consultation and review of the reasonable and prudent measures in the 2009 Biological Opinion. If a proposed activity or group of activities would result in an exceedance of the parameters of the 2009 Biological Opinion, DOE/NNSA would consult with USFWS, in accordance with Section 7 of the Endangered Species Act. Should DOE/NNSA and the U.S. Bureau of Land Management (BLM) decide to go forward with a commercial solar power generation facility, specific measures to minimize and mitigate habitat loss would be incorporated into any future project-specific NEPA review. DOE/NNSA would incorporate mitigation measures provided in the BLM-DOE Solar Energy Development Programmatic Environmental Impact Statement (announced at 76 Federal Register [FR] 66958), as applicable.

The DOE/NNSA NSO Desert Tortoise Compliance Program was developed in 1992, with the issuance by USFWS of the first Biological Opinion for the NNSS. The Desert Tortoise Compliance Program serves to implement the terms and conditions of the most current version of the Biological Opinion for the NNSS, to document compliance actions taken, and to assist the DOE/NNSA NSO with USFWS consultations. Some of the activities of the Desert Tortoise Compliance Program include (1) reviewing proposed activities at the NNSS to determine whether they may be located in tortoise habitat and whether clearance surveys and/or monitoring are required, (2) conducting clearance surveys at project sites within 1 day of the start of project construction, (3) ensuring that environmental monitors are on site during heavy equipment operations, (4) developing training modules and ensuring that all personnel working on the NNSS are trained in the requirements of the Biological Opinion, and (5) preparing annual compliance reports for submittal to USFWS. By implementing the Desert Tortoise Compliance Program, the DOE/NNSA NSO would ensure that most, if not all, of the impacts on desert tortoises addressed in this analysis would involve harassment, rather than injury or mortality.

In addition to the Desert Tortoise Compliance Program, the DOE/NNSA NSO conducts a comprehensive program to monitor and protect sensitive plant and animal species and other biological resources on the NNSS, including the following:

- Biological surveys are performed at project sites where land-disturbing activities are proposed. The goal is to minimize adverse effects of land disturbance on sensitive and protected/regulated plant and animal species, their associated habitat, and other important biological resources. Survey reports document the species and resources found and provide mitigation recommendations.
- Beginning in 2004, the DOE/NNSA NSO began annual surveys each spring to assess wildland fire hazards on the NNSS. NNSS ecologists conduct these wildland fire surveys in coordination with NNSS Fire and Rescue.
Chapter 7
Mitigation Measures

- Under the NNSS Sensitive Plant Monitoring Program, the status or ranking of sensitive plant species known to occur on the NNSS is evaluated annually to ensure such plants are afforded the appropriate protection under Federal and state laws. Sensitive plant species populations on the NNSS are routinely monitored to assess plant density, plant vigor, or identify any threats to or impacts on the species.

- As part of the Sensitive and Protected/Regulated Animal Monitoring Program, to ensure such animal species are afforded the appropriate protection under Federal and state laws, the DOE/NNSA NSO currently monitors 18 animal species on the NNSS. Federal and state lists of sensitive and protected/regulated animal species are reviewed annually to update the list of animal species monitored through this program.

- Additional monitoring is conducted for such things as natural wetlands to characterize seasonal baselines and trends in physical and biological parameters; West Nile virus to help the Southern Nevada Health District ascertain the presence and/or prevalence of the virus in the NNSS mosquito population; and constructed water sources to assess their use by wildlife for the purpose of developing and implementing mitigation measures to prevent them from causing significant harm to wildlife.

- The Habitat Restoration Program involves the revegetation of disturbed land and evaluation of previous revegetation efforts. These activities are conducted at both the NNSS and the Tonopah Test Range (TTR).

- An Ecological Monitoring and Compliance Program Report is published each year to document the previous year’s activities and accomplishments in all of the above-noted areas.

These activities are all elements of the DOE/NNSA NSO’s program to ensure compliance with DOE Order 436.1, Departmental Sustainability, and all applicable statutes and regulations.

The last nuclear weapon test at the NNSS was conducted in September 1992. Since that time, most activities at the NNSS have not affected offsite areas and, as discussed in Chapter 4, Section 4.1.7.6, ongoing monitoring of plants and animals on the NNSS has consistently demonstrated that, while plants and animals that inhabit radiological sites or radioactive waste containment covers may have elevated concentrations of radionuclides in their bodies, the concentrations are below levels considered harmful to their health. To date, there has been no indication that plants or animals located in offsite areas near the NNSS have been adversely affected by radioactive contamination remaining in the soil. DOE/NNSA will continue to monitor biota on the NNSS and will conduct characterization activities in radioactively contaminated areas on the Nevada Test and Training Range, as well as in an area that may extend to the east onto the Desert National Wildlife Range, to determine the levels of radioactivity present and the areal extent of the contaminated soils. If such contamination is found and determined to be of sufficient magnitude as to potentially impact wildlife, DOE/NNSA will work with the U.S. Air Force and, as applicable, USFWS to develop specific mitigation measures.

Chapter 5, Sections 5.1.7.1.3, 5.1.7.2.3, and 5.1.7.3.3, describe potential impacts on sensitive and protected species, including migratory birds. DOE/NNSA’s staff of qualified plant and animal ecologists conduct pre-activity and other surveys related to biological resources on the NNSS, monitor various species that live on the NNSS, and maintain a constant surveillance of the NNSS biota. Because golden eagle nesting is rare on the NNSS (only two nests have been documented since 1968), these ecologists take special note when they do occur. As stated in Chapter 4, Section 4.1.7.4, as well as the above-noted sections of Chapter 5, if an active nest of a sensitive or otherwise protected or regulated bird species may be impacted by a proposed activity, DOE/NNSA would first seek to avoid the impact by postponing the activity until after the young birds fledge. If avoidance were not possible, DOE/NNSA would consult with USFWS before taking any action that would affect the nest or nesting birds.
Under Executive Order 13112, *Invasive Species*, subject to the availability of appropriations and within Administration budgetary limits, Federal agencies are to use relevant programs and authorities to: (1) prevent the introduction of invasive species; (2) detect and respond rapidly to and control populations of such species in a cost-effective and environmentally sound manner; (3) monitor invasive species populations accurately and reliably; and (4) provide for restoration of native species and habitat conditions in ecosystems that have been invaded.

The DOE/NNSA Habitat Restoration Program involves the revegetation of disturbances and the evaluation of previous revegetation efforts. Sites that have been revegetated are periodically sampled, and the information obtained is used to develop site-specific revegetation plans for future restoration efforts on the NNSS. DOE/NNSA has conducted revegetation for projects that damage desert tortoise habitat, water pipeline installations/replacements, wildfire sites, and abandoned industrial or nuclear test support sites characterized and remediated under the Environmental Restoration Program. Revegetation supports the intent of Executive Order 13112 to prevent the introduction and spread of non-native species and restore native species and habitat conditions in ecosystems that have been invaded. In addition, as noted in Chapter 4, Section 4.1.7, and Chapter 5, Section 5.1.7, DOE/NNSA annually conducts surveys of the NNSS to assess the hazards of wildland fires, as well as conducts pre-activity surveys and other plant and wildlife monitoring/surveillance activities throughout the year. Those surveys and monitoring/surveillance activities are conducted by qualified ecologists who additionally survey for noxious or invasive plant species populations. These survey, surveillance, and monitoring activities support the intent of Executive Order 13112 to monitor invasive species populations accurately and reliably and detect and respond rapidly to and control populations of invasive species in a cost-effective and reliable manner. In Section 5.1.7, invasion of disturbed areas by invasive species is acknowledged. When invasion of disturbed areas by noxious weeds is identified during the survey, NNSS Maintenance is notified and may undertake appropriate steps (i.e., application of herbicides or mechanical removal) to selectively eradicate the target plants.

At the TTR, DOE/NNSA’s Sandia Site Office (SSO) has an Ecology Program that serves to conserve flora and fauna (NNSA/SSO 2010). The primary objectives of the Ecology Program include the following:

- Collect ecological resource inventory data to support site activities, while preserving ecological resources and maintaining regulatory compliance
- Collect information on plant and animal species present to further the understanding of ecological resources on site
- Collect biota contaminant data on an as-needed basis in support of site projects and regulatory compliance
- Assist Sandia National Laboratory organizations in complying with regulations and laws
- Provide information to employees regarding ecological resource conservation
- Support Sandia National Laboratory line organizations by conducting biological surveys in support of site activities

Enhancement measures that have been utilized in the past include installing artificial nest platforms, boxes, and perches.
In 2010, an Avian Protection Plan was adopted and implemented at the TTR (Lacy 2011). The Avian Protection Plan was developed to describe procedures that would be taken by DOE/NNSA at the TTR to address potential impacts from its associated transmission and distribution lines to avian species that are known to occur in the area (NNSA/SSO 2010).

In August 2010, the DOE/NNSA SSO completed retrofitting four electrical transmission/distribution structures to reduce the risk of electrocution of larger birds, particularly raptors. The retrofitting included new insulator caps, rerouting of and insulation of jumpers, and insulation of grounding wires.

In the future, new construction and refurbishments at the TTR will use a raptor-safe pole design and wire configuration to help reduce avian mortality. Regular surveys along the power lines will be conducted. Monitoring will be increased for any structures or lines segments that have any avian issues. If a need for mortality reduction measures is identified, these measures will be fully developed in cooperation with Federal and state agencies.

Bird mortality incidents reported as a result of power outages or through incidental observations will be reviewed immediately. If the cause is related to an unprotected power pole or conductor issue, a mortality reduction action (i.e., retrofitting poles, installing protective coverings or perch deterrents diverters) will be implemented accordingly, consistent with standard practices recommended by the Avian Power Line Interaction Committee (APLIC 2006).

If a nest is detected in or around electrical transmission/distribution facilities, a risk assessment will be conducted to determine whether nest removal or relocation is needed. If it is determined that the nest location poses no risk to system function, maintenance procedures, or the birds, the nest will be allowed to remain. If it is determined that the nest poses a potential risk, a further assessment will be conducted to determine whether the risk is imminent. The TTR will coordinate with USFWS to determine whether the nest needs to be removed and discarded or relocated to an alternative location.

Unless there is an immediate threat to birds or system function, nest removal or relocation (excluding eagles and federally or state-listed species) will occur only during the non-breeding season when the nest is not being used or during the breeding season if the nest is unoccupied. If removal or relocation of an eagle’s or federally or state-listed species’ nest is necessary, the TTR will coordinate with USFWS regarding permitting and authorization pursuant to applicable regulations. Nest removal or relocation will occur when the nest is occupied only in cases where it is deemed warranted based on the risk to system function or to the birds (electrocution). Removal or relocation of an occupied nest will require coordination and permitting/authorization with USFWS and/or the Nevada Department of Wildlife.

DOE will continue its collaboration with CGTO to manage biological resources, including pine nut tree care and the relocation and reintroduction of the big horn sheep and desert tortoise. American Indian people consider the relocation and reintroduction of animals to be highly sensitive religious acts, and DOE will include the participation of American Indian people in these activities.
7.8 Air Quality and Climate

To reduce emissions from mobile sources, DOE/NNSA would provide further incentives for the NNSS commuter program to encourage more employees to travel by bus to the NNSS, rather than using privately owned vehicles.

DOE/NNSA would extend the Conservation and Renewable Energy Program to activities beyond 2015 and continue improving energy efficiency measures in new and existing buildings through at least 2020. To reduce dependence on energy generated from fossil fuels, DOE/NNSA would pursue using at least a portion of the electricity generated from the solar power projects proposed under all of the alternatives.

Waste management, facility decommissioning, and environmental restoration activities have the potential to release radioactive constituents and nonradioactive pollutants from suspension of particulates from soil, operation of heavy equipment, evaporation of tritium, and treatment of explosive waste. The release of these pollutants would be controlled by compliance with DOE and external regulatory requirements, and pursuing site closure in place when appropriate.

Emissions from construction equipment would be minimized through activities such as properly maintaining the equipment, applying diesel engine refit technology as practicable (e.g., catalytic particulate filters), and limiting unnecessary equipment idling times. To reduce diesel particulate matter, DOE/NNSA would require the use of U.S. Environmental Protection Agency (EPA) Tier 4 certified diesel engine construction equipment. During a transition period to EPA Tier 4 equipment, DOE/NNSA would require that equipment meets the EPA Tier 3 standards. Other measures to reduce diesel
particulate emissions would include using construction equipment that runs on compressed natural gas as well as some smaller construction equipment with electric engines.

DOE/NNSA would seek to minimize emissions during construction and maintenance activities through development and implementation of a Construction Emissions Mitigation Plan and/or Fugitive Dust Control Plan. Details of these plans will be described more fully in the mitigation action plan that DOE/NNSA will prepare after issuance of a Record of Decision. The Construction Emissions Mitigation Plan and/or Fugitive Dust Control Plan will describe measures to reduce the release of dust and particulates using standard best management practices, including the following:

- Stabilizing unpaved construction roads with a nontoxic soil stabilizer or soil-weighting agent
- Watering disturbed areas of construction sites to control visible dust plumes
- Limiting vehicle speeds on stabilized unpaved roads to 25 miles per hour as long as such speeds do not create a visible dust plume
- Limiting vehicle speeds on unstabilized unpaved roads and within construction areas to 10 miles per hour or less
- Stabilizing disturbed soils after construction activities are completed and revegetating exposed areas
- Minimizing construction activities under windy conditions and using wind erosion controls (such as windbreaks, water, or chemical dust suppressants) where soils are disturbed in construction and materials storage areas
- Phasing construction activities, where possible and practicable, to avoid disturbing the entire construction area at once
- Monitoring for fugitive dust emissions and initiating increased control measures to abate any visible dust plumes

CGTO has expressed concerns that climatic change (including irregular cycles of rain and snow) is occurring and will adversely impact the natural resources of the NNSS and the surrounding region. DOE/NNSA will work with CGTO to identify opportunities for American Indian people to conduct traditional ceremonies at the NNSS aimed at mitigating climate-based impacts, including Rain Calling, Snow Making, and Balancing ceremonies.

7.9 Visual Resources

Recent studies have shown that painting structures one to two shades darker than the color of the general surrounding area reduces the visual impact of the structure compared with painting it a matching or lighter hue (BLM 2008a). Therefore, new structures would be painted accordingly. In addition, shotcrete\(^1\) structures would implement integral color, in the same nature, to reduce visibility. Colors would be chosen from the BLM Standard Environmental Colors Chart CC-001: June 2008. Because color selection would vary by location, color panels would be evaluated from key observation points during common lighting conditions (front and back lighting) to aid in the appropriate color selection. Panels would be a minimum of 3 feet by 2 feet in dimension and would be evaluated from various distances to ensure the best possible color selection.

All paints used for the color panels and structures would be color-matched directly from the physical color chart, not digital or color-reproduced versions of the color chart. Paints would have a dull, flat, or

\(^1\) Shotcrete is concrete projected through a hose at high speeds onto a surface.
satin finish only. Appropriate paint types would be selected for the finished structures to ensure long-term durability of the painted surfaces. The paint color would be maintained over time.

Mitigation Measure 1: Apply Minimum Lighting Standards. Lights would be installed at the lowest practicable height, and the lowest practicable wattage would be used. Lights would be screened and directed downward, away from the night sky, to the highest degree possible. The number of nighttime lights would be minimized to the highest degree possible.

The Consolidated Group of Tribes and Organizations (CGTO) knows that many of the activities described under the proposed action and alternatives, such as those associated with facility construction and environmental restoration, will adversely impact visual resources. For Indian people, the adverse impact to visual resources will most certainly impact the spiritual harmony of the environment as a whole. Facility construction and operation will impede visual resources and affect the stability and cultural integrity of the land.

Although the U.S. Department of Energy (DOE) proposes to mitigate visual resource impacts by painting structures to reduce visibility, the CGTO knows additional mitigation measures are necessary. The CGTO recommends that landscape modifications, including those associated with environmental restoration activities, be done in consultation with tribal representatives. Specifically, DOE should make provisions for Indian people to participate in annual monitoring of land disturbing activities through the duration of the project. The CGTO should also participate in restoring the land, and concealing infrastructure using traditional Indian re-vegetation methods (See American Indian Perspective for Section 7.7, Biological Resources). Finally, the CGTO recommends that DOE make provisions for Indian people to conduct ceremonies and offer prayers and songs in an effort to re-balance this adversely impacted resource.

Visual Resources—American Indian Perspective
All landforms within the Nevada National Security Site (NNSS) have high sensitivity levels for American Indians. The ability for us to see the land without the distraction of buildings, towers, cables, roads and other objects is critical to establishing the spiritual connection between Indian people and our traditional lands. We rely on unobstructed views, as we share our songs and stories. These activities help us reaffirm the importance of the land and the tie to American Indian ceremonialism that is necessary for our cultural survival.

The CGTO knows that many of the activities described under the proposed action and alternatives, such as those associated with facility construction and environmental restoration, will adversely impact visual resources. For Indian people, the adverse impact to visual resources will most certainly impact the spiritual harmony of the environment as a whole. Facility construction and operation will impede visual resources and affect the stability and cultural integrity of the land.

Although the U.S. Department of Energy (DOE) proposes to mitigate visual resource impacts by painting structures to reduce visibility, the CGTO knows additional mitigation measures are necessary. The CGTO recommends that landscape modifications, including those associated with environmental restoration activities, be done in consultation with tribal representatives. Specifically, DOE should make provisions for Indian people to participate in annual monitoring of land disturbing activities through the duration of the project. The CGTO should also participate in restoring the land, and concealing infrastructure using traditional Indian re-vegetation methods (See American Indian Perspective for Section 7.7, Biological Resources). Finally, the CGTO recommends that DOE make provisions for Indian people to conduct ceremonies and offer prayers and songs in an effort to re-balance this adversely impacted resource.

See Appendix C for more details.

7.10 Cultural Resources

The DOE/NNSA NSO is committed to ensuring that the NNSS Cultural Resources Management Program meets the requirements of Federal mandates, addresses the concerns of external groups, minimizes adverse impacts on cultural resources, and integrates historic preservation into routine management and project-specific compliance activities. At all times, the NNSS Cultural Resources Management Program attempts to combine preservation and mitigation strategies to meet the needs of the DOE/NNSA NSO mission. As part of this commitment and in compliance with Section 106 of the National Historic Preservation Act, the DOE/NNSA NSO conducts cultural resources surveys and identifies cultural resources within the area of potential effect for all proposed projects and activities (undertakings) that may affect cultural resources. If possible, the DOE/NNSA NSO avoids significant cultural resources impacts by adjusting the location of a proposed undertaking. When avoidance is not practicable, the DOE/NNSA NSO consults with the Nevada State Historic Preservation Officer, and possibly the Advisory Council on Historic Preservation, to identify measures to mitigate adverse impacts on those resources.

Under all of the alternatives, projects and activities would have the potential for adverse impacts on cultural resources. Several strategies for mitigating adverse impacts on cultural resources could be employed. For archaeological resources, these strategies would consist of avoidance, evaluation and data recovery, and monitoring. For structure-related (also known as built environment) resources, strategies would consist of avoidance, evaluation and archival documentation, and monitoring. The Cultural Resources Management Plan for the Nevada Test Site (DOE 2010a) provides cultural resources compliance guidance to the DOE/NNSA NSO, its contractors, and other users of the NNSS. Under
Federal regulations, a significant cultural resource designated as a “historic property” warrants consideration with regard to potential adverse impacts resulting from proposed Federal actions (DOE 2002e). The descriptions of the mitigation measures below summarize those actions described in the Cultural Resources Management Plan.

Mitigation Measure 1: Avoidance of Significant Cultural Resources. When specific project information becomes available, it may be possible to avoid impacts on cultural resources through project design. For archaeological resources, prior to determining whether avoidance is feasible, it may be necessary to conduct test excavations to determine the vertical and horizontal extent of the resource. Once avoidance can be assured, resource location information would be delineated on project plans or sensitive areas would be fenced off prior to project implementation as areas to be avoided and periodically monitored. During the project, if avoidance were determined to be infeasible, the processes outlined in Mitigation Measure 2 (for archaeological resources) and Mitigation Measure 3 (for built environment resources, i.e., buildings, structures, engineered features, etc.) would be followed, as applicable.

Mitigation Measure 2: Evaluation and Data Recovery of Significant Archaeological Resources. It is presumed that it would not be possible to avoid all cultural resources within the various areas of program implementation. Resources that cannot be avoided would be subject to test excavations to determine their significance and, if determined to be significant, would be subject to data recovery. The process that would be followed to determine resource significance and conduct data recovery would be developed in a historic properties treatment plan. All archaeological work on properties eligible for listing in the National Register of Historic Places would be conducted in accordance with Treatment of Archaeological Properties: A Handbook (ACHP 1980), the Advisory Council on Historic Preservation’s Archaeology Guidance (ACHP 2009), and Archaeology and Historic Preservation: the Secretary of the Interior’s Standards and Guidelines (Standards and Guidelines) (NPS 1983). Investigations would be performed under the supervision of professionals whose education and experience meet or exceed the Secretary of the Interior’s professional qualifications standards, as described in the Standards and Guidelines (NPS 1983).

Mitigation Measure 3: Archival Documentation of Significant Built Environment Resources. If project implementation requires removal of a built environment resource (e.g., buildings, structures, and engineered features), Historic American Building Survey/Historic American Engineering Record (HABS/HAER) documentation would be completed. DOE/NNSA would contact the Nevada State Historic Preservation Officer to determine the level and kind of HABS/HAER documentation that would be required for the resource. DOE/NNSA would ensure that the required documentation is completed and accepted by HABS/HAER before the resource is deconstructed.

Mitigation Measure 4: Monitoring of Significant Archaeological Resources. Portions of the area of potential effects have been determined to have the potential for buried archaeological resources. During project implementation, archaeological monitoring would be conducted within these areas. Any unanticipated resources identified during monitoring would be evaluated and treated in accordance with Mitigation Measures 1 and 2. If human remains were discovered during monitoring, the regulatory requirements described in Mitigation Measure 6 would be followed.

Mitigation Measure 5: Monitoring of Significant Built Environment Resources. Significant built environment resources would be periodically monitored to ensure protection of the resources. If unexpected effects on significant built environment resources were identified, provisions for protection, stabilization, or mitigation would be made in consultation with the Nevada State Historic Preservation Officer.
Mitigation Measure 6: Discovery of Human Remains. Should human remains be discovered during project implementation and be determined to be American Indian, DOE/NNSA would follow the requirements of the Native American Graves Protection and Repatriation Act (NAGPRA) and other applicable Federal laws.

DOE/NNSA has supported several cultural resources studies at the NNSS that have incorporated previous recommendations made by CGTO. These cultural resources studies have identified several areas on the NNSS that are culturally and spiritually important to American Indian people. DOE/NNSA would collaboratively work with CGTO to arrange for tribal visits to monitor the state of cultural sites located within the NNSS and to offer blessings. DOE/NNSA would also arrange for tribal visits to areas that have been designated for repatriation, such as the Timber Mountain area, and for periodic assessments by American Indian people of efforts conducted by DOE/NNSA to comply with NAGPRA.

Cultural Resources—American Indian Perspective

The Consolidated Group of Tribes and Organizations (CGTO) understands the mitigation measures proposed by the U.S. Department of Energy (DOE) in this site-wide environmental impact statement (SWEIS) include avoidance, evaluation and data recovery, and monitoring, as described further under Mitigation Measures 1 through 6 of the Nevada Test Site (NTS) Cultural Resource Management Plan. Accordingly, the CGTO must be an integral part of these mitigation measures so impacts on American Indian cultural resources can be minimized or averted. American Indian people know the Nevada National Security Site (NNSS) landscape in great depth and can help DOE identify and protect traditional-use plants, animals, geography, archaeological sites, and traditional cultural properties that have been or may be adversely impacted by NNSS programs and activities.

The CGTO recommends DOE make provisions for Indian people to continue to identify culturally significant locations so potentially impacted resources can be identified, alternative solutions discussed, and adverse impacts averted. These studies will address and guide DOE in developing culturally-appropriate Best Management Practices to protect cultural resources and more effectively implement Mitigations Measures 1 through 6. To accomplish this, Indian people must be involved with the following actions:

- Assess and determine culturally-appropriate measures to protect geological formations important to the spiritual landscape.
- Implement culturally-appropriate environmental restoration techniques that require minimal ground disturbance.
- Restore impacted plant and animal species essential to the spiritual and cultural landscape.
- Provide American Indian people access to CGTO designated areas so we can conduct purification and balancing ceremonies in an attempt to restore the natural and spiritual harmony of the NNSS landscape.
- Complete Traditional Cultural Property (TCP) Nomination process previously recommended by the CGTO in 2009 for Shoshone Mountain and initiated for Water Bottle Canyon.
- Complete the Indian History Project report prepared collaboratively with DOE, the U.S. Department of Defense (DOD) and CGTO in 2001.
- Develop and implement systematic American Indian ethnographic studies to better understand the interconnectedness of the cultural landscape, and implement culturally-appropriate methods to protect the landscape and sustain spiritual and cultural balance.
- Complete the re-vegetation efforts for the restoration of Clean Slates dating back to 1996.

In addition, the CGTO recommends Gold Meadows continue to be set aside for exclusive Indian use because of significant cultural resources. Similarly, the CGTO recommends DOE set aside Water Bottle Canyon, Senguhum Peak, Frow Pass, Timber Mountain, and select areas within Calico Hills and Shoshone Mountain for exclusive Indian use. Efforts should be made to forgo any additional land disturbances within these areas and provide access to Indian people.

The CGTO agrees with the mitigation measures proposed by DOE in this SWEIS regarding site monitoring, and recommends Indian people serve as site monitors. As a minimum, the CGTO recommends annual tribal visits to monitor the condition of cultural sites located within the NNSS and off-site locations to offer appropriate. The CGTO further recommends visits to areas designated or potentially designated for repatriation such as Pahute Mesa. Finally, we recommend Indian people conduct periodic assessments in accordance with the Native American Graves Protection and Repatriation Act (NAGPRA) and other federal mandates.

See Appendix C for more details.
7.11 Waste Management

Waste management activities at the NNSS would result in the permanent commitment of land for disposal of radioactive and nonradioactive waste. This land commitment would be reduced through continuation of the DOE Waste Minimization and Pollution Prevention Program, which reduces the quantity of waste generated each year and enhances the recycle or reuse of waste or excess materials, resulting in less waste that requires disposal each year. Land commitment would also be reduced by restricting waste disposal to approved, designated areas.

Waste Management—American Indian Perspective
We continue to strongly oppose the transportation, storage and disposal of radioactive waste at the Nevada National Security Site (NNSS); however, Indian people must continue to fulfill our birth-rite obligation to care for our Holy Land and do what we can to try to restore balance to Area 5 and other contaminated locations. The Consolidated Group of Tribes and Organizations (CGTO) recommends U.S. Department of Energy (DOE) allocate funds and resources for Indian people to conduct systematic ethnographic studies of these waste management programs. If DOE selects the expanded use alternative, the CGTO must conduct a cultural assessment of the Area 3 Radioactive Waste Management Site (RWMS) prior to new use to mitigate potential impacts.

The CGTO supports DOE's intention to minimize waste within the NNSS area. We encourage the DOE to partner with us to develop and participate in DOE's waste minimization and pollution prevention programs. In particular, the waste minimization efforts described in the SWEIS regarding land commitments must include members of the CGTO to ensure that cultural implications of these decisions are considered prior to implementation.

Finally, the CGTO struggles with the ethics of transporting and relocating radioactive waste from other American Indian lands so these people can live without fear of unnatural radioactivity. We are greatly concerned about the adverse spiritual, environmental, and health impacts associated with relocating these angry rocks from their current locations to our Holy Land. We believe transporting these to our land perpetuates animosity and discord among tribal governments and disproportionately impacts the natural balance of the area. Because these decisions adversely impact our land and our relationships with other tribal governments, the CGTO recommends DOE host a break-out session for culturally-affiliated tribes associated with the NNSS and the multi-state waste generator facilities during DOE's Annual Waste Generator Conference. These efforts will facilitate further discussion, understanding, and develop culturally-appropriate mitigation measures.

See Appendix C for more details.

7.12 Human Health

Impacts on the health and safety of workers would be minimized by continued implementation of formal radiation protection and chemical hazards management programs in compliance with DOE radiation protection and occupational safety and health requirements. Among other measures, DOE has implemented an Integrated Safety Management System that integrates environment, safety, and health management programs at DOE sites. The use of an Integrated Safety Management System helps ensure that (1) all levels of program organizations are accountable for environmental protection; (2) all projects are planned with environment, safety, and health concerns in mind; and (3) continuous improvements in program implementation occur.

Radiation protection mitigation measures would include formal analysis of proposed work in a radiological environment by workers, supervisors, and radiation protection personnel and identification of methods to reduce worker exposures to levels as low as reasonably achievable (e.g., use of personal protection equipment, shielding, time management in radiation areas, and training), as well as distribution of the workload across a larger number of workers.

Mitigation measures to protect workers from physical hazards would involve safety reviews of planned activities and implementation of safety measures, including bracing and stabilizing buildings and excavations, wearing personal protective equipment, and conducting safety monitoring and inspections.
Mitigation measures to protect workers from hazardous or toxic materials include training, monitoring, use of personal protective equipment, administrative controls, and compliance with the NNSS Hazardous Materials Control and Management Program. Among other things, this program subjects the purchase of chemicals to a review process to ensure that toxic chemicals and products are not purchased when less-hazardous substitutes are available. The Chronic Beryllium Disease Prevention Program established at the NNSS and other DOE sites reduces the number of workers potentially exposed to beryllium while at work, minimizes the levels of and potential for exposure to beryllium, and maintains a medical surveillance program for early detection of disease.

Very small impacts on members of the public could result from release of radioactive materials to air, particularly from environmental restoration activities, or from release of other airborne pollutants from activities such as heavy equipment operation. These impacts would be minimized by continued compliance with applicable DOE, other Federal, and state requirements (e.g., requirements implemented under the Atomic Energy and Clean Air Acts). Impacts on the public from releases of radioactive and nonradioactive pollutants to air would be reduced via control measures such as using water or surfactants to reduce suspension of contaminated particulates and continuing environmental monitoring programs that track releases, impacts, and trends and publish their results.

DOE/NNSA will collaborate with potentially affected tribes to develop appropriate emergency response measures. DOE will also provide affected tribal governments with current versions of the NNSS Emergency Preparedness Plan and allow tribal governments to participate in the training and implementation of the Emergency Management Program set forth by DOE/NNSA and its contractors.

7.13 Environmental Justice

Although no environmental justice impacts have been identified in this SWEIS, DOE/NNSA will continue the following activities to avoid disproportionate impacts on low-income and minority populations:

- Expand opportunities for low-income and minority communities to provide input within the public involvement process by seeking the constructive involvement of affected stakeholders
- Encourage CGTO participation in DOE/NNSA-sponsored cultural resources investigations, including those associated with ground-disturbing activities such as environmental restoration
- Encourage CGTO participation in development of educational programs to ensure students and researchers receive proper guidance regarding how to interact with the physical environment and cultural landscape
- CGTO maintains that environmental justice concerns from DOE/NNSA NSO activities continue to exist. Of special concern to CGTO is the potential for holy land violations, cultural survival access violations, and disproportionately high and adverse human health and environmental impacts on the American Indian population. While DOE/NNSA did not reach these same conclusions in its environmental justice analysis in this SWEIS, DOE/NNSA will continue its collaboration with CGTO to address the concerns of American Indian people. While the funding and operational constraints of activities must be considered on a case-by-case basis, DOE/NNSA will continue allowing American Indian people access to sites on the NNSS to conduct traditional ceremonies, protecting identified cultural resources, and including American Indian perspectives in its environmental protection programs. DOE/NNSA also will continue its sponsorship of periodic meetings with CGTO to discuss current and proposed actions in greater depth, to
deliberate potential impacts, and to consider and develop mutually acceptable mitigation measures.

7.14 Environmental Management Systems

The DOE/NNSA NSO conducts activities at its facilities in Nevada in a manner that ensures protection of the environment, the worker, and the public. This is accomplished through the implementation of the DOE/NNSA NSO Environmental Management System. An Environmental Management System is a business management practice that incorporates concern for environmental performance throughout an organization, with the ultimate goal to continually reduce the organization’s impact on the environment. An Environmental Management System ensures that environmental issues are systematically identified, controlled, and monitored. It also provides mechanisms for responding to changing environmental conditions and requirements, reporting on environmental performance, and reinforcing continual improvement. The DOE/NNSA NSO Environmental Management System incorporates environmental stewardship goals that are identified in the Federal Environmental Management System directives applicable to all DOE/NNSA sites.

Based on independent evaluation of the DOE/NNSA NSO Environmental Management System, certification was maintained for 2009 and 2010. The environmental policy underlying the DOE/NNSA NSO Environmental Management System contains the following key goals and commitments:

- Protect environmental quality and human welfare by implementing Environmental Management System practices
- Identify and comply with all applicable DOE orders and Federal, state, and local environmental laws and regulations
- Identify and mitigate environmental aspects early in project planning
- Establish environmental objectives, targets, and performance measures
- Collaborate with employees, customers, subcontractors, and key suppliers on sustainable development and pollution prevention efforts
- Communicate and instill an organizational commitment to environmental excellence through processes of continual improvement

DOE/NNSA NSO operations are evaluated to determine whether they have an environmental aspect and to implement the DOE/NNSA NSO Environmental Management System to minimize or eliminate any potential impacts. Operations are evaluated by performing hazard assessments, preparing health and safety plans and execution plans, and preparing and reviewing NEPA documents. All of these documents require identification of mitigation actions to minimize the risk of adverse impacts.

DOE/NNSA NSO operations are reviewed annually to determine which Environmental Management System objectives and targets will be implemented to address specific environmental aspects. In addition, as stated in the previous section, DOE/NNSA incorporates American Indian perspectives into its planning processes by continuing to sponsor periodic meetings with CGTO to discuss current and proposed actions in greater depth, to deliberate potential impacts, and to consider and develop mutually acceptable mitigation measures.
8.0 RESOURCE COMMITMENTS

In accordance with the National Environmental Policy Act (NEPA), Section 102 (42 United States Code [U.S.C.] 4332), and the Council on Environmental Quality’s NEPA implementing regulations (40 Code of Federal Regulations [CFR] 1502.16), Chapter 8 addresses the following:

- Any unavoidable adverse effects associated with implementation of the alternatives presented in Chapter 3, “Description of Alternatives”
- The relationship between short-term uses of the environment and maintenance and enhancement of long-term productivity
- Any irreversible and irretrievable commitments of resources associated with implementation of the alternatives

8.1 Nevada National Security Site

8.1.1 Unavoidable Adverse Effects

The potential environmental consequences of implementing the alternatives are discussed in Chapter 5 of this site-wide environmental impact statement (SWEIS). During implementation of any of the alternatives, the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) would take all reasonable measures to avoid or minimize potential environmental impacts. These measures would include best management practices, as well as the mitigation measures presented in Chapter 7 of this SWEIS. Following a Record of Decision, DOE/NNSA would also commit to development and implementation of a mitigation action plan in accordance with 10 CFR 1021.331, if mitigation commitments are made in the Record of Decision. However, there could be unavoidable adverse impacts associated with implementation of the alternatives. This section provides a summary of those unavoidable adverse impacts.

8.1.1.1 No Action Alternative

Most air emissions at the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) would be associated with mobile source (e.g., vehicles and portable equipment) activity. The NNSS contribution to the mobile source emissions in Clark and Nye Counties would continue to be small and would decrease relative to 2008 emission levels, except volatile organic compound (VOC) emissions from NNSS mobile sources in Clark County, which would increase relative to 2008 emission levels by 0.4 tons per year due to the widespread use of ethanol blends in southern Nevada. VOC emissions are not expected to violate the ozone air quality standard because the increase would be relatively small and such mobile source emissions would be dispersed throughout the Las Vegas Valley and the U.S. Route 95 corridor. NNSS-related activities under the No Action Alternative would create about 39,360 carbon-dioxide-equivalent tons of greenhouse gas emissions per year (45,376 tons when temporary construction worker commuting is included).

8.1.1.1 National Security/Defense Mission

Airspace restrictions would continue to prohibit commercial and general aviation use. DOE/NNSA would continue to coordinate the use of airspace with the Nellis Air Traffic Control Facility, the controlling entity responsible for NNSS airspace.

Ground-disturbing activities that encroach on undisturbed areas are likely to have adverse impacts on vegetation and soils, including essential components of the desert tortoise’s habitat. These activities could potentially disturb native vegetation, although the amount of vegetation and soil that would be affected is not expected to reduce the viability of special status wildlife significantly or have substantial negative impacts on biodiversity, ecosystem functions, or springs in these areas. If native vegetation were
disturbed during the nesting season for birds, the eggs or young in nests located within the project area could be destroyed. Most birds that nest within the NNSS are protected under the Migratory Bird Treaty Act. If detonations and explosives tests were to occur near vital water sources, they could cause wildlife to avoid them, adversely affecting wildlife that depend on those water sources. If detonations were to occur during the nesting season for birds, explosions could startle nesting birds, causing them to abandon their nests and resulting in a loss of eggs or young.

8.1.1.1.2 Environmental Management Mission

The Nevada Division of Environmental Protection (NDEP) issued a Resource Conservation and Recovery Act (RCRA) Part B permit to DOE/NNSA effective December 1, 2010, for a new mixed low-level radioactive waste (MLLW) disposal unit, Cell 18, at the Area 5 Radioactive Waste Management Complex (RWMC). Construction of the new MLLW disposal unit was completed and the disposal unit began accepting MLLW for disposal in January 2011.

By the end of the 10-year period analyzed in this SWEIS, about 50 percent (370 acres) of the approximately 740-acre Area 5 RWMC would be used for low-level radioactive waste (LLW) and MLLW disposal cells as necessary. The remaining area would be subject to use for disposal cells beyond the 10-year period. Once filled, disposal cells would be operationally capped, pending final closure.

Unavoidable adverse effects from remediation of industrial sites and soil contamination sites would include temporary emissions to the air from exhausts of remediation-associated vehicles and equipment and potential resuspension of contaminants. There would also be temporary disturbance of wildlife and existing habitats and a risk of exposure of workers to the contamination, although such exposures would be monitored and controlled to be as low as reasonably achievable. For those sites that would be closed-in-place, there would be long-term impacts on land use due to administrative controls and, in some cases, engineered barriers.

The Underground Test Area Project would result in short-term unavoidable impacts during development of characterization and monitoring wells, primarily due to air emissions of drilling equipment and vehicle exhaust and particulate matter from ground-disturbing activities. There would also be short-term impacts on wildlife due to disturbance during construction activities. Well development activities may have long-term adverse effects on cultural resources sites. Long-term unavoidable effects would be associated with development and operation of characterization and monitoring wells, including loss of habitat (up to 500 acres over the next 10 years) associated with new well development and disturbance of wildlife during periods of human activities at the wells. In addition, long-term operation of the wells would require electrical energy supplied by connections to electrical power lines and/or diesel-powered generators.

8.1.1.1.3 Nondefense Mission

Land preparation activities associated with the development of a commercial solar power generation facility (240 megawatts), to be located within the Renewable Energy Zone in Area 25, plus a transmission line corridor, would disturb an area of approximately 2,650 acres. Most of the soils in Area 25 have not been modified through construction or other uses, so construction of a solar power generation facility would affect topsoil and increase the potential for erosion in Jackass Flats. Ground-disturbing activities and increased vehicular access to previously undisturbed land would adversely affect wildlife in the immediate area of the solar power generation facility by direct mortality of individuals and loss of habitat. The solar power generation facility would be located within the range of the desert tortoise and its habitat. Implementation of the measures identified in the U.S. Fish and Wildlife Service’s *Final Programmatic Biological Opinion for Implementation of Actions Proposed on the Nevada Test Site, Nye County, Nevada (2009 Biological Opinion)* (USFWS 2009a) would be required to minimize the potential for take of desert tortoises.
The solar power generation facility would introduce considerable infrastructure in Area 25 that would be directly visible in middleground views from U.S. Route 95. Portions of the study area visible from U.S. Route 95 have a Class B scenic quality rating. Viewer sensitivity would change from moderate to high near the Area 25 Renewable Energy Zone. A solar power generation facility would introduce a considerable amount of glare from the reflective surfaces of the solar collectors, alter the existing visual character of the landscape that is largely undeveloped, be visible to highly sensitive viewers, and reduce the existing visual quality to a Class C rating because of the intrusion of manmade elements. There is no mitigation to reduce adverse effects associated with the proposed solar array; therefore, this effect is considered adverse and unavoidable.

8.1.1.2 Expanded Operations Alternative

Unavoidable adverse impacts resulting from implementation of the Expanded Operations Alternative include those presented above for the No Action Alternative. The discussion in this section focuses on the differences between the unavoidable adverse impacts under the Expanded Operations and No Action Alternatives.

Most air emissions at the NNSS would be associated with mobile source (e.g., vehicles and portable combustion equipment) activity. The stationary source emissions include emissions resulting from the operation of a 1,000-megawatt commercial solar power generation facility that may be constructed under the Expanded Operations Alternative. These emissions (PM$_{10}$ and PM$_{2.5}$) would mainly occur from the cooling tower and during colder ambient temperatures, as the heat transfer fluid is heated to prevent freezing. VOC and PM$_{10}$ emissions from NNSS mobile sources in Clark County would increase relative to 2008 emission levels by 1.0 and 0.20 tons per year, respectively. The VOC increase would be due to the widespread use of ethanol blends in southern Nevada by 2015. The small increases in VOC and PM$_{10}$ emissions would be attributable to mobile sources and would be widely distributed over the Las Vegas Valley and through the U.S. Route 95 corridor. They would not lead to any additional violations of the ozone or PM$_{10}$ air quality standards. NNSS-related activities under the Expand Operations Alternative would create about 49,303 carbon-dioxide-equivalent tons of greenhouse gas emissions per year (70,461 tons when temporary construction worker commuting is included).

8.1.1.2.1 National Security/Defense Mission

Under the Expanded Operations Alternative, as part of the Stockpile Stewardship and Management Program, DOE/NNSA would add additional equipment and ancillary features within the existing Big Explosives Experimental Facility (BEEF) to support activities occurring in the Nuclear and High Explosives Test Zone. Depleted uranium experiment sites would occupy 40 acres per experiment, with up to 3 experiments during the period of analysis, while high-explosives experiments would occupy 5 acres per experiment, with up to 500 experiments during the period of analysis. The areas for these experiments would be located in appropriately zoned operational areas on the NNSS; however, reserving these areas for the depleted uranium and high-explosives experiments would prevent other activities or uses from occurring within these reserved areas.

New support facilities would be constructed for Office of Secure Transportation (OST) training purposes in Area 17. About 10,000 acres of currently undisturbed land would be reserved for use as an active training area, where live-fire training areas and other training facilities and supporting infrastructure would be developed. Additionally, OST would expand facilities in either Area 12 (12 Camp), Area 6 (Control Point Complex), or Area 23 (Mercury). Temporary impacts on soils would result from construction-related surface disturbance. Some localized impacts on the surface soil structure would occur from DOE/NNSA and U.S. Department of Defense training of OST personnel in off-road locations because driving vehicles through undisturbed soils and vegetation could disturb soil structures and

1 PM$_{10}$ is particulate matter with an aerodynamic diameter less than or equal to 10 micrometers; PM$_{2.5}$ is particulate matter with an aerodynamic diameter less than or equal to 2.5 micrometers.
increase soil erosion by wind. Construction of new OST facilities on previously undisturbed lands would result in a permanent loss of native vegetation and wildlife habitat. Construction of new roads would result in increased vehicular access to previously undisturbed land. Construction activities related to expansion of OST facilities would cause adverse impacts on wildlife through direct mortality of individuals and loss of habitat. For example, expansion of facilities in Areas 6 and 23 would occur within the range of the desert tortoise and could potentially result in an incidental taking of desert tortoises.

The proposed projects for the Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs and the proposed relocation of the Federal Bureau of Investigation Disposition Forensics Program would cause environmental impacts at the NNSS. Construction of additional nonproliferation and counterterrorism facilities, which are still conceptual in nature, would result in 200 acres of surface disturbance, which would cause short- and long-term impacts on soils.

DOE/NNSA would construct additional hangars, shops, and buildings totaling approximately 200,000 square feet (4.6 acres) at Desert Rock Airport, which would result in temporary impacts on soils from surface disturbance. The additional facilities at Desert Rock Airport may include new hangars and support facilities and a lengthened existing runway. These features would be visible in the middleground (0.5 to 4 miles) of views from U.S. Route 95 and would adversely affect visual resources. The scale and coloring of facilities would play a large part in the visual prominence of the new facilities.

8.1.1.2.2 Environmental Management Mission

Waste disposal activities would increase under the Expanded Operations Alternative, which would result in reactivation of the Area 3 Radioactive Waste Management Site. Within these areas, new disposal units would be constructed, filled, and closed to accommodate the waste volumes and types.

Development of new landfills in Area 23 and Area 25 would convert a combined total of 35 acres of currently unused land into waste management facilities and preclude that land from being used for other purposes. Construction of the sanitary waste disposal facility in Area 25 could also result in loss of habitat and direct mortality of tortoises. Increased roadway traffic in Area 25 could also result in incidental takes of desert tortoise from injury or mortality.

Unavoidable adverse effects from Environmental Restoration Program activities under the Expanded Operations Alternative would be the same as those under the No Action Alternative, described in Section 8.1.1.1.2.

8.1.1.2.3 Nondefense Mission

Under the Expanded Operations Alternative, DOE/NNSA would allow development of one or more commercial solar power generation facilities to be located within a 39,600-acre Renewable Energy Zone, with a maximum combined generating capacity of 1,000 megawatts. Land preparation activities associated with the development of the commercial solar power generation facilities, plus a transmission line corridor, would disturb an area of approximately 10,300 acres. Most of the soils in Area 25 have not been modified through construction or other uses, so construction of solar power generation facilities would affect topsoil and increase the potential for erosion in Jackass Flats. Ground-disturbing activities and increased vehicular access to previously undisturbed land would adversely affect wildlife in the immediate area of the solar power generation facilities by direct mortality of individuals and loss of habitat. The solar power generation facilities would be located within the range of the desert tortoise and its habitat. Implementation of the measures identified in the U.S. Fish and Wildlife Service’s 2009 Biological Opinion (USFWS 2009a) would be required to minimize the potential for take of desert tortoises.

The solar power generation facilities would introduce considerable infrastructure in Area 25 that would be directly visible in middleground views from U.S. Route 95. Portions of the study area visible from U.S. Route 95 have a Class B scenic quality rating. Viewer sensitivity would change from moderate to
high near the Area 25 Renewable Energy Zone. Solar power generation facilities would introduce a considerable amount of glare from the reflective surfaces of the solar collectors, alter the existing visual character of the landscape that is largely undeveloped, be visible to highly sensitive viewers, and reduce the existing visual quality to a Class C rating because of the intrusion of manmade elements. There is no mitigation to reduce adverse effects associated with the proposed solar array; therefore, this effect is considered adverse and unavoidable.

The Geothermal Demonstration Project has the potential to introduce facilities associated with capturing, converting, and transferring geothermal power such as a power plant, transmission lines, and associated infrastructure that would occur on 30 to 50 acres of land.

8.1.1.3 Reduced Operations Alternative

Unavoidable adverse impacts under the Reduced Operations Alternative include those presented above for the No Action Alternative. The discussion in this section focuses on the differences between the unavoidable adverse impacts under the Reduced Operations and No Action Alternatives.

Most air emissions at the NNSS would be associated with mobile source (e.g., vehicles and portable combustion equipment) activity. The NNSS contribution to the emissions in Clark County would continue to be small and would decrease relative to 2008 emission levels, except for VOCs, which could increase by 0.2 tons per year by 2015 due to the widespread use of ethanol blends in southern Nevada. The small increase in VOC emissions would be from mobile sources and would be widely distributed over the Las Vegas Valley and the U.S. Route 95 corridor. NNSS-related activities under the Reduced Operations Alternative would create about 38,045 carbon-dioxide-equivalent tons of greenhouse gas emissions per year (40,819 tons including temporary construction worker commuting).

Under the Reduced Operations Alternative, employment is assumed to decrease from the current level of 1,699 to 1,654, with employment from the operation of the solar power generation facility offsetting most losses associated with a reduction in activity associated with other NNSS programs. This decrease would be equal to about 45 jobs (35 in Clark County and 10 in Nye County). In Clark County, this would increase unemployment by about 0.02 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). In Nye County, unemployment would increase by about 0.32 percent (a total of 3,133 Nye County residents were unemployed as of August 2010). Daily spending in the immediate area of the NNSS would decrease correspondingly, which would have a minor impact on economic activity.

8.1.1.3.1 National Security/Defense Mission

No unavoidable adverse impacts have been identified for this mission.

8.1.1.3.2 Environmental Management Mission

Unavoidable adverse effects from Environmental Restoration Program activities under the Reduced Operations Alternative would be the same as those under the No Action Alternative, described in Section 8.1.1.1.2.

8.1.1.3.3 Nondefense Mission

DOE/NNSA would continue to support the development of a commercial solar power generation facility in Area 25 that would be sited on 1,200 acres of land; the net generating capacity under the Reduced Operations Alternative would be 100 megawatts. Most of the soils in Area 25 have not been modified through construction or other uses, so construction of a solar power generation facility would affect topsoil and increase the potential for erosion in Jackass Flats. Ground-disturbing activities and increased vehicular access to previously undisturbed land would adversely affect wildlife in the immediate area of the solar power generation facility by direct mortality of individuals and loss of habitat. The solar power generation facility would be located within the range of the desert tortoise and its habitat. Implementation
of the measures identified in the U.S. Fish and Wildlife Service’s 2009 Biological Opinion (USFWS 2009a) would be required to minimize the potential for take of desert tortoises.

The solar power generation facility would introduce considerable infrastructure in Area 25 that would be directly visible in middleground views from U.S. Route 95. Portions of the study area visible from U.S. Route 95 have a Class B scenic quality rating. Viewer sensitivity would change from moderate to high near the Area 25 Renewable Energy Zone. A solar power generation facility would introduce a considerable amount of glare from the reflective surfaces of the solar collectors, alter the existing visual character of the landscape that is largely undeveloped, be visible to highly sensitive viewers, and reduce the existing visual quality to a Class C rating because of the intrusion of manmade elements. There is no mitigation to reduce adverse effects associated with the proposed solar array; therefore, this effect is considered adverse and unavoidable.

8.1.2 Relationship of Short-Term Uses and Long-Term Productivity

Council on Environmental Quality regulations implementing the procedural requirements of NEPA (40 CFR 1502.16) require consideration of the relationship between short-term uses of man’s environment and the maintenance and enhancement of long-term productivity. This includes using:

“... all practicable means and measures, including financial and technical assistance, in a manner calculated to foster and promote the general welfare, to create and maintain conditions under which man and nature can exist in productive harmony, and fulfill the social, economic, and other requirements of present and future generations of Americans” (NEPA, Section 101, 42 U.S.C. 4331).

Short-term uses are defined as those that would take place during the 10-year timeframe analyzed within this SWEIS. While this section discusses the short-term use of the environment and the maintenance of its long-term productivity, Chapter 5 provides a more detailed discussion of the impacts and resource utilization associated with each of the alternatives. The majority of effects on long-term productivity would result from the continuation of present land use and from future land uses associated with the three alternatives. Under each alternative, lands previously withdrawn from public use would continue to be unavailable for alternate uses by the public. Establishment of new developed areas at the NNSS would occur under all alternatives in this SWEIS.

Underground subcritical experiments would result in the long-term unavailability of the mined cavity, but the land surface would be unaffected and unrestricted.

The Area 3 and Area 5 Waste Management Program sites would have disturbed areas that would be restricted from subsurface access for the long term, and the surface would be restricted from most uses. Rehabilitation of the surface following closure of a disposal site would restore ecological productivity unless rock armor (rocks used to protect against erosion) were used in closure. Although not expected to be used, rock armor or other solid surface coatings would result in a sterile surface for the long term. The area in the buffer zones would have some restrictions on surface uses that would be designed to prevent intrusion into the buried waste. Because it would likely remain undisturbed, the buffer zones’ ecological productivity would remain unimpaired for the long term.

Environmental Restoration Program activities at the NNSS under all three alternatives would contribute to long-term productivity through the remediation of surface and subsurface contamination and their return to other productive uses. The rate of return to ecological productivity would vary at individual sites, depending upon the revegetation measures employed and local soil conditions. In the short term, productivity would be reduced at some sites if contaminated soil were removed for disposal.
8.1.2.1 No Action Alternative

Developed areas of the NNSS, as well as offsite locations within Nevada (including facility footprints and buffer areas), would continue to be unproductive ecologically, but would continue their long-term contributions to the DOE/NNSA mission through their support of research and development and training.

Under the No Action Alternative, construction of a commercial solar power generation facility in Area 25 of the NNSS would result in the conversion of approximately 2,650 acres of land to support energy infrastructure.

8.1.2.2 Expanded Operations Alternative

Under the Expanded Operations Alternative, construction of one or more commercial solar power generation facilities in Area 25 of the NNSS would result in the conversion of approximately 10,300 acres of land to support energy infrastructure.

Under the Expanded Operations Alternative, there would be an additional irreversible and irretrievable commitment of land resources associated with the development of facilities in Area 17, including offices, classrooms, a live-fire shoot house, a live-fire training area, and a simulated town to support training for OST. This complex in Area 17 would be approximately 10,000 acres in size (including buffer zones), and could result in up to 3,500 acres of surface disturbance. DOE/NNSA would also upgrade or construct new facilities in Areas 6, 12, or 23 to provide approximately 50,000 square feet of building space.

8.1.2.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, construction of a commercial solar power generation facility in Area 25 of the NNSS would result in the conversion of approximately 1,200 acres of land to support energy infrastructure.

While some facilities would be considered for closure and demolition under the Reduced Operations Alternative, restoration of these areas to preconstruction conditions may not be practicable over the next 10 years, and these sites may also be considered for alternate uses in support of NNSS mission activities.

8.1.3 Irreversible and Irretrievable Commitment of Resources

NEPA Section 102 (42 U.S.C. 4332) and Council on Environmental Quality regulations implementing the procedural requirements of NEPA (40 CFR 1502.16) require environmental analyses to include identification of “… any irreversible and irretrievable commitments of resources which would be involved in the proposed action should it be implemented.” An irreversible commitment of resources represents a loss of future options. It applies primarily to nonrenewable resources, such as minerals or cultural resources, as well as those factors that are renewable only over long time spans, such as soil productivity. An irretrievable commitment of resources represents opportunities that are foregone for the period of the proposed action. Examples include the loss of production, harvest, or use of renewable resources. The decision to commit the resources is reversible, but the past utilization opportunities are irretrievable.

Implementation of any of the alternatives would result in a permanent commitment of certain air, groundwater, soil, biota, mineral, surface, and subsurface resources. There would be an irreversible and irretrievable commitment of these natural resources.

Under each alternative, developed areas on the NNSS would remain in urban or industrial land uses. This long-term land use commitment would preclude other uses of the land and prohibit natural habitat productivity. Even with any removal of structures and infrastructure, completely natural conditions would be difficult to achieve.

Use of the radioactive waste management facilities for waste disposal would result in an irreversible and irretrievable commitment of land resources. Land uses and access to the subsurface would be severely
restricted at the sites and in surrounding buffer areas. Some areas would be rehabilitated on closure and would provide natural habitat. Although not expected, if closures were designed using rock armor, this would inhibit vegetation or burrowing animals and thereby severely limit their use as natural habitat. Sanitary and construction landfills would represent an irreversible and irretrievable commitment of the subsurface and would limit surface uses.

Underground subcritical experiments would result in an irreversible and irretrievable commitment of the mined cavity. Following subcritical experiments, the land surface would be unaffected and unrestricted.

Decontamination and decommissioning activities would produce mixed results depending on the remedy selected. Most decontamination and decommissioning activities would result in either decontamination, resulting in the consequent availability of the facility for other use, or demolition of the facility and disposal. In-place disposal of basements would result in an irretrievable and irreversible commitment of the subsurface for most land use. Reuse would entail the facility remaining in an industrial mode, which would represent a long-term commitment to that type of land use. Demolition of the facility could result in the land’s availability for other development or for site rehabilitation and use as natural habitat.

Closure in place would result in an irreversible and irretrievable commitment for those RCRA industrial sites that are so treated. Land use on these sites and in a surrounding buffer zone would be severely constrained. Rehabilitation by revegetation would permit their functioning as natural habitat, but closure would likely be designed using rock armor to inhibit vegetation or burrowing animals.

Continued airspace restriction would represent an irreversible and irretrievable commitment because access would be limited to government use only. Airspace access would be prohibited for general aviation and commercial users.

Energy and materials utilized in the construction, operation, maintenance, decontamination, demolition, and closure of the facilities would be irreversibly and irretrievably committed. Groundwater would be withdrawn to support all NNSS programs under each alternative. This water use would represent an irreversible and irretrievable commitment of this resource.

Continued restriction of harvesting products like game, pine nuts, or grass, as well as maintenance of areas in development that precludes their natural productivity, would represent an irretrievable commitment of resources.

Removal of soils for Environmental Restoration Program projects would result in their irreversible and irretrievable loss because they would be landfilled and any associated natural resource services that they provide would be lost as well. Environmental Restoration Program activities would mostly involve land that has been previously disturbed. The amount that would be redisturbed during remediation depends, first, upon the levels of contamination that would be determined during characterization and, second, upon the agreements reached with the State of Nevada regarding cleanup levels.

8.1.3.1 No Action Alternative

Construction of a commercial solar power generation facility in Area 25 of the NNSS and associated transmission lines would result in an irreversible and irretrievable commitment of land resources of approximately 2,650 acres under the No Action Alternative.

8.1.3.2 Expanded Operations Alternative

Construction of one or more commercial solar power generation facilities in Area 25 of the NNSS and associated transmission lines would result in an irreversible and irretrievable commitment of land resources of approximately 10,300 acres under the Expanded Operations Alternative.

As stated previously, under the Expanded Operations Alternative, there would be an additional irreversible and irretrievable commitment of land resources associated with the development of facilities
in Area 17, including offices, classrooms, a live-fire shoot house, a live-fire training area, and a simulated town to support training for OST, as well as the proposed upgrade or construction of new facilities in Areas 6, 12, or 23. Designation and development of a 39,600-acre Renewable Energy Zone in Area 25 under the Expanded Operations Alternative would constitute an additional irreversible, but not necessarily irretrievable, commitment of land resources.

8.1.3.3 Reduced Operations Alternative

Construction of a commercial solar power generation facility in Area 25 of the NNSS and associated transmission lines would result in an irreversible and irretrievable commitment of land resources of approximately 1,200 acres under the Reduced Operations Alternative.

8.2 Remote Sensing Laboratory

8.2.1 Unavoidable Adverse Effects

No unavoidable adverse impacts have been identified for the Remote Sensing Laboratory (RSL) under any of the three alternatives.

8.2.2 Relationship of Short-Term Uses and Long-Term Productivity

No new facility development is proposed for RSL under any of the three alternatives.

8.2.3 Irreversible and Irretrievable Commitment of Resources

See Section 8.1.3 for a discussion of irreversible and irretrievable commitment of resources under the alternatives.

8.3 North Las Vegas Facility

8.3.1 Unavoidable Adverse Effects

8.3.1.1 No Action Alternative

No unavoidable adverse impacts have been identified for the North Las Vegas Facility (NLVF).

8.3.1.2 Expanded Operations Alternative

No unavoidable adverse impacts have been identified for NLVF.

8.3.1.3 Reduced Operations Alternative

Under the Reduced Operations Alternative, there would be a small reduction in employment of 144 individuals at NLVF, including 143 employees in Clark County and 1 employee in Nye County. In Clark County, this would increase unemployment by about 0.10 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). Within Nye County, this would increase unemployment by about 0.03 percent (a total of 3,133 Nye County residents were unemployed as of August 2010). As a result of this jobs reduction, daily spending in the vicinity of NLVF would decrease correspondingly.

8.3.2 Relationship of Short-Term Uses and Long-Term Productivity

No new facility development is proposed for NLVF under any of the three alternatives.

8.3.3 Irreversible and Irretrievable Commitment of Resources

See Section 8.1.3 for a discussion of irreversible and irretrievable commitment of resources under the alternatives.
8.4 Tonopah Test Range

8.4.1 Unavoidable Adverse Effects

8.4.1.1 No Action Alternative

Airspace restrictions would continue to prohibit commercial and general aviation use. DOE/NNSA would continue to coordinate the use of airspace with the controlling entity responsible for the Tonopah Test Range (TTR) airspace, the Nellis Air Traffic Control Facility.

Weapons impact testing, flight test operation of gravity weapons, and passive testing would occur during TTR operations using gravity weapons; passive testing would occur on the TTR. These activities could potentially disturb native vegetation. If disturbance of native vegetation occurs during the nesting season for birds, the eggs or young in nests located within the project area could be destroyed. Explosives tests and detonations could startle wildlife, resulting in adverse impacts. If these detonations and explosives tests were to occur near vital water sources, they could cause wildlife to avoid them, which could adversely affect wildlife that depend on those water sources. Additionally, if detonations were to occur during the nesting season for birds, explosions could startle nesting birds, causing them to abandon their nests and resulting in a loss of eggs or young.

Environmental Restoration Program activities at the TTR would include industrial and soils sites remediation. The unavoidable effects from these activities would be the same as those described in Section 8.1.1.1.2.

8.4.1.2 Expanded Operations Alternative

Unavoidable adverse effects from Environmental Restoration Program activities under the Expanded Operations Alternative would be the same as those under the No Action Alternative, described in Section 8.4.1.1.

8.4.1.3 Reduced Operations Alternative

Airspace impacts would be similar to those described for the No Action Alternative in Section 8.4.1.1; however, impacts would be reduced as a result of the discontinuation of fixed rocket launch operations, cruise missile operations, and fuel-air explosives at the TTR. This would increase the restricted airspace availability for other military uses as coordinated and scheduled by the Nellis Air Traffic Control Facility.

Under the Reduced Operations Alternative, there would be a reduction in employment of 67 individuals at the TTR, including 15 in Clark County and 45 in Nye County. In Clark County, this reduction would increase unemployment by about 0.01 percent (a total of 142,137 Clark County residents were unemployed as of August 2010). In Nye County, this would increase unemployment by about 1.44 percent (a total of 3,133 Nye County residents were unemployed as of August 2010). As a result of the reduction in jobs, daily spending in the vicinity of the TTR would decrease.

8.4.2 Relationship of Short-Term Uses and Long-Term Productivity

No new facility development is proposed for the TTR under any of the three alternatives.

Environmental Restoration Program activities at the TTR under all three alternatives would contribute to long-term productivity through the remediation of surface and subsurface contamination and their return to other productive uses. The rate of return to ecological productivity would vary at individual sites, depending upon the revegetation measures employed and local soil conditions. In the short term, productivity would be reduced at some sites if contaminated soil were removed for disposal.

8.4.3 Irreversible and Irretrievable Commitment of Resources

See Section 8.1.3 for a discussion of irreversible and irretrievable commitment of resources under the alternatives.
CHAPTER 9

LAWS, REGULATIONS, AND PERMITS
9.0 LAWS, REGULATIONS, AND PERMITS

Chapter 9 presents the environmental, safety, and health laws, regulations, and permits that potentially apply to the alternatives in this Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada (NNSS SWEIS). Federal, State of Nevada, Executive Orders, and U.S. Department of Energy (DOE) environmental, safety, and health requirements are summarized in Section 9.1. Applicable permits that may be required to implement the alternatives are identified in Section 9.2.

9.1 Introduction

The major Federal and State of Nevada laws and regulations, Executive Orders, DOE Orders, and other requirements that may apply to the various alternatives analyzed in this site-wide environmental impact statement (SWEIS) are identified in Table 9–1. These compliance requirements are summarized in Sections 9.1.1 through 9.1.14. Executive Orders and DOE Orders that are new or that have been revised since the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada are easily identified in this chapter with their date of issuance and change date(s) transpiring after 1996.

<table>
<thead>
<tr>
<th>Law, Regulation, Order, or Other Requirement</th>
<th>Citation/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Council on Environmental Quality Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act"</td>
<td>40 CFR Parts 1500–1508</td>
</tr>
<tr>
<td>National Environmental Policy Act Implementing Procedures</td>
<td>10 CFR Part 1021</td>
</tr>
<tr>
<td>Protection and Enhancement of Environmental Quality, as amended by Executive Order 11991</td>
<td>Executive Order 11514 (March 5, 1970), amended by Executive Order 11991 (May 24, 1977)</td>
</tr>
<tr>
<td>Departmental Sustainability</td>
<td>DOE Order 436.1 (May 2, 2011)</td>
</tr>
<tr>
<td>Environment, Safety, and Health Reporting</td>
<td>DOE Order 231.1B (June 27, 2011)</td>
</tr>
<tr>
<td>Military Lands Withdrawal Act of 1999</td>
<td>P.L. 106-65</td>
</tr>
<tr>
<td>Real Property Asset Management</td>
<td>DOE Order 430.1B (September 24, 2003; Change 2, April 25, 2011)</td>
</tr>
<tr>
<td>Strengthening Federal Environmental, Energy, and Transportation Management</td>
<td>Executive Order 13423 (January 24, 2007)</td>
</tr>
<tr>
<td>Federal Leadership in Environmental, Energy, and Economic Performance</td>
<td>Executive Order 13514 (October 5, 2009)</td>
</tr>
<tr>
<td>Departmental Sustainability</td>
<td>DOE Order 436.1 (May 2, 2011)</td>
</tr>
<tr>
<td>Law, Regulation, Order, or Other Requirement</td>
<td>Citation/Date</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>“Packaging and Transportation of Radioactive Material”</td>
<td>10 CFR Part 71</td>
</tr>
<tr>
<td>Packaging and Transportation for Offsite Shipment of Materials of National Security Interest</td>
<td>DOE Order 461.1B (December 16, 2010)</td>
</tr>
<tr>
<td>Departmental Materials Transportation and Packaging Management</td>
<td>DOE Order 460.2A (December 22, 2004)</td>
</tr>
<tr>
<td>Packaging and Transportation Safety</td>
<td>DOE Order 460.1C (May 14, 2010)</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td></td>
</tr>
<tr>
<td>Seismic Safety of Federal and Federally Assisted or Regulated New Building Construction</td>
<td>Executive Order 12699 (December 22, 2005)</td>
</tr>
<tr>
<td>Facility Safety</td>
<td>DOE Order 420.1B (December 22, 2005)</td>
</tr>
<tr>
<td>Natural Phenomena Hazards Assessment Criteria</td>
<td>DOE Standard 1023-95 (April 2002)</td>
</tr>
<tr>
<td>Hydrology</td>
<td></td>
</tr>
<tr>
<td>Safe Drinking Water Act of 1974, as amended</td>
<td>42 U.S.C. 300(f) et seq.</td>
</tr>
<tr>
<td>National Wellhead Protection Program</td>
<td>Established by the 1986 Amendments to the Safe Drinking Water Act</td>
</tr>
<tr>
<td>“National Primary Drinking Water Regulations”</td>
<td>40 CFR Part 141 (July 1, 2003)</td>
</tr>
<tr>
<td>“National Primary Drinking Water Regulations Implementation”</td>
<td>40 CFR Part 142 (July 1, 2003)</td>
</tr>
<tr>
<td>“National Secondary Drinking Water Regulations”</td>
<td>40 CFR Part 143 (July 1, 2003)</td>
</tr>
<tr>
<td>“Compliance with Floodplain and Wetland Environmental Review Requirements”</td>
<td>10 CFR Part 1022</td>
</tr>
<tr>
<td>Floodplain Management</td>
<td>Executive Order 11988 (May 24, 1977)</td>
</tr>
<tr>
<td>“Underground Water and Wells”</td>
<td>NRS 534</td>
</tr>
<tr>
<td>“Water Controls” and “Sanitation”</td>
<td>NAC 445A and 444</td>
</tr>
<tr>
<td>Fluid Management Plan for the Underground Test Area Project</td>
<td>DOE/NV-370-Rev. 5 (August 2009)</td>
</tr>
<tr>
<td>Biological Resources</td>
<td></td>
</tr>
<tr>
<td>Clean Water Act, Section 404, Jurisdictional Wetlands</td>
<td>33 U.S.C. 1251 et seq., Section 404</td>
</tr>
<tr>
<td>Protection of Wetlands</td>
<td>Executive Order 11990 (May 24, 1977)</td>
</tr>
<tr>
<td>Invasive Species</td>
<td>Executive Order 13112 (February 3, 1999)</td>
</tr>
<tr>
<td>Responsibilities of Federal Agencies to Protect Migratory Birds</td>
<td>Executive Order 13186 (January 10, 2001)</td>
</tr>
<tr>
<td>Five-Party Cooperative Agreement</td>
<td>1977 (see also Wild Horses and Burros Act of 1971)</td>
</tr>
<tr>
<td>“Protection of Wildlife”</td>
<td>NAC 503.010 – 503.104</td>
</tr>
<tr>
<td>Air Quality and Climate</td>
<td></td>
</tr>
<tr>
<td>Clean Air Act of 1970, as amended</td>
<td>42 U.S.C. 7401 et seq.</td>
</tr>
<tr>
<td>“National Ambient Air Quality Standards”</td>
<td>40 CFR Part 50</td>
</tr>
<tr>
<td>“Stratospheric Ozone Protection”</td>
<td>40 CFR Part 82</td>
</tr>
<tr>
<td>“Standards of Quality for Ambient Air”</td>
<td>NAC 445B.22097</td>
</tr>
</tbody>
</table>
Chapter 9
Laws, Regulations, and Permits

<table>
<thead>
<tr>
<th>Law, Regulation, Order, or Other Requirement</th>
<th>Citation/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Class II Operating Permits”</td>
<td>NAC 445B.3455 – 445B.3477</td>
</tr>
<tr>
<td>“Air Pollution”</td>
<td>NRS 445B.100 – 445B.825 and NRS 486A.010 – 486A.180</td>
</tr>
<tr>
<td>“Alternative Fuels; Clean Burning Fuels”</td>
<td></td>
</tr>
</tbody>
</table>

Visual Resources

- Visual Resource Management: BLM Manual 8400

Cultural Resources

- Protection and Enhancement of the Cultural Environment: Executive Order 11593 (May 13, 1971)
- Indian Sacred Sites: Executive Order 13007 (May 24, 1996)
- Consultation and Coordination with Indian Tribal Governments: Executive Order 13175 (November 6, 2000)
- Preserve America: Executive Order 13287 (March 3, 2003)
- American Indian Tribal Government Interactions and Policy: DOE Order 144.1 (January 16, 2009; Change 1, November 6, 2009)

Waste Management

- Federal Facility Agreement and Consent Order, as amended: Current version
- “Disposal of Solid Waste”: NAC 444.570 – 444.7499
- “Disposal of Hazardous Waste”: NAC 444.850 – 444.8746
- “Storage Tanks”: NAC 444.9921 – 445.999
- “Polychlorinated Biphenyl”: NAC 444.940 – 444.9555
- Radioactive Waste Management: DOE Order 435.1 (July 9, 1999; Change 1, August 28, 2001; Certified, January 9, 2007)
- Settlement Agreement for Mixed Transuranic Waste: June 1992

Human Health and Safety

- “Procedural Rules for DOE Nuclear Facilities”: 10 CFR Part 820
- “Nuclear Safety Management”: 10 CFR Part 830
- “Occupational Radiation Protection”: 10 CFR Part 835
- “Worker Safety and Health Program”: 10 CFR Part 851
- Seismic Safety of Federal and Federally Assisted or Regulated New Building Construction, as amended by Executive Order 13286: Executive Order 12699 (January 5, 1990)
- Conduct of Operations: DOE Order 422.1 (June 29, 2010)
- Radiation Protection of the Public and the Environment: DOE Order 458.1 Change 2 (June 6, 2011)
- Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees: DOE Order 440.1B (May 17, 2007)
- Verification of Readiness to Startup or Restart Nuclear Facilities: DOE Order 425.1D (April 16, 2010)
- Personnel Selection, Qualification, and Training Requirements for DOE Nuclear Facilities: DOE Order 426.2 (April 21, 2010)
9.1.1 Environmental Quality

The purposes of NEPA, as amended, are: (1) to declare a national policy that will encourage productive and enjoyable harmony between man and his environment; (2) to promote efforts that will prevent or eliminate damage to the environment and biosphere and stimulate the health and welfare of man; (3) to enrich the understanding of the ecological systems and natural resources important to the Nation; and (4) to establish a Council on Environmental Quality (CEQ). NEPA establishes a national policy requiring that Federal agencies consider the environmental impacts of major Federal actions that significantly affect the quality of the human environment before making decisions and taking actions to implement those decisions. Implementation of NEPA requirements in accordance with CEQ regulations (Title 40 of the Code of Federal Regulations [CFR] Part 1500 et seq.) may result in a categorical exclusion, an environmental assessment (EA) and Finding of No Significant Impact (FONSI), or an environmental impact statement (EIS). The DOE National Nuclear Security Administration (DOE/NNSA) Nevada Site...
Office’s NSO’s procedures for compliance with NEPA are described below. This NNSS SWEIS has been prepared in accordance with NEPA requirements, CEQ regulations (40 CFR Part 1500 et seq.), and DOE provisions for implementing the procedural requirements of NEPA (10 CFR Part 1021; DOE Order 451.1B, Change 1). It discusses reasonable alternatives and their potential environmental consequences.

DOE Order 451.1B, National Environmental Policy Act Program, establishes DOE requirements and responsibilities for implementing NEPA, CEQ regulations for implementing the procedural provisions of NEPA (40 CFR Parts 1500–1508), and DOE NEPA implementing procedures (10 CFR Part 1021). Under NEPA, Federal agencies are required to consider environmental effects and values and reasonable alternatives before making a decision to implement any major Federal action that may have a significant impact on the human environment. Before initiating any project or activity at the Nevada National Security Site (NNSS), North Las Vegas Facility (NLVF), or Remote Sensing Laboratory (RSL), it is evaluated for possible impacts on the environment. DOE/NNSA uses the following four levels of documentation to demonstrate compliance with NEPA:

- **Environmental Impact Statement (EIS)** – a full disclosure of the potential environmental effects of proposed actions and the reasonable alternatives to those actions
- **Environmental Assessment (EA)** – a concise discussion of proposed actions and alternatives and the potential environmental effects to allow a reasoned determination that an EIS is or is not required. If an EIS is not required, a FONSI is made by the Manager of the DOE/NNSA NSO. The determination to prepare an EA is made by the DOE/NNSA NSO Manager, based on a recommendation by the NEPA Compliance Officer.
- **Supplement Analysis** – a collection and analysis of information for a proposed action to determine whether it is adequately addressed in an existing EIS (such as this SWEIS) or EA or if a new or supplemental NEPA process is required
- **Categorical Exclusion** – a category of action that does not have a significant adverse environmental impact, either by itself or cumulatively, based on analyses of similar previous activities and for which neither an EA nor an EIS is required

DOE/NNSA uses a NEPA Environmental Evaluation Checklist (Checklist) as an initial screening tool for all proposed activities. The Checklist is reviewed by the DOE/NNSA site NEPA Compliance Officer to determine whether the proposed activity: (1) fits within a class of actions that is listed in 10 CFR Part 1021, Appendix A or B, and meets all other requirements to be considered categorically excluded from further NEPA reviews; (2) does not meet the requirements for categorical exclusion, but has been adequately addressed in an existing NEPA document, which determination may require preparation of a supplement analysis; (3) does not meet the requirement for categorical exclusion and has not been previously addressed in an existing NEPA document; or (4) clearly has the potential to cause significant impacts on the human environment. Each NEPA Checklist must be approved by the DOE/NNSA site NEPA Compliance Officer, and all necessary NEPA review and documentation must be completed before the proposed project or activity may proceed.

32 CFR Part 989, “U.S. Air Force (USAF) Environmental Impact Analysis Process”. This regulation implements the USAF environmental impact analysis process and provides procedures for environmental impact analysis both within the United States and abroad. DOE/NNSA would comply with U.S. Department of Defense and USAF management policies and directives that are applicable to the activities discussed in this SWEIS that are conducted on USAF installations and ranges (e.g., the Nevada Test and Training Range, the Tonopah Test Range, and Nellis Air Force Base). Such USAF policies and directives standardize implementation of higher-level guidance, including laws and statutes, across the
entire USAF. One example of such higher-level guidance is 32 CFR Part 989, “Environmental Impact Analysis Process,” which deals with implementing NEPA on USAF real property.

Executive Order 11514, Protection and Enhancement of Environmental Quality (March 5, 1970), as amended by Executive Order 11991 (May 24, 1977). This Order requires Federal agencies to continuously monitor and control their activities (1) to protect and enhance the quality of the environment and (2) to develop procedures to ensure the fullest practicable provision of timely public information and understanding of Federal plans and programs that may have potential environmental impacts so that interested parties can submit their views. DOE issued regulations (10 CFR Part 1021) and DOE Order 451.1B, *National Environmental Policy Act Compliance Program,* in compliance with this Order.

DOE Order 436.1, Departmental Sustainability (May 2, 2011). This Order defines requirements and responsibilities for managing sustainability at DOE facilities. Under the Order, DOE facilities are to ensure that the Department carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges and advances sustainable, efficient, and reliable energy for the future; institute wholesale cultural change to factor sustainability and greenhouse gas (GHG) reductions into all DOE corporate management decisions; and ensure that DOE achieves the sustainability goals established in its *Strategic Sustainability Performance Plan – Discovering Sustainable Solutions to Power and Secure America’s Future* (*Strategic Sustainability Performance Plan*) (DOE 2010d). The Order also mandates that DOE develop and commit to implementing an annual Site Sustainability Plan, which identifies its respective contribution toward meeting the Department’s sustainability goals. In addition, under this Order, DOE sites must use an Environmental Management System (EMS) as a platform for Site Sustainability Plan implementation and programs with objectives and measurable targets that contribute to meeting the Department’s sustainability goals. Sites must maintain their EMS(s) to ensure certification or conformance with the International Organization for Standardization (ISO) 14001:2004 International Standard, in accordance with the accredited registrar provisions of the International Standard or the self-declaration instructions found in the ISO 14001:2004(E) International Standard, *Environmental Management Systems: Requirements with Guidance for Use* (www.iso.org/iso/catalogue_detail?csnumber=31807) and *Instructions for Self-Declaration of Conformance with ISO 14001:2004(E)*, Office of the Federal Environmental Executive, January 15, 2008, (www.fedcenter.gov/_kd/go.cfm?destination=ShowItem&Item_ID=8864). DOE Order 436.1 cancels DOE Order 450.1A, *Environmental Protection,* and DOE Order 430.2B, *Departmental Energy, Renewable Energy, and Transportation Management.*

DOE Order 231.1B, Environment, Safety, and Health Reporting (June 27, 2011). The purpose of this Order is to ensure that DOE, including the NNSA, receives timely and accurate information about events that have affected or could adversely affect the health, safety, and security of the public or workers; the environment; the operations of DOE facilities; or the credibility of the Department. This is to be accomplished through timely collection, reporting, analysis, and dissemination of data pertaining to environment, safety, and health issues as required by law, or regulations, or in support of United States political commitments to the International Atomic Energy Agency (IAEA). This Order cancelled only the provisions of DOE Order 231.1A, Change 1, *Environment, Safety, and Health Reporting,* (dated June 3, 2004) that pertain to environment, safety, and health reporting. Occurrence reporting and processing of operations information provisions from DOE Order 231.A remain in effect. Under DOE Order 231.1B, the following reports and information must be submitted: (1) Annual Site Environmental Reports (prepared and submitted annually to DOE Headquarters, regulatory agencies, and interested stakeholders); (2) Occupational Safety and Health Information; (3) Annual Submission of Fire Protection Information; (4) Ionizing Radiation Exposure Information; (5) Safety Basis Information; and (6) Radioactive Sealed Sources Information.
9.1.2 Land Use

Federal Land Policy and Management Act (FLPMA) of 1976 (43 U.S.C. 1701–1784, enacted by Public Law 94-579, as amended). FLPMA governs the use of Federal lands that may be overseen by several agencies and establishes the procedure for applying to the Bureau of Land Management (BLM) for land withdrawals and rights-of-way. Land use is addressed in Chapter 4, Sections 4.1.1, 4.2.1, 4.3.1, and 4.4.1.

Military Lands Withdrawal Act of 1999 (Public Law 106-65). On October 5, 1999, this Act renewed withdrawal of lands known as Pahute Mesa that are an integral part of the NNSS and include the site of nuclear weapons testing activities. Pursuant to the Act, these lands were transferred from the U.S. Department of Defense to DOE, thus aligning jurisdictional responsibilities consistent with DOE’s retention of environmental, safety, and health responsibilities at the NNSS.

DOE Order 430.1B, Real Property Asset Management (September 24, 2003; Change 2, April 25, 2011). The objective of this Order is to establish a corporate, holistic, and performance-based approach to real property life-cycle asset management that links real property asset planning, programming, budgeting, and evaluation to program mission projections and performance outcomes. To accomplish the objective, this Order sets forth the requirements for the major real property asset management functional components of planning, real estate, acquisition, maintenance and recapitalization, disposition and long-term stewardship, value engineering, and performance goals and measures. One of the requirements is documentation of the results of real property asset site planning and performance in a Ten-Year Site Plan (TYSP) that is kept current and covers a 10-year planning horizon. The content of the TYSP must address how the site’s real property assets will support DOE’s strategic plan, the Secretary of Energy’s 5-year planning guidance, and appropriate program guidance. It must be a comprehensive site-wide plan encompassing the needs of tenant activities. This Order applies to DOE/NNSA for operations on the NNSS, as well as at NLVF and RSL.

9.1.3 Infrastructure and Energy

Energy Policy Act of 2005 (42 U.S.C. 15801 et seq.). Signed on August 8, 2005, this Act was the first omnibus energy legislation enacted in more than a decade. Major provisions include tax incentives for domestic energy production and energy efficiency, a mandate to double the Nation’s use of biofuels, repeal of restrictions on interstate utility holding companies, faster procedures for energy production on Federal lands, and authorization of numerous Federal energy research and development programs. Applicability for DOE ranges from energy management requirements, procurement of energy-efficient products, assessment of renewable energy resources, and Price-Anderson Amendments Act requirements.

Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management (January 24, 2007). This Order sets goals for Federal agencies to conduct their
environmental, transportation, and energy-related activities in support of their respective missions in an integrated, efficient, continuously improving, and sustainable manner that complies with the law and all regulatory requirements and is environmentally, economically, and fiscally sound.

Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance (October 5, 2009). This Order focuses on improving and strengthening the overall sustainability of the Federal Government. All Federal agencies are required to inventory their GHG emissions, set targets to reduce their emissions by 2020, and develop a plan for meeting a wide range of goals for improving sustainability, such as water efficiency, waste reduction, sustainable community development planning, high-performance buildings, sustainable acquisition, electronics stewardship, and environmental management.

In accordance with Executive Order 13514, DOE published its first *Strategic Sustainability Performance Plan* (DOE 2010d) in September 2010. The *Strategic Sustainability Performance Plan* is updated annually, and progress toward its goals is reported in the annual updates. The Plan includes the following: (1) sustainability goals and targets, including GHG reduction targets; (2) integration with overall strategic planning and budgeting processes within DOE; (3) activities, policies, plans, procedures, goals, schedules, and milestones needed to implement Executive Order 13514; (4) performance metrics and evaluation of projects based on life-cycle return on investment; (5) involvement of DOE employees in achieving sustainability goals; and (6) climate change adaptation planning.

9.1.4 Transportation

Hazardous Materials Transportation Act of 1975, as amended (49 U.S.C. 5101 et seq.). The transportation of radioactive materials is regulated jointly by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Transportation (DOT). DOT regulates shippers and carriers of hazardous materials, including radioactive material. DOT’s responsibility includes vehicle safety, routing, shipping papers, and emergency response information and shipper/carrier training requirements. NRC regulates users of radioactive material in 17 states (33 states regulate material within their borders) and approves the design, fabrication, use, and maintenance of shipping containers for more-hazardous radioactive material shipments (NTA 2009). NRC requires radioactive materials to be shipped in accordance with the hazardous materials transportation safety regulations of DOT. DOT regulations prescribe limits on the maximum amounts of radioactivity that can be transported, such that doses from any accidents involving these packages would have no substantial health risks.

Transportation of hazardous materials that occurs entirely on DOE property (i.e., on the NNSS), to which public access is controlled at all times through the use of gates and guards, is subject to applicable DOE directive and transportation safety requirements set forth in 10 CFR Part 830, Subpart B. DOE transport of hazardous materials (e.g., mixed low-level radioactive waste) off site for treatment, over highways to which the public has access, would be subject to applicable DOT, DOE, and U.S. Environmental Protection Agency (EPA) directives. Potential transportation impacts from implementation of the alternatives analyzed in this SWEIS are discussed in Chapter 5, Sections 5.1.3, 5.2.3, 5.3.3, and 5.4.3.

10 CFR Part 71, “Packaging and Transportation of Radioactive Material.” These NRC regulations include detailed packaging design requirements and package certification testing requirements. Complete documentation of design and safety analysis and the results of the required testing are submitted to NRC to certify the package for use. This certification testing involves the following components: heat, physical drop onto an unyielding surface, water submersion, puncture by dropping the package onto a steel bar, and gas tightness.
DOE Order 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest (December 20, 2010). This Order establishes the requirements and responsibilities for offsite shipments of naval nuclear fuel elements, Category I and Category II special nuclear materials (SNM), nuclear explosives, nuclear components, special assemblies, and other materials of national security interest. Requirements and responsibilities for onsite transfers have been removed from this Order and are included in the new DOE Order 461.2, Packaging and Transportation for Onsite Transfer of Materials. This Order is applicable to primary DOE organizations, including NNSA.

DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest (November 1, 2010). This Order establishes safety requirements and responsibilities for onsite packaging and transfers of materials of national security interest to ensure safe use of Transportation Safeguards System (TSS) and non-TSS Government- and contractor-owned and/or leased resources. This Order also establishes a process for identifying and mitigating risks associated with noncompliant transfers.

DOE Order 460.2A, Departmental Materials Transportation and Packaging Management (December 22, 2004). This Order states that DOE operations shall be conducted in compliance with all applicable international, Federal, state, local, and tribal laws, rules, and regulations governing materials transportation that are consistent with Federal regulations, unless exemptions or alternatives are approved in accordance with DOE Order 460.1B. This Order also states that it is DOE policy that shipments will comply with the DOT requirements of 49 CFR Parts 100–185, except those that infringe on maintenance of classified information. This Order applies to NNSA.

DOE Order 460.1C, Packaging and Transportation Safety (May 14, 2010). The objective of this Order is to establish safety requirements for the proper packaging and transportation of DOE and DOE/NNSA offsite shipments, onsite transfers of hazardous materials, and modal transport. (“Offsite” refers to any area within or outside a DOE site to which the public has free and uncontrolled access; “onsite” refers to any area within the boundaries of a DOE site or facility to which access is controlled.) Operations conducted under DOE Order 461.1, Packaging and Transfer or Transportation of Materials of National Security Interest, are excluded from this Order.

9.1.5 Geology and Soils

Executive Order 12699, Seismic Safety of Federal and Federally Assisted or Regulated New Building Construction (January 5, 1990), as amended by Executive Order 13286 (February 28, 2003). This Order requires Federal agencies to: (1) reduce risks to occupants of buildings owned, leased, or purchased by the Federal Government or buildings constructed with Federal assistance and to persons who would be affected by failures of Federal buildings in earthquakes; (2) improve the capability of existing Federal buildings to function during or after an earthquake; and (3) reduce earthquake losses of public buildings, all in a cost-effective manner. Each Federal agency responsible for the design and construction of a Federal building shall ensure that the building is designed and constructed in accordance with appropriate seismic design and construction standards. This requirement pertains to all building projects for which development of detailed plans and specifications is initiated subsequent to the issuance of this Order; therefore, it applies to the proposed activities evaluated in this SWEIS. Seismic risks and potential impacts are evaluated in Chapters 4 and 5 of this SWEIS.

DOE Order 420.1B, Facility Safety (December 22, 2005). This Order requires that nuclear and nonnuclear facilities be designed, constructed, and operated so that the public, workers, and environment are protected from adverse impacts of natural phenomena hazards, including earthquakes. The Order stipulates natural phenomena hazards mitigation for DOE facilities and specifically provides for re-evaluation and upgrade of existing DOE facilities when there is a significant degradation in the safety
basis for the facility. The design and construction of new facilities and major modifications to existing facilities proposed in this SWEIS must address natural phenomena mitigation design.

| DOE Guide 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Nonnuclear Facilities (March 28, 2000). | This document provides guidance in implementing the natural phenomena hazards mitigation requirements of DOE Order 420.1B, Facility Safety, Section 4.4, “Natural Phenomena Hazards Mitigation.” This Guide does not establish or invoke any new requirements. Any apparent conflicts arising from the natural phenomena hazards guidance would defer to the requirements in DOE Order 420.1. |

| DOE Standard 1023-95, Natural Phenomena Hazards Assessment Criteria (April 2002). | To implement the natural phenomena hazards mitigation requirements, several standards have been developed for compliance with DOE Order 420.1. DOE Standard 1023-95 provides general and detailed criteria for establishing adequate design-basis load levels. |

9.1.6 Hydrology

Clean Water Act of 1972, as amended (33 U.S.C. 1251 et seq.). The Clean Water Act, which amended the Federal Water Pollution Control Act, was enacted to “restore and maintain the chemical, physical, and biological integrity of the Nation’s water.” The Act prohibits the unpermitted discharge of toxic pollutants in toxic amounts to navigable waters of the United States. Section 313 of the Clean Water Act requires all branches of the Federal Government engaged in any activity that might result in a discharge or runoff of pollutants to surface waters to comply with Federal, state, interstate, and local requirements.

Section 404 of the Clean Water Act, which provides the U.S. Army Corps of Engineers permitting authority over activities that discharge dredge or fill materials into waters of the United States, including wetlands, is addressed in Section 9.1.7, Biological Resources.

The Act also provides guidelines and limitations for effluent discharges from point-source discharges and establishes the National Pollutant Discharge Elimination System (NPDES) permit program. The NPDES program is administered by EPA, pursuant to regulations in 40 CFR Part 122 et seq., and may be delegated to states. Stormwater provisions of the NPDES program are set forth in 40 CFR 122.26, and require discharge permits for industrial and construction activities disturbing 0.4 hectares (1 acre) or more. The NNSS operations do not require any NPDES permits (DOE/NV 2009d). At NLVF, an NPDES permit regulates the discharge of pumped groundwater. At the NNSS, Clean Water Act regulations are followed through compliance with wastewater discharge permits issued by the Nevada Division of Environmental Protection (NDEP). Wastewater discharge permits held by DOE/NNSA for the NNSS and other locations are identified in this chapter in Section 9.2, “Applicable Permits.”

Safe Drinking Water Act of 1974, as amended (42 U.S.C. 300(f) et seq.). The primary objective of the Safe Drinking Water Act is to protect the quality of public drinking water supplies and sources of drinking water. The implementing regulations, administered by EPA unless delegated to states, establish national primary drinking water standards applicable to public water systems. These regulations (40 CFR Parts 123, 141, 145, 147, and 149) specify maximum contaminant levels, including those for radioactivity, in public water systems, which are generally defined as systems that have at least 15 service connections used by year-round residents or regularly serve at least 25 year-round residents. These standards apply to the NNSS and other locations for community and non-community water supplies. The State of Nevada implements its own safe drinking water program under authority of the Safe Drinking Water Act. Nevada has adopted standards at least as stringent as the EPA’s and has a safe drinking water program in place to make sure water systems meet these standards. NDEP’s Bureau of Safe Drinking Water is responsible for enforcement of these standards.
National Wellhead Protection Program (established by the 1986 amendments to the Safe Drinking Water Act). The Safe Drinking Water Act amendments require each state to develop a Comprehensive State Groundwater Protection Program and encourage local water systems to develop wellhead protection plans for their community water systems.

40 CFR Part 141, “National Primary Drinking Water Regulations.” These regulations provide maximum contaminant levels, monitoring and analytical requirements, reporting and record-keeping requirements, special regulations such as prohibition of lead use, maximum contaminant level goals, national primary drinking water regulations, filtration and disinfection rules, and control of lead and copper requirements, as well as other subparts to follow.

40 CFR Part 142, “National Primary Drinking Water Regulations Implementation.” These regulations provide the proper measures for implementation and enforcement of the “National Primary Drinking Water Regulations” (40 CFR Part 141).

40 CFR Part 143, “National Secondary Drinking Water Regulations.” This part establishes national secondary drinking water regulations pursuant to Section 1412 of the Safe Drinking Water Act, as amended (42 U.S.C. 300g-1). These regulations control contaminants in drinking water that primarily affect the aesthetic qualities relating to the public acceptance of drinking water. At considerably higher concentrations of these contaminants, health implications may also exist, as well as aesthetic degradation. The regulations are not federally enforceable, but are intended as guidelines for the states.

10 CFR Part 1022, “Compliance with Floodplain and Wetland Environmental Review Requirements.” DOE requirements for compliance with Executive Order 11988, “Floodplain Management,” and Executive Order 11990, “Protection of Wetlands,” are set forth in 10 CFR Part 1022, “Compliance with Floodplain and Wetland Environmental Review Requirements.” 10 CFR Part 1022 establishes policy and procedures for DOE responsibilities under both Executive Orders, including: (1) DOE policy regarding the consideration of floodplain and wetland factors in DOE planning and decisionmaking and (2) DOE procedures for identifying proposed actions located in a floodplain or wetland, providing opportunity for early public review of such proposed actions, preparing floodplain or wetland assessments, and issuing statements of findings for actions in a floodplain. DOE shall accommodate the requirements of Executive Order 11988 and Executive Order 11990, to the extent possible, through applicable DOE NEPA procedures or, when appropriate, using the environmental review process under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (see Section 9.1.14 of this Chapter). Additionally, DOE must specifically to adhere to the flood design and evaluation criteria specified in DOE Standards 1020–2002, Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities, and 1023-95, Natural Phenomena Hazards Assessment Criteria. Chapter 5 of this SWEIS addresses the potential floodplain impacts associated with the activities analyzed for each of the alternatives.

Executive Order 11988, Floodplain Management (May 24, 1977). This Order (implemented by DOE in 10 CFR Part 1022) directs Federal agencies to evaluate the potential effects of any actions that may be taken in a floodplain. When conducting activities in a floodplain, Federal agencies are required to take actions to reduce the risk of flood damage; minimize the impact of floods on human safety, health, and welfare; and restore and preserve the natural and beneficial values served by floodplains.

State of Nevada, Nevada Revised Statutes (NRS) 534, “Underground Water and Wells.” The Nevada Division of Water Resources oversees these regulations, which relate to drilling, construction, and licensing of new wells and reworking of existing wells to prevent the contamination and excess use (i.e., waste) of groundwater. DOE/NNSA complies with these regulations as a matter of comity, holding to the position that state licensing requirements do not apply to the Federal Government and its
contractors as a matter of law, under the principle of Federal supremacy and associated case law. Two current operations that voluntarily comply with these regulations are the Underground Test Area (UGTA) Project, which drills new wells and reworks old wells, and the Borehole Management Program, which plugs abandoned the NNSS boreholes (DOE/NV 2009d). For information on the current status of the Borehole Management Program, see Chapter 3, Section 3.1.2.2, of this SWEIS.

NAC 445A (cited above) and 444, “Sanitation.” These regulations protect the waters of the state from the discharge of pollutants. NDEP’s Bureau of Water Pollution Control oversees and enforces compliance with Nevada’s water pollution control laws and regulations. These regulations apply to the collection, treatment, and disposal of wastewater and sewage at the NNSS. The requirements are issued in permits to DOE/NNSA, as shown in Table 9–2. DOE/NNSA also obtains underground injection control permits from NDEP for tracer tests in UGTA Project characterization wells (DOE/NV 2009d).

NAC 445A.810–445A.925, “Underground Injection Control Program.” NDEP’s Bureau of Safe Drinking Water issues permits to protect the public health and safety and the general welfare of the people of Nevada. An applicant for a permit to inject fluids must satisfy the state that the underground injection will not endanger any source of drinking water (NAC 445A.865, NAC 445A.867). Construction of an injection well for which a permit is required may not begin until the permit has been issued (NAC 445A.905). Plugging and abandonment requirements may be added as a condition to the permit or the requirements in the NAC must be followed. (See NRS 534 above for information on plugging abandoned boreholes on the NNSS.)

Fluid Management Plan for the Underground Test Area Project (DOE/NV-370-Rev. 5, August 2009) (UGTA FMP). UGTA Project wells are regulated by the State of Nevada through an agreement between DOE/NNSA and NDEP, documented in the UGTA FMP (DOE 2009i). The UGTA FMP was developed in place of issuing separate water pollution control permits for each UGTA characterization well under the Clean Water Act. The UGTA FMP identifies the methods for disposing groundwater pumped from UGTA wells during drilling, construction, development, testing, experimentation, and/or well water sampling based on radiological contamination levels. The UGTA FMP is a comprehensive attachment to the Underground Test Area Project Waste Management Plan (UGTA WMP) (DOE 2009k). The UGTA WMP is a state-approved document that includes the UGTA FMP and requires the UGTA Project to draft a specific Fluid Management Strategy when conducting activities such as drilling. This activity-specific Fluid Management Strategy would also be approved by the State of Nevada and must adhere to the guidelines provided by the UGTA FMP.

9.1.7 Biological Resources

Bald and Golden Eagle Protection Act of 1973, as amended (16 U.S.C. 668–668d). The Bald and Golden Eagle Protection Act, as amended, makes it unlawful to take, pursue, molest, or disturb bald (American) and golden eagles, their nests, or their eggs anywhere in the United States. A permit must be obtained from the U.S. Department of Interior to relocate a nest that interferes with resource development or recovery operations. Both bald and golden eagles occur on the NNSS (DOE/NV 2009d). During the project planning phase and prior to construction, biological surveys are conducted to prevent direct harm
to eagles and their nests and eggs. See Chapter 5, Sections 5.1.7, 5.2.7, 5.3.7, and 5.4.7, for bald and golden eagle impact analysis.

Clean Water Act, Section 404, Jurisdictional Wetlands. The Clean Water Act prohibits the discharge of pollutants (including dredged or fill material) into “waters of the United States,” except as authorized by a permit. Joint guidance by EPA and the U.S. Army Corps of Engineers, issued in response to a June 2006 Supreme Court decision, provides new guidelines for determining whether tributaries and wetlands are waters of the United States and are regulated under the Clean Water Act (EPA and Army 2007). Based on the new guidance, no wetlands at the NNSS are expected to qualify as waters of the United States; a site-specific evaluation by the U.S. Army Corps of Engineers, based on the new guidance, will be determinative.

Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.). The Endangered Species Act is intended to prevent the further decline of endangered and threatened species and to restore these species and habitats. Section 7 of this Act requires Federal agencies having reason to believe that a prospective action may affect an endangered or threatened species or its habitat to consult with the U.S. Fish and Wildlife Service or the National Marine Fisheries Service to ensure that the action does not jeopardize the species or destroy its habitat (50 CFR Part 17). If, despite reasonable and prudent measures to avoid or minimize such impacts, the species or its habitat would be jeopardized by the action, a review process is specified to determine whether the action may proceed as an incidental taking. Chapter 4 identifies potential impacts on those species from implementation of the alternatives.

Migratory Bird Treaty Act of 1918, as amended (16 U.S.C. 703 et seq.). The Migratory Bird Treaty Act, as amended, is intended to protect birds that have common migration patterns between the United States and Canada, Mexico, Japan, and Russia. It regulates the harvest of migratory birds by specifying conditions such as mode of harvest, hunting seasons, and bag limits. The Act stipulates that it is unlawful, unless permitted by regulations, to “pursue, hunt, take, capture, kill, attempt to take, capture or kill, possess…any migratory bird…or any part, nest, or egg of any such bird.” Of the 239 species of birds observed on the NNSS, 234 are protected under the Migratory Bird Treaty Act (DOE/NV 2009d). During the project planning phase and prior to construction, biological surveys are conducted to prevent direct harm to the birds and their nests and eggs. Potential impacts on migratory birds from implementation of the alternatives are analyzed in Chapter 5, Sections 5.1.7 and 5.4.7.

National Wildlife Refuge System Administrative Act of 1966, as amended (16 U.S.C. 668dd-668ee). This Act provides for the administration and management of the national wildlife refuge system, including wildlife refuges, areas for the protection and conservation of fish and wildlife threatened with extinction, wildlife ranges, game ranges, wildlife management areas, and waterfowl production areas. The Desert National Wildlife Refuge is protected under this act. Biological monitoring is conducted to verify that tests conducted at the Nonproliferation Test and Evaluation Complex in Area 5 on the NNSS do not disperse toxic chemicals that could harm Desert National Wildlife Refuge biota (DOE/NV 2009d).

Wild Horses and Burros Act of 1971 (16 U.S.C. 1331–1340). This Act requires the protection, management, and control of wild free-roaming horses and burros on public lands. Wild horses on the NNSS may wander off the site onto public lands; therefore, they are protected under this Act (DOE/NV 2009d). Potential impacts on wild horses and burros protected under this Act are analyzed in Chapter 5, Sections 5.1.7, 5.2.7, 5.3.7, and 5.4.7.

Executive Order 11990, Protection of Wetlands (May 24, 1977). This Order, implemented by DOE through 10 CFR Part 1022, directs Federal agencies to ensure consideration of wetlands protection in decisionmaking and to evaluate the potential impacts of any new construction proposed in a wetland.
This Order directs Federal agencies to avoid the destruction or modification of wetlands and avoid direct or indirect support of new construction in wetlands if a practicable alternative exists.

Executive Order 13112, Invasive Species (February 3, 1999). This Order establishes the National Invasive Species Council. It requires Federal agencies to act to prevent the introduction of invasive species and provide for their control; to implement restoration with native species; and to minimize actions that could spread invasive species. This Order applies to DOE/NNSA, as land-disturbing activities on the NNSS have resulted in the spread of numerous invasive plant species (DOE/NV 2009d). Potential impacts and habitat reclamation to control invasive species are addressed in Chapter 5, Sections 5.1.7 and 5.4.7.

Executive Order 13186, Responsibilities of Federal Agencies to Protect Migratory Birds (January 10, 2001). This Order directs Federal agencies taking actions with a measurable negative effect on migratory bird populations to develop and implement a Memorandum of Understanding with the U.S. Fish and Wildlife Service that promotes the conservation of migratory bird populations, in support of the Migratory Bird Treaty Act.

Five-Party Cooperative Agreement (1977 – see also Wild Horses and Burros Act of 1971). This five-party agreement between DOE/NNSA, the U.S. Air Force, the U.S. Fish and Wildlife Service, BLM, and the Nevada State Clearinghouse seeks coordination and cooperation in conducting resource inventories and developing management plans for wild horses and burros in an effort to maintain desirable habitat on federally withdrawn lands for these animals.

NAC 503.005–503.104, “Classification and Taking of Wildlife.” This regulation identifies Nevada animal species (i.e., protected and not protected), and prohibits harm to protected species without a special permit. This applies to DOE/NNSA; potential impacts are addressed in Chapter 5, Sections 5.1.7, 5.2.7, 5.3.7, and 5.4.7.

9.1.8 Air Quality and Climate

Clean Air Act of 1970, as amended (42 U.S.C. 7401 et seq.). The Clean Air Act is intended to “protect and enhance the quality of the Nation’s air resources so as to promote the public health and welfare and the productive capacity of its population.” Section 118 of the Clean Air Act (42 U.S.C. 7418) requires that each Federal agency with jurisdiction over any property or facility engaged in any activity that might result in the discharge of air pollutants comply with “all Federal, state, interstate, and local requirements” with regard to the control and abatement of air pollution. Emissions of air pollutants from DOE facilities are regulated by EPA under 40 CFR Parts 50–99. Potential air quality impacts from implementation of the alternatives in this SWEIS are analyzed in Chapter 5, Sections 5.1.8, 5.2.8, 5.3.8, and 5.4.8.

40 CFR Part 50, “National Ambient Air Quality Standards (NAAQS).” The Clean Air Act requires EPA to set NAAQS for pollutants considered harmful to public health and the environment. The Clean Air Act establishes two types of NAAQS. Primary standards set limits to protect public health, including the health of “sensitive” populations such as asthmatics, children, and the elderly. Secondary standards set limits to protect public welfare, including protection against decreased visibility, damage to animals, crops, vegetation, and buildings. Air quality permits for the NNSS, NLVF, and RSL demonstrate compliance with NAAQS criteria pollutants as well as requirements such as applicable reporting and recordkeeping, opacity field monitoring, emission quantities of hazardous air pollutants (e.g., lead) and criteria pollutants, and summaries of significant malfunctions and repairs.

40 CFR Part 61, “National Emission Standards for Hazardous Air Pollutants (NESHAPs).” DOE facility emissions of radionuclides and other hazardous air pollutants, including a release of asbestos
during demolition and renovation activities, are regulated under the NESHAPs program (40 CFR Part 61, “National Emission Standards for Hazardous Air Pollutants (NESHAPS),” and 40 CFR Part 63, “National Emission Standards for Hazardous Air Pollutants for Source Categories (a.k.a. Maximum Achievable Control Technology [MACT]).” The NNSS radioactive air emissions are monitored on site to determine the public dose from inhalation and to determine compliance with NESHAPs under the Clean Air Act (DOE 2009d).

40 CFR Part 82, “Stratospheric Ozone Protection.” The Clean Air Act establishes limits on the production and consumption of certain ozone-depleting substances according to specified schedules. At the NNSS, ozone-depleting substances are mainly used in air conditioning units in vehicles, buildings, refrigerators, drinking water fountains, vending machines, and laboratory equipment. While there are no reporting requirements, recordkeeping to document the usage of ozone-depleting substances and technician certification is required, and EPA may conduct random inspections to determine compliance (DOE/NV 2009d).

40 CFR Part 98, “Mandatory Greenhouse Gas Reporting.” On October 30, 2009, EPA issued this regulation, which requires reporting of GHG emissions from large sources and suppliers in the United States. Its purpose is to collect accurate and timely emissions data for future policy decisions. Suppliers of fossil fuels or industrial GHGs, manufacturers of vehicles and engines, and facilities that emit 25,000 metric tons or more per year of GHG emissions are required to submit annual reports to EPA. EPA’s GHG reporting system will provide a better understanding of where GHGs are coming from and guide development of sound policies and programs to reduce emissions. These comprehensive, nationwide emissions data will help in the study of climate change.

On July 20, 2010, EPA signed revisions to certain provisions of the Mandatory Greenhouse Gas Reporting Rule. These proposed amendments primarily make clarifying and technical changes to specific sections of the final rule that either were not clear or did not have the intended effect. This proposal is complementary to the proposed rulemaking, Technical Corrections, Clarifying and Other Amendments to Certain Provisions of the Mandatory Greenhouse Gas Reporting Rule (75 FR 114), published on June 15, 2010. Together, these two proposed rulemakings address the most significant questions raised during implementation. This proposed rule was published in the Federal Register on August 11, 2010.

NAC 445B.22097, “Standards of Quality for Ambient Air.” This regulation identifies the minimum standards of quality for ambient air in Nevada, as required by NRS 445B.210. These standards shall be used when considering issuance of a permit for a stationary source and shall ensure that the stationary source will not cause the Nevada standards to be exceeded in areas where the general public has access. Minimum standards for ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, particulate matter with an aerodynamic diameter less than or equal to 10 micrometers in size (PM$_{10}$), lead, and hydrogen sulfide are identified. This regulation applies to DOE/NNSA; potential impacts are addressed in Chapter 5, Sections 5.1.8, 5.2.8, 5.3.8, and 5.4.8.

NAC 445B.3453 – 445B.3477, “Class II Operating Permits.” These regulations specify the general requirements for obtaining a Class II air quality operating permit in Nevada for a proposed stationary source or a proposed modification to a stationary source. The application process is outlined and a list of required contents of the permit is provided. Necessary steps toward either applying for a revision or renewing an existing permit are also identified. All Class II operating permits must be renewed 5 years after their date of issuance. In accordance with NAC 445B.3477, a Class II general permit covering numerous similar stationary sources may be issued. DOE/NNSA has Class II permits for its facilities in Nevada. Impacts on air quality are addressed in Chapter 5, Sections 5.1.8, 5.2.8, 5.3.8, 5.4.8.
State of Nevada, NRS 445B.100–445B.825, “Air Pollution,” and NRS 486A.010–486A.180, “Alternative Fuels; Clean Burning Fuels.” The mission of NDEP’s Bureau of Air Pollution Control is to achieve and maintain levels of air quality to protect human health and safety; prevent injury to plant and animal life; prevent damage to property; and preserve visibility and the scenic, esthetic, and historic values of the state (NDEP 2009a). The authority for the Bureau to implement air pollution control requirements has been established in NRS 445B.100 – 445B.825, inclusive, and NRS 486A.010 – 486A.180, inclusive. DOE works with the Bureau’s Compliance and Enforcement Branch to ensure that all air quality sources operate in compliance with Federal and state laws and regulations. For example, DOE/NNSA must allow the Clark County Department of Air Quality and Environmental Management to conduct inspections of NLVF and RSL permitted equipment.

9.1.9 Visual Resources

BLM Manual 8400 – Visual Resource Management (BLM 2009a). This manual describes BLM’s policy that it has a basic stewardship responsibility to identify and protect visual values on all BLM lands (BLM 2009b). BLM is responsible for ensuring that the scenic values of public lands are considered before allowing uses that may have negative visual impacts. This is accomplished through BLM’s Visual Resource Management system described in Section 8400 of the manual, a system that involves inventorying scenic values and establishing management objectives for those values through the resource management planning process, and evaluating proposed activities to determine whether they conform to management objectives (BLM 2009c). The visual resource impacts on public lands from implementation of the proposed alternatives are presented in Chapter 5, Sections 5.1.9, 5.2.9, 5.3.9, and 5.4.9.

9.1.10 Cultural Resources

American Indian Religious Freedom Act of 1978, as amended (42 U.S.C. 1996 and 1996a). This Act reaffirms American Indian religious freedom rights under the First Amendment and establishes U.S. policy to protect and preserve the inherent and constitutional right of American Indians to believe, express, and exercise their traditional religions. It includes access to sites on Federal properties integral to religious ceremonies and traditional rites. It also directs agencies to consult with interested American Indian groups and leaders to develop and implement policies and procedures to protect and preserve cultural and spiritual traditions and sites. Potential impacts from implementation of the SWEIS alternatives are analyzed in Chapter 5, Sections 5.1.10, 5.2.10, 5.3.10, and 5.4.10.

Antiquities Act of 1906, as amended (16 U.S.C. 431–433). This Act was the first Federal involvement in the protection and management of cultural resources on public lands and allows the President to set aside federally owned land as historic landmarks. It also established that objects of antiquity on Federal lands had to be preserved, restored, and maintained; could only be disturbed under permit from a Federal agency; and could only be disturbed for scientific and educational purposes by qualified personnel. It required that artifacts and associated documents be cared for in public museums; a system be created to establish national historic monuments; and criminal penalties be assessed for violations by any person who excavates, injures, obtains objects from, or destroys any historical ruin or monument on federally owned or controlled land without the permission of the appropriate Federal department (DOE/NV 2009d). Potential impacts from implementation of the SWEIS alternatives are analyzed in Chapter 5, Sections 5.1.10, 5.2.10, 5.3.10, and 5.4.10.

Archaeological and Historic Preservation Act of 1960, as amended (16 U.S.C. 469–469c-2). The purpose of this Act is to provide for the preservation of historical and archaeological data (including relics and specimens) that might otherwise be irreparably lost or destroyed as a result of Federal actions. Potential impacts from implementation of the SWEIS alternatives are analyzed in Chapter 5, Sections 5.1.10, 5.2.10, 5.3.10, and 5.4.10.
Archaeological Resources Protection Act of 1979, as amended (16 U.S.C. 470aa et seq.). This Act protects cultural resources on Federal lands greater than 100 years old and prohibits looting, vandalism, and unauthorized excavation. No one may sell, buy, or trade items from a cultural resource on Federal land. Criminal and civil penalties for violations are mandated, including forfeiture of equipment and vehicles used in any violations. Permits for excavation and removal of cultural resources on Federal lands by qualified persons are obtained from the appropriate Federal agency and for the purpose of furthering archaeological knowledge for the benefit of the public. The Federal land manager must contact any American Indian tribe or organization with an interest in the cultural resource to be excavated. Recovered items remain the property of the United States and are to be preserved by a qualified institution. Federal agencies cannot reveal the location of a cultural resource if by doing so the cultural resource is at risk of being altered or destroyed. Agencies are also to develop plans for surveying lands other than those scheduled for undertakings and to record and report violations of the Act. Potential impacts from implementation of the SWEIS alternatives are analyzed in Chapter 5, Sections 5.1.10, 5.2.10, 5.3.10, and 5.4.10.

Historic Sites, Buildings, and Antiquities Act of 1935. This Act established a national policy of preserving historic sites, buildings, and objects of national significance. It gave the Secretary of Interior authority to acquire, restore, and maintain such sites and established the National Survey of Historic Sites and Buildings (now known as the National Register of Historic Places [NRHP]), the Historic Sites Survey, the Historic American Buildings Survey (HABS), and the Historic American Engineering Record (HAER).

National Historic Preservation Act (NHPA) of 1966, as amended (16 U.S.C. 470 et seq.). This Act establishes a leadership role for the Federal Government in the preservation of cultural resources and promotes a policy of cooperation between Federal agencies, states, tribes, and local governments. The Act also created the Advisory Council on Historic Preservation to serve as an independent counsel on historic preservation issues to the President, Congress, and Federal and state agencies. Most importantly, the Act explains the responsibilities of Federal agencies and outlines a process by which significant cultural resources are recognized and protected from undertakings and potential effects. Key sections of the NHPA pertaining to this SWEIS are described below.

- **NHPA Section 106** requires Federal agencies to consider in the planning stages of undertakings the potential impacts on historic properties listed on or eligible for the NRHP and provide consulting agencies, including the Nevada State Historic Preservation Office and the Advisory Council on Historic Preservation, sufficient information and time to comment on the effects of the undertaking.

- **NHPA Section 110** requires Federal agencies to inventory cultural resources under their jurisdiction, evaluate and nominate eligible cultural resources for listing on the NRHP, and establish a historic preservation program. Compliance with Section 110 implies monitoring the conditions of historic properties and taking action to preserve them, stressing that Federal agencies must take an active role in the preservation and management of all significant cultural resources under their jurisdiction.

- **NHPA Section 112** requires that both agency and contracting personnel conducting cultural resources investigations meet certain professional qualifications and that their investigations meet certain standards. All data and records for historic properties are to be maintained and available for research purposes.
NHPA Section 304 directs Federal agencies, after consultation with the Secretary of the Interior, to withhold from the public information regarding the location or character of a cultural resource when such disclosure may cause substantial risk, such as theft or destruction, to the resource.

Potential impacts from implementation of the alternatives are analyzed in Chapter 5, Sections 5.1.10, 5.2.10, 5.3.10, and 5.4.10. In addition, DOE has started consultations under Section 106 with the State Historic Preservation Officer, Advisory Council on Historic Preservation, and American Indian tribes on the possible adverse impacts of the proposed actions and alternatives being evaluated in this SWEIS. For further information on consultations with American Indians, see Chapter 10 of this SWEIS.

Native American Graves Protection and Repatriation Act (NAGPRA) of 1990 (25 U.S.C. 3001 et seq.). This Act requires Federal agencies to consult with American Indian tribes regarding human remains and materials in their collections. The Act acknowledges tribal rights to American Indian human remains, funerary objects, sacred objects, and objects of cultural patrimony. Persons can be prosecuted who knowingly sell or purchase, use for profit, or transport for sale or profit American Indian human remains or objects covered by this Act. In the case of unexpected discoveries of American Indian graves or grave goods during activities on Federal lands, the tribes or organizations are to be notified and procedures are agreed upon to establish affiliation and for disposition of the remains or objects. The Act provides for the repatriation of these cultural items from Federal archaeological collections and collections held by museums receiving Federal funding to federally recognized tribes when cultural affiliations can be established. This regulation would apply to DOE/NNSA during implementation of the activities analyzed in this SWEIS. Impacts of proposed DOE/NNSA activities on cultural resources important to American Indians are addressed in Chapter 5, Sections 5.1.10, 5.2.10, 5.3.10, and 5.4.10.

Executive Order 11593, Protection and Enhancement of the Cultural Environment (May 13, 1971). This Order formally designates the Federal Government as the leader in preserving, restoring, and maintaining the historic and cultural environment of the Nation. It gives Federal agencies the responsibility for locating, inventorying, and nominating cultural resources to the NRHP.

Executive Order 13007, Indian Sacred Sites (May 24, 1996). This Order directs Federal agencies to accommodate the access and ceremonial use of American Indian sacred sites on their lands by American Indian religious practitioners. The confidentiality of these sites is to be maintained by the Federal agency and their physical integrity is not to be adversely affected.

Executive Order 13175, Consultation and Coordination with Indian Tribal Governments (November 6, 2000). This Order supplements the Executive Memorandum (dated April 29, 1994) entitled “Government-to-Government Relations with Native American Tribal Governments,” and states that each executive department and agency shall consult, to the greatest extent practicable and to the extent permitted by law, with tribal governments prior to taking actions that affect federally recognized tribal governments. This Order also states that each executive department and agency shall assess the impact of Federal Government plans, projects, programs, and activities on tribal trust resources and ensure that tribal government rights and concerns are considered during the development of such plans, projects, programs, and activities.

Executive Order 13287, Preserve America (March 3, 2003). This Order reemphasizes the Federal Government policy to provide leadership in advancing the protection, enhancement, and contemporary use of federally owned historic properties and to promote intergovernmental cooperation and partnerships for the preservation and use of the historic properties. Federal agencies are to maximize their efforts to integrate the policies, procedures, and practices of the NHPA and this Order into their program activities to efficiently and effectively advance historic preservation objectives in the pursuit of their missions.
DOE Order 144.1, *American Indian Tribal Government Interactions and Policy* (January 16, 2009; Change 1, November 6, 2009). This Order communicates responsibilities for interacting with American Indian governments and transmits the DOE American Indian and Alaska Native Tribal Government Policy (i.e., “Indian Policy”), including its guiding principles. This policy outlines the requirements to be followed by DOE in its interactions with federally recognized American Indian tribes. It is based on the U.S. Constitution, treaties, Supreme Court decisions, Executive Orders, statutes, existing Federal policies, and tribal laws, as well as the dynamic political relationship between Indian nations and the Federal Government. The policy principles include DOE’s responsibilities to implement a proactive outreach effort consisting of notice and consultation regarding current and proposed actions affecting the tribes and to ensure integration of Indian nations into the decisionmaking processes.

9.1.11 Waste Management

Atomic Energy Act (AEA), as amended in 1954 (42 USC 2011 et seq.). The AEA provides fundamental jurisdictional authority to DOE and NRC over governmental and commercial use of nuclear materials. The AEA authorizes DOE to establish standards to protect health and minimize danger to life or property for activities under DOE’s jurisdiction. DOE has issued a series of Departmental Orders to establish an extensive system of standards and requirements to ensure safe operation of DOE facilities. DOE regulations are found in 10 CFR. The DOE regulations that are the most relevant to radioactive waste and materials management include the following:

- “Nuclear Safety Management” (10 CFR Part 830)
- “Occupational Radiation Protection” (10 CFR Part 835)
- “Byproduct Material” (10 CFR Part 962)

The AEA also gives EPA the authority to develop generally applicable standards for protection of the general environment from radioactive materials. EPA has promulgated several regulations under this authority. The EPA regulation that is the most relevant to radioactive waste and materials management activities addressed by this SWEIS (e.g., transuranic waste at the NNSS) is 40 CFR Part 191, “Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes.” Transuranic waste (including mixed transuranic waste) generated as part of NNSS operations or from in-state environmental restoration programs is sent to the Area 5 Radioactive Waste Management Complex for temporary storage before shipment off site for further characterization and/or final disposition. See Chapter 4, Section 4.1.11.1.3, for a summary of transuranic waste management at the NNSS.

Resource Conservation and Recovery Act (RCRA) of 1976, as amended (42 U.S.C. 6901 et seq.). RCRA has four main goals: (1) to protect human health and the environment from hazards posed by waste disposal; (2) to conserve energy and natural resources through waste recycling and recovery; (3) to reduce or eliminate the generation of waste, including hazardous waste; and (4) to ensure that wastes are managed in an environmentally safe manner. RCRA focuses only on active and planned facilities. (Note: Hazardous waste cleanup operations at the NNSS [i.e., nonhistoric waste management activities, including satellite accumulation and the RCRA Part B Permit for the hazardous waste accumulation facility] are regulated under RCRA; they are not regulated under CERCLA. Historic contamination from the nuclear testing era is covered by the Federal Facility Agreement and Consent Order [described below in this Section]. Typically, the CERCLA regulations apply to historic cleanups such as Superfund and emergency response. The applicable emergency response requirements of CERCLA, as well as an overview of CERCLA, are described in Section 9.1.14.)

The transportation and treatment, storage, and disposal (TSD) of solid and hazardous wastes are regulated by EPA under the authority of RCRA. The EPA regulations implementing RCRA
(40 CFR Parts 260–282) define and identify hazardous waste; establish standards for waste transportation and TSD; and require permits for persons engaged in hazardous waste activities.

RCRA applies mainly to owners and operators of facilities that generate and manage hazardous waste. This Act imposed management requirements on generators and transporters of hazardous waste and upon owners and operators of TSD facilities. EPA has established a comprehensive set of regulations governing all aspects of TSD facilities, including location, design, operations, and closure. Any state that seeks to administer and enforce a hazardous waste program pursuant to RCRA may apply to EPA for authorization to administer its state program in lieu of the Federal program. EPA has authorized the State of Nevada to implement the state hazardous waste management program in lieu of the Federal RCRA program. Waste management is discussed in Chapter 4, “Affected Environment,” and Chapter 5, “Environmental Consequences.”

Federal Facility Compliance Act of 1992 (Public Law 102-386). The Federal Facility Compliance Act, enacted on October 6, 1992, amended RCRA Section 6961 and other sections and requires DOE to prepare plans that develop treatment capacity for mixed waste stored or generated at each facility, except for those facilities subject to a permit that establishes a schedule for treatment of such waste or an existing agreement or order governing the treatment of such waste to which the state is a party. The host state and/or EPA must approve each plan. Compliance with this Act by DOE/NNSA per the State of Nevada requires the identification of existing quantities for mixed waste, the proposal of methods and technologies of mixed treatment and management, the creation of enforceable timetables, and the tracking and completion of deadlines.

Federal Facility Agreement and Consent Order, as amended. This Consent Order, agreed to by the State of Nevada, DOE Environmental Management, and the U.S. Department of Defense, became effective in May 1996. In August 2006, as part of assuming stewardship responsibility for the Central Nevada Test Area and Project Shoal, DOE’s Office of Legacy Management became a signatory to the FFACO. It addresses the environmental restoration of historically contaminated sites at the NNSS, parts of the Tonopah Test Range, parts of the Nevada Test and Training Range, the Central Nevada Test Area, and the Project SHOAL Area (DOE/NV 2009d). The Federal Facility Agreement and Consent Order incorporates RCRA and CERCLA elements that promulgate the characterization, restoration, and closure of identified sites.

Low-Level Radioactive Waste Policy Act, as amended in 1985 (42 USC 2021b et. seq.). This Act amended the AEA to specify that the Federal Government (i.e., DOE and NRC) is responsible for disposal of low-level radioactive waste (LLW). If authorized by NRC under interstate compacts, states may regulate disposal of LLW from commercial sources. DOE remains responsible for the disposition of defense LLW (i.e., from DOE and U.S. Navy origin).

Toxic Substances Control Act of 1976 (15 U.S.C. 2601 et seq.). The Toxic Substances Control Act provides EPA with the authority to require testing of chemical substances entering the environment and to regulate them as necessary. EPA is also authorized to impose strict limitations on the use and disposal of polychlorinated biphenyls (PCBs), chlorofluorocarbons, asbestos, dioxins, certain metalworking fluids, and hexavalent chromium. The EPA regulations that establish prohibitions of and requirements for PCBs and PCB items are found in 40 CFR Part 761, “Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution in Commerce, and Use Prohibitions.” Removal of any PCB transformers remaining at facilities on the NNSS and other locations would require disposition in compliance with this Act.

NAC 444.570–444.7499, “Sanitation (Solid Waste Disposal).” These regulations set standards for solid waste management systems, including the storage, collection, transportation, processing, recycling, and
disposal of solid waste in Nevada. These regulations apply on the NNSS to active and inactive landfills, as described in Chapter 4, Sections 4.1.11, 4.2.11, 4.3.11, and 4.4.11.

NAC 444.850–444.8746, “Disposal of Hazardous Waste.” These regulations apply to the operation of hazardous waste disposal facilities in Nevada to comply with Federal RCRA regulations. These regulations apply on the NNSS to the operation of a hazardous waste storage unit in Area 5, the Explosives Ordnance Disposal Unit in Area 11, and the disposal of mixed low-level radioactive waste from DOE offsite facilities into a mixed waste disposal unit (DOE/NV 2009d). The impacts of hazardous waste storage on the NNSS from implementation of the alternatives proposed in this SWEIS are analyzed in Chapter 5, Sections 5.1.11, 5.2.11, 5.3.11, and 5.4.11.

NAC 459.9921–459.999, “Storage Tanks.” These regulations enforce Federal RCRA regulations for the maintenance and operation of storage tanks, including underground storage tanks, to prevent environmental contamination. The underground storage tanks located on the NNSS and RSL–Nellis are either: (1) fully regulated under RCRA and registered with the state, (2) regulated under RCRA and registered with the state, but deferred from leak detection requirements, or (3) excluded from Federal and state regulations. For example, at RSL, Clark County enforces these regulations under approval from NDEP and issues permits to DOE/NNSA (DOE/NV 2009d). Underground storage tanks would be used not to store waste, but to store consumable materials such as fuel oil (e.g., diesel) or gasoline.

NAC 444.940–444.9555, “Polychlorinated Biphenyl.” These regulations enforce Federal requirements for the handling, storage, and disposal of PCBs and contain record-keeping requirements for PCB activities.

DOE Order 435.1, Radioactive Waste Management, and DOE’s associated Radioactive Waste Manual (DOE M 435.1-1; July 9, 1999; Change 1, August 28, 2001; Certified, January 9, 2007). The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that is protective of worker and public health and safety, and the environment. DOE radioactive waste management activities are required to be systematically planned, documented, executed, and evaluated.

Mutual Consent Agreement (January 1994; modified 1995 and 1998). This agreement between DOE and the State of Nevada covered the storage and management of mixed waste on the NNSS that was generated or identified after March 1996. The Mutual Consent Agreement authorized the storage of newly identified mixed waste at the NNSS Area 5 Radioactive Waste Management Site. State of Nevada approval of a Treatment and Disposal Plan is required for mixed waste storage greater than 9 months (DOE 2008f).

Settlement Agreement for Mixed Transuranic Waste (June 1992). The DOE NSO signed this agreement with the State of Nevada that requires operation of the NNSS Area 5 TRU Waste Storage Pad in accordance with 40 CFR Part 264, Subpart I. Transuranic waste is discussed in Chapter 4, Sections 4.1.11, 4.2.11, 4.3.11, and 4.4.11.

9.1.12 Human Health

Occupational Safety and Health Act (OSHA) of 1970 (29 U.S.C. 651 et seq.). Section 4(b)(1) of OSHA exempts DOE and its contractors from the occupational safety requirements of OSHA. However, 29 U.S.C. 668 requires Federal agencies to establish their own occupational safety and health programs for their places of employment, consistent with OSHA standards. DOE Order 440.1B, *Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees*, states that DOE will implement a written worker protection program appropriate for the facility hazards that: (1) provides a place of employment free from recognized hazards that are causing or are likely to cause
death or serious physical harm to their employees and (2) integrates all requirements contained in paragraphs 4a through 4m of this Order, program requirements contained in 29 CFR Part 1960, “Basic Program Elements for Federal Employee Occupational Safety and Health Programs and Related Matters;” applicable functional area requirements contained in Attachment 1; and other related site-specific worker protection activities. Potential impacts on human health associated with implementation of the proposed alternatives are analyzed in Chapter 5, Sections 5.1.12, 5.2.12, 5.3.12, and 5.4.12.

Noise Control Act of 1972, as amended (42 U.S.C. 4901 et seq.). Section 4 of the Noise Control Act of 1972, as amended, directs all Federal agencies to carry out “to the fullest extent within their authority” programs within their jurisdictions in a manner that furthers a national policy of promoting an environment free from noise jeopardizing health and welfare. Chapter 5 addresses the noise impacts associated with the activities analyzed for each of the alternatives.

10 CFR Part 835, “Occupational Radiation Protection.” This regulation establishes radiation protection standards, limits, and program requirements for protecting occupational workers and visitors from ionizing radiation resulting from the conduct of DOE activities. These requirements are applicable to employees involved in activities being considered in this SWEIS that could result in the occupational exposure of an individual to radiation or radioactive materials.

10 CFR Part 851, “Worker Safety and Health Program.” Effective February 9, 2007, DOE established worker safety and health regulations to govern contractor activities at DOE sites. This program established the framework for a worker protection program that will reduce or prevent occupational injuries, illnesses, and accidental losses by requiring DOE contractors to provide their employees with safe and healthful workplaces. Also, the program established procedures for investigating whether a requirement has been violated, for determining the nature and extent of such violation, and for imposing an appropriate remedy.

DOE Order 422.1, Conduct of Operations, (June 29, 2010). This Order defines the requirements for establishing and implementing Conduct of Operations Programs at DOE, including NNSA, facilities and projects. A Conduct of Operations Program consists of formal documentation, practices, and actions implementing disciplined and structured operations that support mission success and promote worker, public, and environmental protection. The goal is to minimize the likelihood and consequences of human fallibility or technical and organizational system failures. Conduct of Operations is one of the safety management programs recognized in the Nuclear Safety Management Rule (10 CFR Part 830, “Nuclear Safety Management), but it also supports safety and mission success for a wide range of hazardous, complex, or mission-critical operations, and some Conduct of Operations Program attributes can enhance even routine operations. It supports the Integrated Safety Management System by providing concrete techniques and practices to implement ISM Core Functions such as “Develop and Implement Hazard Controls” and “Perform Work Within Controls.” It may be implemented through facility policies, directives, plans, and safety management systems and need not be a stand-alone program. The term “operations” encompasses the work activities of any facility or organization, from building infrastructure, to print shops and computer centers, to scientific research, to maintaining and operating nuclear facilities. While many hazards can be dealt with through engineered solutions, people still have to perform operations, and they can and do make mistakes. The purpose of this Order is to ensure that management systems are designed to anticipate and mitigate the consequences of human fallibility or potential latent conditions and to provide a vital barrier to prevent injury, environmental insult, or asset damage, as well as to promote mission success. This Order cancelled DOE Order 5480.19, Conduct of Operations Requirements for DOE Facilities, dated July 9, 1990.
DOE Order 440.1B, *Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees* (May 17, 2007). This Order establishes the framework for an effective worker protection program to reduce or prevent injuries, illnesses, and accidental losses by providing safe and healthful DOE Federal and contractor workplaces.

Radiological Safety Oversight and Radiation Protection

10 CFR Part 820, *“Procedural Rules for DOE Nuclear Facilities.”* DOE issued procedural rules for use in applying its substantive regulations and orders relating to nuclear safety. These procedural rules are intended to be an essential part of the framework through which DOE deals with its contractors, subcontractors, and suppliers to ensure its nuclear facilities are operated in a manner that protects public and worker safety and the environment. In particular, this part sets forth the procedures to implement the provisions of the Price-Anderson Amendments Act of 1988, which subjects DOE contractors to potential civil and criminal penalties for violations of DOE rules, regulations, and orders relating to nuclear safety (DOE Nuclear Safety Requirements). DOE also published its enforcement policy to inform contractors and other persons of the bases and anticipated processes for various enforcement actions.

10 CFR Part 830, *“Nuclear Safety Management.”* Specific requirements in these regulations apply to DOE contractors, DOE personnel, and other persons conducting activities (including providing items and services) that affect, or may affect, the safety of DOE nuclear facilities. These regulations include quality assurance (10 CFR Part 830, Subpart A) and safety-basis (10 CFR Part 830, Subpart B) requirements. The latter require the contractor responsible for a DOE nuclear facility to analyze the facility, work to be performed and associated hazards, and to identify the conditions, safe boundaries, and hazard controls necessary to protect workers, the public, and the environment from adverse consequences. DOE relies on these analyses and hazard controls to operate facilities safely.

DOE Order 426.2, *Personnel Selection, Qualification, and Training Requirements for DOE Nuclear Facilities* (April 21, 2010). The purpose of this Order is to establish selection, training, and qualification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance, and technical support of Hazard Category 1, 2, and 3 nuclear facilities. The Systematic Approach to Training, as defined in the Contractor Requirements Document of this Order, is designed to ensure that such personnel have the requisite knowledge, skills, and abilities to properly perform work in accordance with the safety basis. The Nuclear Safety Management Rule (10 CFR Part 830) requires Quality Assurance Programs and Documented Safety Analyses to address training. The training programs established to comply with this Order support those requirements. This Order updates and consolidates DOE training requirements consistent with applicable aspects of current industry standards of American National Standards Institute/American Nuclear Society (ANSI/ANS) 3.1-1993, *American National Standard, Selection, Qualification and Training of Personnel for Nuclear Power Plants*, ANSI/ANS 15.4-2007, *American National Standard, Selection and Training of Personnel for Research Reactors*, and 10 CFR Part 55, *“Operators’ Licenses,”* based on years of DOE experience. Implementation of the requirements of this Order will address 10 CFR 830.122, Criteria 2 – Management/Personnel Training and Qualification. This Order cancelled DOE Order 5480.20A.

DOE Order 458.1 Change 2, *Radiation Protection of the Public and the Environment* (June 6, 2011). This Order establishes requirements to protect the public and the environment against undue risk from radiation associated with radiological activities conducted under the control of the DOE pursuant to the AEA, as amended. The objectives of this Order are to (1) conduct DOE radiological activities so that exposure to members of the public is maintained within the dose limits established in this Order; (2) control the radiological clearance of DOE real and personal property; (3) ensure that potential radiation exposures to members of the public are as low as is reasonably achievable; (4) ensure that DOE sites have the capabilities, consistent with the types of radiological activities conducted, to monitor
routine and non-routine radiological releases and to assess the radiation dose to members of the public; and (5) provide protection of the environment from the effects of radiation and radioactive material. DOE/NNSA employees and contractors shall comply with their respective responsibilities under this Directive.

DOE Order 433.1B, Maintenance Management Program for DOE Nuclear Facilities (April 21, 2010). The objective of this Order is to define the safety management program required by 10 CFR 830.204(b)(5) for maintenance and reliable performance of structures, systems, and components that are part of the safety basis required by 10 CFR 830.202 at hazard category 1, 2 and 3 DOE nuclear facilities. Radiological facilities (e.g., facilities with quantities of hazardous radioactive materials that fall below the hazard category 3 threshold per DOE Standard 1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Report) are excluded from the provisions of this order; however, the maintenance management program requirements of DOE Order 430.1B, Real Property Asset Management, are applicable to radiological facilities. Radiological facilities that warrant additional controls may apply appropriate requirements of this Order until further guidance is issued. A single maintenance program may be used to address the requirements of this Order and the requirements of DOE Order 430.1B.

DOE Order 425.1D, Verification of Readiness to Startup or Restart Nuclear Facilities (April 16, 2010; cancels DOE Order 425.1C, March 13, 2003). This Order establishes DOE requirements for verifying readiness for startup of new hazard category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing hazard category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. The requirements specify a readiness review process (e.g., operational readiness reviews or readiness assessments) that provides an independent verification of readiness to start or restart operations. DOE Standard 3006-2010, Planning and Conducting Readiness Reviews, provides guidance on approaches and methods approved as acceptable for implementing the requirements of this Order. In all cases, the readiness review process must demonstrate there is a reasonable assurance for adequate protection of workers, the public, and the environment from adverse consequences from the start (or restart) of a hazard category 1, 2, or 3 nuclear facility, activity, or operation. Such facilities, activities, or operations may be started (or restarted) only after readiness reviews have been conducted and the approvals specified in this Order have been received.

DOE Order 420.1B, Facility Safety (December 22, 2005; Change 1, April 19, 2010). This Order establishes facility safety requirements related to nuclear and explosives safety design criteria; a comprehensive fire protection program for DOE sites, facilities, and emergency service organizations; nuclear criticality safety (i.e., a criticality safety program that is applicable to DOE nuclear facilities and activities, including transportation activities, that have a potential for criticality hazards); natural phenomena hazards mitigation; and a system engineer program for hazard category 1, 2, and 3 nuclear facilities to ensure continued operational readiness of the systems within its scope. This Order requires that all DOE facilities and sites be designed, constructed, and operated so that the public, workers, and environment are protected from impacts of natural phenomena hazards (e.g., earthquake, wind, flood, and lightning). This Order applies to design and construction of new DOE hazard category 1, 2, and 3 nuclear facilities, as well as to major modifications to such nuclear facilities that could substantially change the approved facility safety analysis.

DOE Order 414.1D, Quality Assurance (April 25, 2011). DOE uses two requirements documents to express identical sets of quality assurance requirements for two distinct organizational groups. The first, DOE Order 414.1C, applies to practically all DOE organizations and all contractors whose contract includes the DOE Order. The second is a regulation, 10 CFR Part 830 (including Subpart A), that applies to nuclear facility contractors indemnified under the Price Anderson Amendments Act and suppliers of items and services to those nuclear facilities. Application of quality assurance basic requirements
(i.e., management, performance, assessment) extends from the planning and conduct of basic and applied research, scientific investigation, and engineering design to operations, maintenance and repair of facilities, and eventual environmental restoration. These basic requirements reflect a comprehensive way of doing business throughout the life cycle of DOE programs and projects (DOE 2009h).

DOE Policy 441.1, DOE Radiological Health and Safety Policy (April 26, 1996). This document states that it is DOE policy to conduct its radiological operations in a manner that ensures the health and safety of all its employees, contractors, and the general public. The policy states that in achieving this objective, DOE will ensure that radiation exposures of its workers and the public and releases of radioactivity to the environment are maintained below regulatory limits, and deliberate efforts are taken to further reduce exposures and releases to as low as is reasonably achievable levels. DOE is committed to implementing a radiological control program of the highest quality that consistently reflects this policy.

9.1.13 Environmental Justice

Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (February 11, 1994). This Order requires each Federal agency to identify and address disproportionately high and adverse human health and environmental effects of its programs, policies, and activities on minority and low-income populations. CEQ, which oversees the Federal Government’s compliance with Executive Order 12898 and NEPA, has developed guidelines to assist Federal agencies in incorporating the goals of Executive Order 12898 in the NEPA process. This guidance, published in 1997, was intended to “…assist Federal agencies with their NEPA procedures so that environmental justice concerns are effectively identified and addressed.” As part of this process, DOE has performed an analysis to determine whether implementing any of the proposed alternatives would result in disproportionately high or adverse impacts on minority or low-income populations. The results of this analysis are discussed in the environmental justice sections of Chapter 5 of this SWEIS for each of the alternatives under consideration.

Executive Order 13045, Protection of Children from Environmental Health Risks and Safety Risks (April 21, 1997), as amended by Executive Order 13229 (October 9, 2001). This Order requires each Federal agency to make it a high priority to identify and assess environmental health risks and safety risks that may disproportionately affect children and to ensure that its policies, programs, activities, and standards address disproportionate risks to children that result from environmental health risks or safety risks.

9.1.14 Emergency Planning, Pollution Prevention, and Conservation

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 – amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986 (42 U.S.C. 9601 et seq.). CERCLA provides a statutory framework for the remediation of abandoned or historical waste sites, including Federal facilities, containing hazardous substances. Using a hazard-ranking system, Federal and private contaminated sites are ranked and may be included on the National Priorities List. CERCLA requires Federal facilities with contaminated sites to undertake investigations, remediation, and natural resource restoration, as necessary. Hazardous waste cleanup operations on the NNSS are not regulated under CERCLA.

CERCLA, as amended by SARA, also provides an emergency response program for releases or threatened releases of hazardous substances, pollutants, and contaminants that may endanger public health or the environment. Releases of hazardous substances exceeding reportable quantities must be reported on a timely basis to the National Response Center. The emergency response program requirements of
CERCLA are applicable on the NNSS and other locations. This is addressed in Chapter 4, Section 4.1.12.6.

Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 (42 U.S.C. 11001 et seq.). This Act requires that Federal, state, and local emergency planning authorities be provided information regarding the presence and storage of hazardous substances and their planned and unplanned environmental releases, including provisions and plans for responding to emergency situations involving hazardous materials. For DOE/NNSA compliance, see the Executive Order 12856 summary below.

Pollution Prevention Act of 1990 (42 U.S.C. 13101 et seq.). The Pollution Prevention Act establishes a national policy for waste management and pollution control. Source reduction is given first preference, followed by environmentally safe recycling, with disposal or releases to the environment as a last resort. Current waste management and pollution prevention practices are discussed in Chapter 4, Sections 4.1.11, 4.2.11, 4.3.11, and 4.4.11.

Homeland Security Act of 2002 (6 U.S.C. 101 et seq., enacted by Public Law 107-296). This Act established the U.S. Department of Homeland Security, integrating the functions of organizations related to national security. The Act authorizes the U.S. Department of Homeland Security to enter into work agreements, joint sponsorships, contracts, and any other agreement with DOE regarding the use of the national laboratories or sites and support of the science and technology base at those facilities.

Homeland Security Presidential Directive 5, Management of Domestic Incidents (February 28, 2003). The purpose of this Directive is to enhance the ability of the United States to manage domestic incidents by establishing a single, comprehensive national incident management system. The system provides a consistent, integrated nationwide approach for Federal, state, local and tribal governments to work effectively and efficiently together to prepare for, prevent, respond to, and recover from domestic incidents (e.g., terrorist attacks, major disasters, and other emergencies), regardless of cause, size, or complexity.

Homeland Security Presidential Directive 8, National Preparedness (December 17, 2003). This Directive establishes policies to strengthen the United States preparedness in order to prevent and respond to threatened or actual domestic terrorist attacks, major disasters, and other emergencies. It requires a national domestic all-hazards preparedness goal, with established mechanisms for improved delivery of Federal preparedness assistance to state and local governments. This directive is a companion to Homeland Security Presidential Directive 5, which identifies steps for improved coordination in response to incidents. This National Preparedness Directive describes the way Federal departments and agencies will strengthen preparation for such a response, including prevention activities during the early stages of a terrorism incident.

Executive Order 12088, Federal Compliance with Pollution Control Standards (October 13, 1978), as amended by Executive Order 12580, Superfund Implementation (January 23, 1987). This Order directs Federal agencies to comply with applicable administrative and procedural pollution control standards established by, but not limited to, the Clean Air Act, the Noise Control Act, the Clean Water Act, the Safe Drinking Water Act, the Toxic Substances Control Act, and RCRA.

Executive Order 12856, Federal Compliance with Right-to-Know Laws and Pollution Prevention Requirements (August 3, 1993). This Order requires that all Federal facilities comply with the provisions of EPCRA. The DOE/NNSA NSO is required to submit reports pursuant to EPCRA Sections 302–303 (Planning Notification), 304 (Extremely Hazardous Substances Release Notification),
311–312 (Material Safety Data Sheet/Chemical Inventory), and 313 (Toxic Chemical Release Inventory Reporting).

DOE Order 470.4B, Safeguards and Security Program (July 26, 2011). This Order establishes responsibilities for the DOE Safeguards and Security Program and the managerial framework for implementing DOE Policy 470.1, Integrated Safeguards and Security Management, dated May 8, 2001. The requirements identified in this Order and its topical manuals are based on national policy promulgated in laws, regulations, and Executive Orders to prevent unacceptable adverse impacts on national security and the health and safety of DOE and contractor employees, the public, or the environment. Assignment of roles and responsibilities in this Order include identification and definition of interfaces and necessary interactions between safeguards and security programs and other disciplines such as safety, emergency management, counterintelligence, facility operations, cyber system operations, and business/budget operations (including property management).

DOE Order DOE Order 227.1, Independent Oversight Program (August 30, 2011). This Order prescribes the requirements and responsibilities for the DOE Independent Oversight Program. The DOE Independent Oversight Program is implemented by the Office of Enforcement and Oversight, an independent office within DOE that has no line management or policy-making responsibilities or authorities. The Independent Oversight Program is one element of DOE’s multi-faceted approach to oversight, as described in DOE Policy 226.1B, Department of Energy Oversight Policy, dated April 25, 2011. Effective oversight, including independent oversight, of DOE Federal and contractor operations is an integral part of the Department’s responsibility as a self-regulating agency to provide assurance of its safety and security posture to its leadership, its workers, and the public. The Independent Oversight Program is designed to enhance DOE safety and security programs by providing Congress, DOE and contractor managers, and other stakeholders with an independent evaluation of the adequacy of DOE policy and requirements, as well as the effectiveness of DOE and contractor line management performance in safety and security and other critical functions directed by the Secretary. This Order cancelled DOE Order 470.2B, Independent Oversight and Performance Assurance Program.

DOE Order 151.1C, Comprehensive Emergency Management System (November 2, 2005). This Order establishes policy; assigns roles and responsibilities; and provides the framework for developing, coordinating, controlling, and directing DOE’s emergency management system (i.e., emergency planning, preparedness, response, recovery, and readiness assurance). Emergency planning must include identification of hazards and threats, hazard mitigation, development and preparation of emergency plans and procedures, and identification of personnel and resources needed for an effective response. Emergency preparedness must include acquisition and maintenance of resources, training, drills, and exercises. Emergency response must include the application of resources to mitigate consequences of an emergency to workers, the public, the environment, and national security, as well as to initiate recovery. Recovery must include planning for and actions taken following termination of the emergency to return the facility/operations to normal. Readiness assurance must include assessments and documentation to ensure that stated emergency capabilities are sufficient to implement emergency plans.

DOE Order 153.1, Departmental Radiological Emergency Response Assets (June 27, 2007). This Order establishes requirements and responsibilities for DOE/NNSA’s national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. The assets described in this Order consist of both the personnel and equipment needed to perform carefully defined missions related to nuclear/radiological emergency response. Other existing statutes, regulations, directives, and standards applicable to emergency response assets also apply for planning, preparedness, and response.
State of Nevada Chemical Catastrophe Prevention Act (Nevada Legislature Senate Bill 641, July 1991) and Chemical Accident Prevention Program (CAPP). In July 1991, the Nevada Legislature passed Senate Bill 641, the Chemical Catastrophe Prevention Act, primarily in response to a large chlorine release in Henderson, Nevada, in May 1991 and a large ammonium perchlorate explosion in May 1988, also in Henderson. The resulting statute, codified at NRS 459.380–459.3874, directed NDEP to develop and implement an accident prevention program, which was renamed CAPP.

CAPP requirements fall into one of three categories: accident prevention, emergency response, or public right-to-know. For accident prevention, facilities are required to evaluate and mitigate hazards, understand the design parameters of their processes and operate within the appropriate design limits, prepare comprehensive operating procedures, thoroughly train operators in those procedures, and maintain the facility equipment and instruments to prevent premature failure. For emergency response, facilities are required to develop an action plan for dealing with potential emergency situations and they are further required to coordinate emergency response activities with local responders, to ensure that the responders are prepared to deal with the emergencies appropriately. For the public right-to-know, all information disseminated by the facilities is available to the public, as are all site inspection reports generated by CAPP staff (NDEP 2009b).

9.2 Applicable Permits

Implementation of activities and alternatives proposed in this SWEIS would require compliance with existing environmental permits, modification to existing permits, or the acquisition of new permits, if applicable. A list of all required Federal and state environmental permits that are issued for NNSS, NLVF, RSL, and TTR operations is presented in Table 9–2.

Future environmental permits, including modifications to existing permits that may be required for implementation of the alternatives analyzed in this SWEIS, are identified below.

NNSS Drinking Water System Permits are renewed annually; modification of the applicable permits would be required to include potable water system tie-in(s) to new facilities. Coordination with NDEP’s Bureau of Safe Drinking Water is necessary.

The NNSS Water Pollution Control General Permit was renewed in August 2010, and will require renewal in 5 years. Stormwater Pollution Prevention Plans would need to be updated to include provisions for new construction activities prior their undertaking.

The NNSS Class II Air Quality Operating Permit is renewed every 5 years. This permit would require modification to include new construction and operation activities associated with implementation of the NNSS SWEIS preferred alternative. For example, dust control measures for proposed activities would need to be identified and incorporated into the permit. Coordination with NDEP’s Bureau of Air Pollution Control for permit modification is mandatory.

The NNSS Hazardous Waste Management Permit expires on December 1, 2015. When applying for renewal, RCRA-related activities associated with this SWEIS would need to be included.
<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Description</th>
<th>Location/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP9711-0549.01</td>
<td>NNSS Class II Air Quality Operating Permit</td>
<td>NNSS</td>
</tr>
<tr>
<td>08-29</td>
<td>NNSS Burn Variance (various locations)</td>
<td>NNSS</td>
</tr>
<tr>
<td>08-30</td>
<td>NNSS Open Burn Variance, A-23, Facility #23-T00200</td>
<td>NNSS Fire and Rescue Training Center</td>
</tr>
<tr>
<td>Facility 657, Mod. 3</td>
<td>Clark County Authority to Construct/Operating Permit for a Testing Laboratory</td>
<td>NLVF</td>
</tr>
<tr>
<td>Facility 348, Mod. 2</td>
<td>Clark County Authority to Construct/Operating Permit for a Testing Laboratory</td>
<td>RSL-Nellis</td>
</tr>
<tr>
<td>AP8733-0680.02</td>
<td>Class II Air Quality Operating Permit</td>
<td>TTR</td>
</tr>
<tr>
<td>Drinking Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY-0360-12NTNC</td>
<td>Areas 6 and 23</td>
<td>NNSS</td>
</tr>
<tr>
<td>NY-4098-12NC</td>
<td>Area 25</td>
<td>NNSS</td>
</tr>
<tr>
<td>NY-4099-12NC</td>
<td>Area 12</td>
<td>NNSS</td>
</tr>
<tr>
<td>NY-0835-12NP</td>
<td>NNSS Water Hauler #84846</td>
<td>NNSS</td>
</tr>
<tr>
<td>NY-0836-12NP</td>
<td>NNSS Water Hauler #84847</td>
<td>NNSS</td>
</tr>
<tr>
<td>NY-3014-12NTNC</td>
<td>Well 6 Production Well</td>
<td>TTR</td>
</tr>
<tr>
<td>NY-3014-1112NTNC</td>
<td>Permit to Operate a Treatment Plant</td>
<td>TTR</td>
</tr>
<tr>
<td>NNSS Septic Systems and Pumpers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY-1054</td>
<td>Septic System, Area 3</td>
<td>Waste Management Offices</td>
</tr>
<tr>
<td>NY-1069</td>
<td>Septic System, Area 18</td>
<td>820th Red Horse Squadron</td>
</tr>
<tr>
<td>NY-1076</td>
<td>Septic System, Area 6</td>
<td>Airborne Response Team Hanger</td>
</tr>
<tr>
<td>NY-1077</td>
<td>Septic System, Area 27</td>
<td>Baker Compound</td>
</tr>
<tr>
<td>NY-1079</td>
<td>Septic System, Area 12</td>
<td>U12g Tunnel</td>
</tr>
<tr>
<td>NY-1080</td>
<td>Septic System, Area 23</td>
<td>Building 1103</td>
</tr>
<tr>
<td>NY-1081</td>
<td>Septic System, Area 6</td>
<td>Control Point-170</td>
</tr>
<tr>
<td>NY-1082</td>
<td>Septic System, Area 22</td>
<td>Building 22-01</td>
</tr>
<tr>
<td>NY-1083</td>
<td>Septic System, Area 5</td>
<td>Radioactive Material Management Site</td>
</tr>
<tr>
<td>NY-1084</td>
<td>Septic System, Area 6</td>
<td>Device Assembly Facility</td>
</tr>
<tr>
<td>NY-1085</td>
<td>Septic System, Area 25</td>
<td>Central Support Area</td>
</tr>
<tr>
<td>NY-1086</td>
<td>Septic System, Area 25</td>
<td>Reactor Control Point</td>
</tr>
<tr>
<td>NY-1087</td>
<td>Septic System, Area 27</td>
<td>Able Compound</td>
</tr>
<tr>
<td>NY-1089</td>
<td>Septic System, Area 12</td>
<td>Camp</td>
</tr>
<tr>
<td>NY-1090</td>
<td>Septic System, Area 6</td>
<td>Los Alamos National Laboratory Construction Camp Site</td>
</tr>
<tr>
<td>NY-1091</td>
<td>Septic System, Area 23</td>
<td>Gate 100</td>
</tr>
<tr>
<td>NY-1103</td>
<td>Septic System, Area 22</td>
<td>Desert Rock Airport</td>
</tr>
<tr>
<td>NY-1106</td>
<td>Septic System, Area 5</td>
<td>Hazmat Spill Center</td>
</tr>
<tr>
<td>NY-1110-HAA-A</td>
<td>Individual Sewage Disposal System</td>
<td>A12, Building 12-910</td>
</tr>
<tr>
<td>NY-1112</td>
<td>Commercial Sewage Disposal System, Area 1</td>
<td>U1a</td>
</tr>
<tr>
<td>NY-1113</td>
<td>Commercial Sewage Disposal System, Area 1</td>
<td>Building 121</td>
</tr>
<tr>
<td>NY-1124</td>
<td>Commercial Individual Sewage Disposal System, Area 6</td>
<td>NNSS</td>
</tr>
<tr>
<td>NY-1128</td>
<td>Commercial Individual Sewage Disposal System, Area 6</td>
<td>NNSS, Yucca Lake Project</td>
</tr>
<tr>
<td>NY-17-03313</td>
<td>Septic Tank Pumper E 106785</td>
<td></td>
</tr>
<tr>
<td>Permit Number</td>
<td>Description</td>
<td>Location/Notes</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NY-17-03315</td>
<td>Septic Tank Pumper E 107107</td>
<td></td>
</tr>
<tr>
<td>NY-17-03317</td>
<td>Septic Tank Pumper E 105918</td>
<td></td>
</tr>
<tr>
<td>NY-17-03318</td>
<td>Septic Tank Pumping Contractor</td>
<td>One unit</td>
</tr>
<tr>
<td>NY-17-06838</td>
<td>Septic Tank Pumper E 105919</td>
<td></td>
</tr>
<tr>
<td>NY-17-06839</td>
<td>Septic Tank Pumper E 107103</td>
<td></td>
</tr>
</tbody>
</table>

Wastewater Discharge

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Description</th>
<th>Location/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNEV93001</td>
<td>Water Pollution Control General Permit</td>
<td>NNSS sewage lagoons (both operational and inactive)</td>
</tr>
<tr>
<td>NEV96021</td>
<td>Water Pollution Control Permit</td>
<td>NNSS, E Tunnel Wastewater Disposal System and Monitoring Well ER-12-1</td>
</tr>
<tr>
<td>VEH-112</td>
<td>NLVF Wastewater Contribution Permit</td>
<td>NLVF</td>
</tr>
<tr>
<td>NV0023507</td>
<td>North Las Vegas National Pollutant Discharge Elimination System Permit</td>
<td>NLVF</td>
</tr>
<tr>
<td>CCWRD-080</td>
<td>Industrial Wastewater Discharge Permit</td>
<td>RSL–Nellis</td>
</tr>
<tr>
<td>SNL/NM-NV 10031</td>
<td>Backfilling Horse Pond</td>
<td>TTR</td>
</tr>
</tbody>
</table>

Hazardous Materials

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Description</th>
<th>Location/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2287-5146</td>
<td>Hazardous Materials Permit</td>
<td>NNSS</td>
</tr>
<tr>
<td>2287-5147</td>
<td>Nonproliferation Test and Evaluation Complex</td>
<td>NNSS</td>
</tr>
<tr>
<td>2287-5144</td>
<td>Hazardous Materials Permit</td>
<td>NLVF</td>
</tr>
<tr>
<td>2287-5145</td>
<td>Hazardous Materials Permit</td>
<td>RSL–Nellis</td>
</tr>
<tr>
<td>212 FDID 13007</td>
<td>Hazardous Materials Permit</td>
<td>TTR</td>
</tr>
</tbody>
</table>

Hazardous Waste

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Description</th>
<th>Location/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEV-HW0021</td>
<td>NNSS Hazardous Waste Management Permit</td>
<td>NNSS</td>
</tr>
<tr>
<td>0510003453</td>
<td>Utah Generator Site Access Permit</td>
<td>NNSS</td>
</tr>
<tr>
<td>SNL/NM-NV 10031</td>
<td>Backfilling Horse Pond</td>
<td>TTR</td>
</tr>
</tbody>
</table>

NNSS Disposal Sites

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Description</th>
<th>Location/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW 13 000 01</td>
<td>Asbestiform Low-Level Solid Waste Disposal Site, Area 5</td>
<td></td>
</tr>
<tr>
<td>SW 13 097 02</td>
<td>Hydrocarbon Disposal Site, Area 6</td>
<td></td>
</tr>
<tr>
<td>SW 13 097 03</td>
<td>U10c Solid Waste Disposal Site, Area 9</td>
<td></td>
</tr>
<tr>
<td>SW 13 097 04</td>
<td>Solid Waste Disposal Site, Area 23</td>
<td></td>
</tr>
</tbody>
</table>

Endangered Species/Wildlife/Special Use

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Description</th>
<th>Location/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>File No. 1-5-96-F-33</td>
<td>U.S. Fish and Wildlife Service – Desert Tortoise Incidental Take Authorization (Biological Opinion for Programmatic NNSS Activities)</td>
<td></td>
</tr>
<tr>
<td>MB008695-0</td>
<td>U.S. Fish and Wildlife Service – Migratory Bird Scientific Collecting Permit</td>
<td></td>
</tr>
<tr>
<td>MB037277-1</td>
<td>U.S. Fish and Wildlife Service – Migratory Bird Special Purpose Possession – Dead Permit</td>
<td></td>
</tr>
<tr>
<td>S29157</td>
<td>Nevada Division of Wildlife – Scientific Collection of Wildlife Samples</td>
<td></td>
</tr>
</tbody>
</table>

NLVF = North Las Vegas Facility; NNSS = Nevada National Security Site; RSL = Remote Sensing Laboratory; TTR = Tonopah Test Range.
Source: DOE/NV 2009d; SNL 2010b.
Chapter 10 presents an overview of the U.S. Department of Energy/National Nuclear Security Administration’s (DOE/NNSA’s) consultation and coordination efforts with other Federal, state, and local government agencies and American Indian groups during the development of this Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada (NNSS SWEIS). Discussions regarding DOE/NNSA’s public involvement efforts are presented in Chapter 1, Section 1.6, of this NNSS SWEIS.

10.1 Cooperating Agencies

Council on Environmental Quality regulations provided in 40 Code of Federal Regulations (CFR) 1501.6 and 1508.5 emphasize agency cooperation early in the National Environmental Policy Act (NEPA) process and allow a lead agency (in this case, DOE/NNSA) to request the assistance of other agencies that have either jurisdiction by law or special expertise regarding issues considered in an environmental impact statement. For this NNSS SWEIS, the U.S. Bureau of Land Management (BLM), the U.S. Air Force (USAF), and Nye County, Nevada, accepted roles as cooperating agencies. Their respective roles and expertise are discussed in the remainder of this section.

BLM is an agency within the U.S. Department of the Interior and is responsible for administering more than 250 million acres of public lands, mostly in 12 western states, including Alaska. BLM administers much of the land in the general vicinity of the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) and the Tonopah Test Range (TTR), and offers special expertise regarding environmental resources on and near these sites. As the lead agency for many other NEPA studies in this region, BLM also offers special expertise regarding other Federal actions considered in the cumulative effects analysis in this NNSS SWEIS. BLM has also played an integral role in the establishment of land withdrawals for the NNSS.

The mission of the USAF, in conjunction with the United States’ other armed services, is to preserve the peace and security and provide for the defense of the United States, its Territories, Commonwealths, and possessions, and any U.S.-occupied areas. The USAF controls much of the land and airspace in the vicinity of the NNSS and operates the Nevada Test and Training Range, which borders the NNSS on three sides, as well as the Remote Sensing Laboratory (RSL) and the TTR, on which DOE/NNSA is a tenant. The USAF offers special expertise regarding environmental resources on and near the NNSS, RSL, and the TTR, as well as areas of environmental contamination (and ongoing remediation activities) resulting from historic national-defense-related activities. The geographic proximity of USAF and DOE/NNSA facilities also require the two agencies to review their proposed actions carefully to ensure that one agency does not adversely affect the other’s missions and operations.

The NNSS and the TTR are located in Nye County, Nevada. Nye County has special expertise regarding the relationship of DOE/NNSA’s proposed actions to the objectives of regional and local land use plans, policies, and controls, as well as to the current and planned infrastructure in the county, including public services and traffic conditions. Nye County also possesses special expertise regarding local governmental actions considered in the cumulative effects analysis in this site-wide environmental impact statement (SWEIS).
In addition to the special expertise and roles described above, all cooperating agencies have provided the following support to DOE/NNSA during preparation of this NNSS SWEIS:

- Participating in technical group meetings and workshops throughout the NEPA process
- Assisting in development of action alternatives
- Providing land use plans, policy documents, and NEPA documents to assist in describing the affected environment and conducting the environmental consequences analyses
- Participating in internal reviews of preliminary draft SWEIS sections and providing comments within their respective areas of expertise
- Assisting with public involvement and preparation of responses to public comments

Table 10–1 summarizes specific meetings and workshops involving cooperating agencies.

<table>
<thead>
<tr>
<th>Meeting Date</th>
<th>Attending Agencies *</th>
<th>Scope of Discussions</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 25, 2010</td>
<td>Nye County</td>
<td>Kickoff meeting, discussion of Nye County role and supporting personnel</td>
</tr>
<tr>
<td>February 1, 2010</td>
<td>USAF, BLM</td>
<td>Kickoff meeting, discussion of renewable energy initiatives potentially within the scope of this SWEIS</td>
</tr>
<tr>
<td>February 8, 2010</td>
<td>BLM</td>
<td>Discussion of preliminary alternatives, specific NNSS projects, and BLM role in review process</td>
</tr>
<tr>
<td>April 20, 2010</td>
<td>BLM, USAF, Nye County</td>
<td>Distribution of preliminary draft SWEIS sections (Introduction, Purpose and Need, Alternatives), discussion of options for alternatives, and requests for comments from attendees</td>
</tr>
<tr>
<td>May 19, 2010</td>
<td>USAF</td>
<td>Discussion of USAF comments regarding the preliminary draft SWEIS sections (Introduction, Purpose and Need, Alternatives)</td>
</tr>
</tbody>
</table>

BLM = Bureau of Land Management; NNSS = Nevada National Security Site; SWEIS = site-wide environmental impact statement; USAF = U.S. Air Force.

* DOE/NNSA was present at all meetings.

10.2 American Indian Groups

DOE/NNSA has been conducting government-to-government consultation with American Indian tribes since 1987. During this process, the Consolidated Group of Tribes and Organizations (CGTO) was established to facilitate consultation with the NNSS. CGTO comprises 17 tribes and organizations that represent three ethnic groups from Arizona, California, Nevada, and Utah that are culturally and historically affiliated with the NNSS and surrounding areas: the Western Shoshone, Southern Paiute, and Owens Valley Paiute (Stoffle et al. 1990). As such, CGTO has a long-standing relationship with DOE/NNSA.

During preparation of the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (1996 NTS EIS), a small committee of American Indian people representing the previously mentioned ethnic groups was appointed by CGTO to provide American Indian input for the 1996 NTS EIS. This committee is called the American Indian Writers Subgroup (AIWS). AIWS input for the 1996 NTS EIS was documented in Appendix G of that document, and specific comments made by AIWS were inserted in various chapters of the 1996 NTS EIS.
DOE/NNSA has continued this model of consultation and cooperative writing with CGTO and AIWS in this NNSS SWEIS. Appendix C, “American Indian Assessment of Resources and Alternatives Presented in the SWEIS,” of this NNSS SWEIS contains CGTO’s comprehensive perspective regarding past and ongoing impacts of DOE/NNSA activities at the NNSS on those resources that are important to American Indian people. Appendix C was prepared in response to the consultation required for this NNSS SWEIS in accordance with DOE Order 144.1, Department of Energy American Indian Tribal Government Interactions and Policy. Excerpts from Appendix C, selected by AIWS, have been inserted throughout this NNSS SWEIS to reinforce CGTO’s perspective and recommendations regarding specific resources and DOE/NNSA activities.

Based on CGTO’s and AIWS’s previous involvement in the 1996 NTS EIS and similar NEPA documents, CGTO expressed its desire for AIWS to become involved in the development of culturally appropriate text for this new NNSS SWEIS. This effort was achieved through convening four meetings for the purpose of reviewing draft text and formatting tribal perspectives on behalf of CGTO. Each week-long writing session provided a mechanism for AIWS to develop text that represents the tribal perspective for incorporation in this NNSS SWEIS.

Accordingly, AIWS members were selected because of their knowledge and past experience with the 1996 NTS EIS and similar NEPA documents. This familiarity provided the opportunity for tribal representatives to maximize their involvement using thorough reviews of text and supporting documents, in addition to determining the areas on which to focus.

After the completion of text development, AIWS presented its results at the 2010 Annual Meeting of CGTO in Las Vegas. The presentation consisted of an overview of the NEPA process specific to this SWEIS and a description of the AIWS writing process, followed by the formal presentation of the tribal text for tribal review and approval. As is customary, tribal representatives met in executive session to deliberate on the information presented. At the conclusion of the session, the meeting was reconvened and tribal representatives accepted the AIWS text for inclusion in this NNSS SWEIS.

Table 10–2 summarizes specific meetings and workshops involving CGTO/AIWS.

<table>
<thead>
<tr>
<th>Meeting Date</th>
<th>Scope of Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 1, 2009</td>
<td>Kickoff meeting, introduction to the SWEIS process and timeline, affirmation of previous model of consultation, and NNSS site tour.</td>
</tr>
<tr>
<td>February 21–26, 2010</td>
<td>Field visit to selected sites on the NNSS to establish a foundation for writing and an understanding of the topics to be discussed in this NNSS SWEIS. Review of the proposed SWEIS schedule, meeting expectations, and anticipated deliverables with primary focus on Chapter 1, “Introduction and Purpose and Need for Agency Action”; Chapter 2, “Site Overview and Update”; Chapter 4, “Affected Environment”; and Chapter 5, “Environmental Consequences.”</td>
</tr>
<tr>
<td>April 4–9, 2010</td>
<td>Review of selected Chapter 5 resource areas: visual resources, land use, geology and soils, biological resources, cultural resources, socioeconomics, hydrology, air quality, climate, waste management, human health, and environmental justice.</td>
</tr>
<tr>
<td>July 18–23, 2010</td>
<td>Completion of review of Chapter 5 resource areas, followed by a review of Chapter 6, “Cumulative Impacts.” Regular reviews of previous chapters to ensure accuracy and completeness.</td>
</tr>
<tr>
<td>August 15–20, 2010</td>
<td>Development of American Indian text for Chapters 7 through 10, with a focus on Chapter 7, “Mitigation Measures,” and development of Appendix C. Final reviews of preceding text of all SWEIS chapters before submittal to DOE/NNSA.</td>
</tr>
</tbody>
</table>

NNSS = Nevada National Security Site; SWEIS = site-wide environmental impact statement.
CHAPTER 11
REFERENCES
11.0 REFERENCES

Becht, W., Nye County Sheriff’s Office, 2010, Personal communication (email) with R. Griffin, Potomac Hudson Engineering, “General Information for the Nye County Sheriff's Office,” April 7.

BLM (Bureau of Land Management), 2009c, Draft Supplemental Environmental Impact Statement for the ON Line Project (BLMNV/EL/EIS-GI-10/01+1793), Ely District Office, Ely, Nevada, November.

BLM (Bureau of Land Management), 2010l, N-I GIS 2012, Land management data based on 2010 data.

Boulder City Hospital, 2010, Bolder City Hospital website (accessed at www.bouldercityhospital.org/), March 6.

Citizen Alert (Citizen Alert of Nevada), 2004, Analysis of the Nevada Test Site Early Warning System for Groundwater Contamination Potentially Migrating from Pahute Mesa to Oasis Valley, Nevada, March.

CMPO (Cheyenne Metropolitan Planning Organization), 2006, PlanCheyenne, Cheyenne Area Transportation Master Plan Snapshot, November.

DETR (Nevada Department of Employment, Training and Rehabilitation), 2011a, Personal communication (email) from J. Sutich, State of Nevada, to M. West, Potomac-Hudson Engineering, Re: Clark County Top 20 Employers, December 20.

DETR (Nevada Department of Employment, Training and Rehabilitation), 2011b, Personal communication (email) from J. Sutich, State of Nevada, to M. West, Potomac-Hudson Engineering, Re: Nye County Top 20 Employers, December 20.

DFBS (Department of Financial and Business Services), 2009, *City of Las Vegas Five-Year Capital Improvement Plan, FY 2010-2014*, City of Las Vegas, Nevada, July.

DOC (U.S. Department of Commerce), 2010, Regional Input-Output Modeling System (RIMS II), Bureau of Economic Analysis, Washington, DC.

DOE (U.S. Department of Energy), 2003c, *Supplement Analysis for the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada to Address the Increase in Activities Associated with the National Center for Combating Terrorism and Counterterrorism Training and Related Activities*, DOE/EIS-0243-SA-02, November.

DOE (U.S. Department of Energy), 2007d, *Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE’s Inventory of Depleted Uranium Hexafluoride*, DOE/EIS-0359-SA1 and DOE/EIS-0360-SA1, March.

DOE (U.S. Department of Energy), undated, Draft *Storm Water Pollution Prevention Plan for the North Las Vegas Facility*, prepared in accordance with Nevada Division of Environmental Protection Permit Number NVR050000 (Stormwater General Permit).

DOE/NV (U.S. Department of Energy, Nevada), 2000a, Performance Assessment for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada, Addendum 1, Update of Scenarios and Waste Acceptance Criteria Through the Performance Assessment Maintenance Program, Revision 1.0, DOE/NV-608, Las Vegas, Nevada, April.

Chapter 11
References

References

EG&G/EM (EG&G Environmental Measurements, Inc.), 1993, Baseline Vegetation Contamination at Safety Test Sites on the Nevada Test Site and Tonopah Test Range, Summary Report, Environmental Sciences Department, Las Vegas, Nevada, March.

EPA (U.S. Environmental Protection Agency), 2009b, Technical Support Document for Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act, Office of Atmospheric Programs Climate Change Division, Office of Atmospheric Programs, Washington, DC, December 7.

FAA (Federal Aviation Administration), 2000, *Final Environmental Assessment for the Site Launch, Reentry and Recovery Operations at the Kistler Launch Facility, Nevada Test Site (NTS)*, Associate Administrator for Commercial Space Transportation, Washington, DC, April.

HRCES (Harry Reid Center for Environmental Studies and Professional Analysis, Inc.), 1994, *Preliminary Assessment of Geothermal Potential, Nevada Test Site, Nye County, Nevada*, DE-FC08-93 NV11399, University of Nevada, Las Vegas, Las Vegas, Nevada, December.

LVVWD (Las Vegas Valley Water District), 2009, *2010 Water Quality Report*.

Navarro-Intera, 2012, Personal communication from UGTA Geochemistry Database, 17 May; original source: electronic transmittal courtesy of Theodore Redding, NSTec (8/15/11).

NCI (National Cancer Institute), 1997, Study Estimating Thyroid Doses of I-131 Received by Americans from Nevada Atmospheric Nuclear Bomb Test, Bethesda, Maryland.

NDEP (Nevada Department of Environmental Protection), 2007, Bureau of Air Pollution Control, Class II Air Quality Operating Permit, Permit No. AP8733-0680.02, Facility ID No. A0025.

NDEP (Nevada Division of Environmental Protection), 2009a, Bureau of Air Pollution Control (BAPC) (accessed December 2, 2009, http://ndep.nv.gov/bapc/capp/capp1.html#).

NDEP (Nevada Division of Environmental Protection), 2009c, Hazardous Waste Recycling Facilities with Written Determinations Issued Under NAC 444.84555, November 19.

NDOT (Nevada Department of Transportation), 2003, Southern Nevada Transportation Study, Carson City, Nevada, October 6.

NDOT (Nevada Department of Transportation), 2008a, Annual Traffic Report – Nye County.

NDOT (Nevada Department of Transportation), 2008b, Annual Traffic Report – Clark County.

NDOT (Nevada Department of Transportation), 2008c, The Annual Traffic Report, Traffic Information Division in cooperation with U.S. Department of Transportation Federal Highway Administration, Carson City, Nevada.

NDOT (Nevada Department of Transportation), 2010, Nevada Department of Transportation Annual Average Daily Traffic Monitoring Data received from W. Rosenthal of NDOT, June 6.

NLV (City of North Las Vegas), 2009, *City of North Las Vegas Downtown Master Plan & Investment Strategy*, North Las Vegas, Nevada, February.

NNSA/NSO (National Nuclear Security Administration/Nevada Site Office), 2009b, Personal communication with Y. Mason, Facility and Infrastructure Planning, Data on building square footage by function for NTS, RSL, NLVF, November 24.

NNSA/NSO (National Nuclear Security Administration/Nevada Site Office), 2009c, Personal communication (email) with J. Prsybylinski, from E. Carr, data provided on bus fleet and fuel for NTS, December 17.
NNSA/NSO (National Nuclear Security Administration/Nevada Site Office), 2010a, Personal communication (email) with K. Thornton and G. Babero, Office of the Assistant Manager for Site Operations, Information provided on existing electrical circuit configuration and capacity, April 14.

NNSA/NSO (National Nuclear Security Administration/Nevada Site Office), 2010b, (Parts 1-4), Personal communication with R. A. Reece, Manager at Facility and Infrastructure Planning, Data provided on electrical usage, natural gas, and liquid fuel usage (gallons) by type (red dye, E85, unleaded, biodiesel, #2 diesel, jet fuel) for NTS, RSL, and NLVF.

NNSA/NSO (National Nuclear Security Administration/Nevada Site Office), 2010c, (Parts 1-2), Personal communication with K. Thornton and G. Babero, Office of the Assistant Manager for Site Operations, text provided on proposed (Expanded Operations) NTS electrical and communication systems upgrade descriptions and approval, June 28 and July 1.

NOAA (National Oceanic and Atmospheric Administration), 2010a, Air Resources Laboratory Special Operations and Research Division (SORD), Personal communication between W. Schalk (SORD) and E. Carr, ICF International, March 2.

NPS (National Park Service), 1983, Archaeology and Historic Preservation: the Secretary of the Interior’s Standards and Guidelines (available at www.nps.gov/history/local-law/arch_stnds_0.htm), Washington, DC.

NPS (National Park Service), 2001, Las Vegas Wash Stabilization Project Environmental Assessment, Lake Mead National Recreation Area, Clark County, Nevada, July.
NPS (National Park Service), 2009, Death Valley National Park Invites Public Input On Wilderness & Backcountry Stewardship Plan, Death Valley National Park, September.

NPS (National Park Service), 2010a, Abandoned Mine Lands Safety Installations Environmental Assessment, Keane Wonder Mine Complex Mine Openings, Death Valley National Park, California and Nevada, Death Valley National Park, February.

NPS (National Park Service), 2010b, Environmental Assessment Abandoned Mine Lands Safety Installations Multiple Mine Openings Death Valley National Park, California/Nevada, Death Valley National Park, February.

NPS (National Park Service), 2010c, Finding of No Significant Impact, Abandoned Mine Land Safety Installations, Keane Wonder Mine Complex, Death Valley National Park, California and Nevada, Death Valley, California, April.

NPS (National Park Service), 2010e, Finding of No Significant Impact, Devils Hole Site Plan, Death Valley, California, March.

NPS (National Park Service), 2010f, Scoping letter for Scotty’s Castle Waterline Replacement Project, Death Valley National Park, June 29.

NPS (National Park Service), 2010h, Devils Hole Long Term Ecological Monitoring Plan Environmental Assessment, U.S. Department of Interior, National Park Service, Death Valley, California, October.

NSTC (National Science and Technology Council), 2008, Scientific Assessment of the Effects of Global Change on the United States, Washington, DC.

NSTec (National Security Technologies, LLC), 2008a, Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1.0, DOE/NV/25946-470, Las Vegas, Nevada.

NSTec (National Security Technologies LLC), 2009b, Space Management Plan, May.

NSTec (National Security Technologies, LLC), 2009d, Excel spreadsheet on employee residences, November.

NSTec (National Security Technologies LLC), 2010a, Personal communication between C. Ong, Potomac-Hudson Engineering, and Cindy (representative at National Security Technologies, LLC, Transportation Management).

NSTec (National Security Technologies LLC), 2010g, Personal communication with D. Rudolph, Senior Scientist, Water and Waste Section, National Security Technologies, Data provided on wastewater production at Mercury and Yucca Sewage Lagoons for 2005 through 2009, March 18.

NSTec (National Security Technologies LLC), 2010h, Personal communication with C. Bixby, Chief of Staff, Defense Experimentation and Stockpile Stewardship, National Security Technologies, Data provided on septic tanks at NTS, April 8.

NSTec (National Security Technologies LLC), 2010k, Completion Report for Well ER-20-7: Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Las Vegas, Nevada, April.

RetCo (Reliable Transmission Company, Inc.), 2010, Presentation to the Nye County Transmission Workshop The Solar Express 500kV Project, April 28.

RTCSN (Regional Transportation Commission of Southern Nevada), 2008, Regional Transportation Plan 2009-2030 A Plan for Mobility in the Las Vegas Region Over the Next 20 Years, Las Vegas, Nevada, November.

Rush, F. E., 1974, Static ground water levels of Nevada: Nevada Department of Conservation and Natural Resources, Division of Water Resources map.

SNJV (Stoller-Navarro Joint Venture), 2006, Groundwater Flow Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nevada, Rev. 0, S-N/99205-076, Las Vegas, Nevada, June.

SNJV (Stoller-Navarro Joint Venture), 2009, Phase I Transport Model of Corrective Action Units 101 and 102, Pahute Mesa, Nevada Test Site, Nye County, Nevada, Rev, 0, S-N/99205-111, Las Vegas, Nevada, February.

SNL (Sandia National Laboratories), 2010a, Personal communication regarding traffic associated with the NTS and off-site locations, Tonopah, Nevada, March 11.

Stymanski, T., Public Education/Information Officer for Las Vegas Fire and Rescue, 2010, Personal communication, March 4.

TRIP, 2009, Future Mobility in Nevada: Meeting the State’s Need for Safe and Efficient Mobility, October.

UNLV (University of Nevada, Las Vegas), 2010, Facts and Stats and Centers/Institutes (available at www.unlv.edu/about/facts.html).

USAF (U.S. Air Force), 2008a, *BLM Communications Use Lease to USAF to Conduct Patriot Communications Exercises in Lincoln County, Nevada*, Nellis Air Force Base, Las Vegas, Nevada, August.

USFS (U.S. Forest Service), 2009b, Decision Notice & Finding of No Significant Impact Las Vegas Ski and Snowboard Resort Snowmaking System and Lower Area Parking Improvements Project USDA Forest Service Spring Mountain National Recreation Area Humboldt-Toiyabe National Forest Clark County, Nevada, Las Vegas, Nevada, July.

USFS (U.S. Forest Service), 2009c, *Final Environmental Impact Statement Middle Kyle Complex, Spring Mountains National Recreation Area, Humboldt Toiyabe National Forest, Clark County, Nevada*, U.S. Department of Agriculture, Humboldt-Toiyabe National Forest, Sparks, Nevada, December.

USFS (U.S. Forest Service), 2009d, Record of Decision Middle Kyle Complex, Spring Mountains National Recreation Area, Humboldt Toiyabe National Forest, Clark County, Nevada, U.S. Department of Agriculture, Humboldt-Toiyabe National Forest, Sparks, Nevada, December.

UTDEQ (Utah Department of Environmental Quality), 2006, Utah Hazardous Waste Generation and Management 2005, Division of Solid and Hazardous Waste, December.

White, M. G. and P. B. Dunaway, 1975, The Radioecology of Plutonium and Other Transuranics in Desert Environments (NVO 153).

Code of Federal Regulations

29 CFR 1926.52, Occupational Safety and Health Administration, Department of Labor, “Occupational noise exposure.”

40 CFR Parts 1500-1508, CEQ regulations applicable to and binding on all Federal agencies for implementing the procedural provisions of NEPA.

Federal Register Notices

74 FR 50239, Notice of intent to prepare an Environmental Impact Statement (EIS); and notice of public scoping meetings for a proposed Amendment of the Clark County Multiple Species Habitat Conservation Plan and Issuance of an Amended Incidental Take Permit, Clark County, Nevada, Federal Register vol. 74, No. 188, September 30, 2009.

U.S. Department of Energy Standards and Orders

DOE Order 144.1, Department of Energy American Indian Tribal Government Interactions and Policy.

DOE Order 151.1C, Comprehensive Emergency Management System.

DOE Order 153.1, Departmental Radiological Emergency Response Assets.

DOE Order 227.1, Independent Oversight.

DOE Order 231.1B, Environment, Safety, and Health Reporting.

DOE Order 414.1C, Quality Assurance.

DOE Order 420.1B, Facility Safety.

DOE Order 422.1, Conduct of Operations Requirements for DOE Facilities.

DOE Order 425.1D, Verification of Readiness to Startup or Restart Nuclear Facilities.

DOE Order 426.2, Personnel Selection, Qualification, and Training Requirements for DOE Nuclear Facilities.

DOE Order 430.1B Chg 2, Real Property Asset Management.

DOE Order 433.1B, Maintenance Management Program for DOE Nuclear Facilities.

DOE Order 440.1B, Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees.

DOE Order 435.1, Radioactive Waste Management.

DOE Order 436.1, Departmental Sustainability.

DOE Order 458.1, Radiation Protection of the Public and the Environment.

DOE Order 460.1C, Departmental Materials Transportation and Packaging Management.

DOE Order 460.2A, Departmental Materials Transportation and packaging Management.

DOE Order 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest.

DOE Order 470.3B, Graded Security protection (GSP) Policy.

DOE Order 470.4B, Safeguards and Security Program.

DOE Policy 441.1, DOE Radiological Health and Safety Policy.

Executive Orders

Executive Order 12898, “Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations.”

Executive Order 13112, “Invasive Species.”

Executive Order 13212, “Actions to Expedite Energy-Related Projects.”

Executive Order 13327, “Federal Real Property Asset Management.”

U.S. Public Laws

United States Code

Nevada Administrative Code

NAC 445A.865, Purpose of issuing permits; no vested right acquired by holder (NRS 445A.425, 445A.465).

NAC 445B.22097, Nevada Administrative Code, Chapter 445B, Part 22097, Standards of Quality for Ambient Air.
absorbed dose—The energy imparted by ionizing radiation per unit mass of the irradiated material (e.g., biological tissue). The units of absorbed dose are the rad and the gray (Gy). (See gray, quality factor, rad, rem, and sievert.)

accident—An unplanned sequence of events that usually results in undesirable consequences.

actinides—A series of heavy radioactive metallic elements of increasing atomic number (Z number) beginning with actinium (89) and continuing through lawrencium (103).

activities—In this site-wide environmental impact statement, activities are those physical actions used to implement missions, programs, capabilities, or projects.

aggregate—Hard inert materials such as sand, gravel, or slag used for mixing with a cementing material to form concrete.

air pollutant—Generally, an airborne substance that could, in high enough concentrations, harm living things or cause damage to materials. From a regulatory perspective, an air pollutant is a substance of which emissions or atmospheric concentrations are regulated, or for which maximum guideline levels have been established because of potential harmful effects on human health and welfare.

air quality—The cleanliness of the air as measured by the levels of pollutants relative to standards or guideline levels established to protect human health and welfare. Air quality is often expressed in terms of the pollutant for which concentrations are the highest percentage of a standard (e.g., air quality may be unacceptable if the level of one pollutant is 150 percent of its standard, even if levels of other pollutants are well below their respective standards).

air quality standards—The legally prescribed level of constituents in the outside air that cannot be exceeded during a specified time in a specified area.

alpha-emitter (α-emitter)—A radioactive substance that decays by releasing an alpha particle.

alpha (α) particle—A positively charged particle ejected spontaneously from the nuclei of some radioactive elements. It is identical to a helium nucleus and has a mass number of 4 and an electrostatic charge of +2. It has low penetrating power and a short range (a few centimeters in air). (See alpha radiation.)

alpha (α) radiation—A strongly ionizing, but weakly penetrating, form of radiation consisting of positively charged alpha particles emitted spontaneously from the nuclei of certain elements during radioactive decay. Alpha radiation is the least penetrating of the four common types of ionizing radiation (alpha, beta, gamma, and neutron). Even the most energetic alpha particle generally fails to penetrate the dead layers of cells covering the skin and can be easily stopped by a sheet of paper. Alpha radiation is most hazardous when an alpha-emitting particle is ingested or inhaled by an organism.

ambient air—The surrounding atmosphere as it exists around people, plants, and structures.

aquifer—A permeable water-bearing unit of rock or sediment that yields water in a usable quantity to a well or spring.
aquitard (or confining unit)—A rock or sediment unit of relatively low permeability that retards the movement of water in or out of adjacent aquifers.

artesian—Where water in a lower aquifer is under pressure in relation to an overlying confining unit; when intersected by a well, the water will rise up the borehole.

as low as is reasonably achievable (ALARA)—The approach to radiation protection to manage and control exposures (both individual and collective) to the workforce and to the general public to as low as is reasonable, taking into account social, technical, economic, practical, and public policy considerations. ALARA is not a dose limit; it is a process that has the objective of attaining doses as far below the applicable limits of Title 10 of the Code of Federal Regulations Part 835 as is reasonably achievable.

asbestiform low-level radioactive waste—Any low-level radioactive waste containing friable asbestos material; Category I nonfriable asbestos-containing material that has become friable; Category I nonfriable asbestos-containing material that will be or has been subjected to sanding, grinding, cutting, or abrading; or Category II nonfriable asbestos-containing material that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder.

background concentration—The level of chemical elements, compounds, or radionuclides in the natural environment not affected by human activities, found by taking measurements in areas unaffected by contamination.

background radiation—Radiation from: (1) cosmic sources; (2) naturally occurring radioactive materials, including radon (except as a decay product of source or special nuclear material); and (3) global fallout as it exists in the environment (e.g., from the testing of nuclear explosive devices).

best management practices—Structural, nonstructural, and managerial techniques, other than effluent limitations, to prevent or reduce pollution of surface water. They are the most effective and practical means to control pollutants that are compatible with the productive use of the resource to which they are applied. Best management practices are used in both urban and agricultural areas. Best management practices can include schedules of activities; prohibitions of practices; maintenance procedures; treatment requirements; operating procedures; and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

beta-emitter (β-emitter)—A radioactive substance that decays by releasing a beta particle.

beta (β) particle—A charged particle emitted from a nucleus during radioactive decay, with a mass equal to 1/1,837 that of a proton. A negatively charged beta particle is identical to an electron. A positively charged beta particle is called a positron.

beta (β) radiation—Ionizing radiation consisting of fast-moving beta particles (negatively charged) and positrons (positively charged) emitted from the nucleus of an atom during radioactive decay. Beta radiation is more penetrating, but less energized, than alpha radiation. Beta radiation is stopped by clothing or a thin sheet of metal.

biological simulant—A biological substance, or microorganism that shares at least one physical or biological characteristic of a biological agent, that has been shown to be non-pathogenic, and can be used for biological defense testing to replace the agent under study.

biota (biotic)—The plant and animal life of a region.
borrow pit—An excavated area where material has been dug for use as fill at another location (e.g., a gravel pit).

caldera—A near-circular volcanic feature formed by the collapse of rocks overlying a magma chamber from rapid emptying of the chamber during large-volume eruptions.

capabilities—This term refers to the combination of facilities, equipment, infrastructure, and expertise necessary to undertake types or groups of activities and to implement mission assignments. Capabilities at the Nevada National Security Site have been established over time, principally through mission assignments and activities directed by program offices.

cask—A heavily shielded container used to store or ship radioactive materials.

characteristic waste—Solid waste that is classified as hazardous waste because it exhibits any of the following properties or “characteristics”: ignitability, corrosivity, reactivity, or toxicity, as described in Title 40 of the Code of Federal Regulations, Sections 261.20 through 261.24, and Title 6 of the New York Code of Rules and Regulations, Subpart 371.3 (6 NYCRR 371.3). (See hazardous waste, solid waste, and waste characterization.)

characterization (waste)—The determination of waste composition and properties, whether by review of process knowledge, nondestructive examination or assay, or sampling and analysis, generally done for the purpose of determining appropriate storage, treatment, handling, transport, and disposal requirements.

collective dose—The sum of the individual doses received in a given period of time by a specified population from exposure to a specified source of radiation. In this site-wide environmental impact statement, collective dose is expressed in units of person-rem. Person-sieverts is another term for collective dose. (See person-rem and person-sievert.)

committed dose equivalent—The radiation dose to some specific organ or tissue in the body after the intake of radioactive material. The period examined is commonly 50 years. Committed dose equivalent is expressed in units of rem or sieverts.

committed effective dose equivalent—The radiation dose obtained by multiplying committed dose equivalents (see committed dose equivalent) by weighting factors (applicable to the specific organ or tissue that is irradiated) and summing the resulting products. The period examined is commonly 50 years. Committed effective dose equivalent is expressed in units of rem or sieverts.

communities (biological)—Assemblage of plants and animals (dominated by one to a few species) that live in the same environment and that are mutually sustaining and interdependent.

concentration—The quantity of a substance in a unit quantity of a sample (e.g., milligrams per liter or micrograms per kilogram).

construction and demolition debris—Discarded nonhazardous material, including solid, semisolid, or contained gaseous material resulting from construction, demolition, industrial, commercial, mining, and agricultural operations and from community activities. The category does not include source, special nuclear, or byproduct material as defined by the Atomic Energy Act (Title 42 of the United States Code, Section 2011 et seq. [42 U.S.C. 2011 et seq.]).
contact-handled waste—Radioactive waste or waste packages whose external dose rate is low enough to permit contact handling by humans during normal waste management activities (waste with a surface dose rate not greater than 200 millirem per hour). (See remote-handled waste.)

contamination—Unwanted chemical elements, compounds, or radioactive material on environmental media (e.g., soil, water, and air), structures (e.g., buildings), equipment, or personnel.

criticality (nuclear)—The condition in which a system is capable of sustaining a nuclear chain reaction.

cultural resources—A prehistoric or historic district, site, building, structure, or object considered to be important to a culture, subculture, or community for scientific, traditional, religious, or other reasons. Usually divided into three major categories: prehistoric and historic archaeological resources, architectural resources, and traditional cultural resources.

curie (Ci)—A unit that describes the intensity of radioactivity in a sample of material, equal to 3.7×10^{10} (i.e., 37,000,000,000) disintegrations per second. Also, a quantity of any radionuclide or mixture of radionuclides that decays at a rate of 37 billion disintegrations per second.

decommissioning—Removing facilities such as processing plants, waste tanks, and burial grounds from service and reducing or stabilizing radioactive contamination. Includes the following concepts: the decontamination, dismantling, and return of an area to its original condition without restrictions on use or occupancy; partial decontamination; isolation of remaining residues; and continued surveillance and restrictions on use or occupancy.

decommissioning—The actions taken to reduce or remove chemical or radioactive substances from environmental media (e.g., soil, water, and air), structures (e.g., buildings), equipment, or personnel. Radioactive decontamination may be accomplished by washing, chemical action, mechanical cleaning, or other techniques.

depleted uranium (DU)—Uranium whose content of the fissile isotope uranium-235 is less than the 0.7 percent (by weight) found in natural uranium, so that it contains more uranium-238 than natural uranium. (See enriched uranium.)

deterministic—Referring to events that have no random or probabilistic aspects but proceed in a fixed, predictable fashion.

disposal—As used in this site-wide environmental impact statement, emplacement of waste so as to ensure isolation from the biosphere with no intent of retrieval, and requiring deliberate action to gain access after emplacement.

disposal facility—A natural and/or manmade structure in which waste is disposed. (See disposal.)

DOE orders—Requirements internal to the U.S. Department of Energy (DOE) that establish DOE policy and procedures, including those for compliance with applicable laws.

dose (radiological)—The radioactive energy that is absorbed by one gram of material that has been irradiated. Dose measures include dose equivalent, effective dose equivalent, committed effective dose equivalent, or committed equivalent dose as defined elsewhere in this glossary.
dose equivalent—A measure of radiological dose that correlates with biological effect on a common scale for all types of ionizing radiation. Defined as a quantity equal to the absorbed dose in tissue multiplied by a quality factor (the biological effectiveness of a given type of radiation) and all other necessary modifying factors at the location of interest. Dose equivalent is expressed in rems or sieverts.

dose rate—The radiation dose delivered per unit of time (e.g., rad per year, millirad per year).

downblending—A process in which an appropriate substance is added to a fissile material (generally) such as plutonium or enriched uranium to reduce the concentration of the fissile material in the resulting mixture. The quantity of the fissile material in the resulting mixture remains the same while the total quantity of the mixture increases.

downdraft table—A work area having a surface perforated with holes. A vacuum applied to the surface removes air containing particulates, gases, or vapors from the work area. Air thus removed is then normally treated by filtration or other processes before discharge.

drainage basin—A region or area bounded by a drainage divide and occupied by a drainage system; specifically, the tract of country that gathers water originating as precipitation and contributes to a particular stream channel or system of channels or a lake, reservoir, or other body of water.

drinking water standards—Prescriptive limits on the maximum contaminant level that may be in water for it to be considered safe for human consumption.

dynamic plutonium experiments—These are experiments designed to provide improved knowledge of plutonium material properties, including equation of state and strength, over broad ranges of relevant pressures, temperatures, and time scales. These experiments range from essentially static experiments, such as diamond anvil cell and quasi-static load frame, to increasingly dynamic experiments, such as gas-gun-driven, pulsed-power-driven, special nuclear material-mated-to-high-explosives-driven, and laser-driven experiments. None of these experiments reaches nuclear criticality or involves self-sustaining nuclear reactions.

effective dose equivalent—The dose value obtained by multiplying the dose equivalents received by specified tissues or organs of the body by the appropriate weighting factors applicable to the tissues or organs irradiated, and then summing all of the resulting products. It includes the dose from radiation sources internal and external to the body. The effective dose equivalent is expressed in units of rems or sieverts. (See committed effective dose equivalent.)

electron—An elementary particle with a mass of 9.107×10^{-28} grams (or 1/1,837 of a proton) and a negative charge. Electrons surround the positively charged nucleus and determine the chemical properties of the atom. (See nucleus.)

endangered species—Any species that is in danger of extinction throughout all or a significant portion of its range from natural or man-made changes in the environment. The list of endangered species can be found in Title 50 of the Code of Federal Regulations, Sections 17.11 (wildlife), 17.12 (plants), and 222.23(a) (marine organisms).

engineered barrier (controls)—Physical controls designed to isolate or contain wastes or hazardous materials (e.g., caps, entombment of facilities, contaminant immobilization).

enriched uranium—Uranium whose content of the fissile isotope uranium-235 is greater than the 0.7 percent (by weight) found in natural uranium. (See depleted uranium.)
environmental impact statement (EIS)—The detailed written statement that is required by Section 102(2)(c) of the National Environmental Policy Act (NEPA) for a proposed major Federal action significantly affecting the quality of the human environment. A U.S. Department of Energy (DOE) environmental impact statement is prepared in accordance with applicable requirements of the Council on Environmental Quality NEPA regulations in Title 40 of the Code of Federal Regulations (CFR) Parts 1500–1508 and DOE NEPA regulations in 10 CFR Part 1021. The statement includes, among other information, discussions of the environmental impacts of the Proposed Action and all reasonable alternatives, adverse environmental effects that cannot be avoided should the proposal be implemented, the relationship between short-term uses of the human environment and enhancement of long-term productivity, and any irreversible and irretrievable commitments of resources.

environmental justice—The fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies. Fair treatment means that no group of people, including racial, ethnic, or socioeconomic groups, should bear a disproportionate share of the negative environmental consequences resulting from industrial, municipal, and commercial operations or the execution of Federal, state, local, and tribal programs and policies. Executive Order 12898 directs Federal agencies to make achieving environmental justice part of their missions by identifying and addressing disproportionately high and adverse effects of agency programs, policies, and activities on minority and low-income populations.

environmental testing—Subjecting a test unit to specified environments such as vibration, shock, or static acceleration in a controlled environment.

ephemeral stream—A stream that flows only after a period of heavy precipitation.

erosion—Natural processes that include weathering, dissolution, abrasion, corrosion, and transportation, by which material is worn away from the Earth’s surface.

exposure—The amount of radiation or pollutant present in a given environment that represents a potential health threat to living organisms.

fault (geologic)—Fracture in the Earth’s crust accompanied by displacement of one side of the fracture with respect to the other.

fissile materials—Isotopes that readily fission after absorbing a neutron of any energy, either fast or slow. Fissile materials are uranium-235, uranium-233, plutonium-239, and plutonium-241. Uranium-235 is the only naturally occurring fissile isotope. Although sometimes used as a synonym for fissionable material, this term has acquired a more restricted meaning, namely, any material fissionable by thermal (slow) neutrons. The three primary fissile materials are uranium-233, uranium-235, and plutonium-239.

fission—The splitting of a nucleus into at least two other nuclei (elements) and the release of a relatively large amount of energy.

fission products—Nuclei (new elements) formed from the fission of heavy elements.

floodplain—That portion of a river valley, adjacent to the river channel, that is built of sediments during the present regimen of the stream and that is covered with water when the river overflows its banks at flood stages.

gamma-emitter (γ-emitter)—A radioactive substance that decays by releasing gamma radiation.
gamma (γ) radiation—High-energy, short-wavelength electromagnetic radiation emitted from the nucleus of an atom during radioactive decay. Gamma radiation frequently accompanies alpha and beta emissions and always accompanies fission. Gamma (γ) rays are very penetrating and are best stopped or shielded by dense materials, such as lead or depleted uranium. Gamma rays are similar to x-rays, but are usually more energetic than x-rays. (See *alpha radiation* and *beta radiation*.)

glove box—A large enclosure that separates workers from equipment used to process hazardous material, while allowing the workers to be in physical contact with the equipment; normally constructed of stainless steel, with large acrylic/lead glass windows. Workers have access to equipment through the use of heavy-duty, lead-impregnated rubber gloves, the cuffs of which are sealed in portholes in the glovebox windows.

gradient—The elevation change within a given distance, particularly of a stream or a land surface.

gray (Gy)—The SI (International System of Units) unit of absorbed dose. One gray is equal to an absorbed dose of 1 joule per kilogram (1 gray is equal to 100 rad). (The joule is the SI unit of energy.) (See *absorbed dose*, *gray*, *quality factor*, *rem*, and *sievert*.)

Greater-Than-Class C (GTCC)—Low-level radioactive waste that exceeds the concentration limits established for Class C waste in Title 10 of the *Code of Federal Regulations*, Section 61.55. Greater-than-Class C waste and transuranic waste can represent similar wastes. Waste containing transuranics that may be greater-than-Class C by U.S. Nuclear Regulatory Commission classification could be considered transuranic by the U.S. Department of Energy.

groundwater—Water below the ground surface in a zone of saturation. *Related definition:* Subsurface water is all water that exists in the voids found in soil, rocks, and sediment below the land surface, including soil moisture, capillary fringe water, and groundwater. That part of subsurface water in voids completely saturated with water is called groundwater. Subsurface water above the groundwater table is called vadose water.

habitat—The environment or place where a plant or animal naturally or normally grows or lives (includes soil, water, climate, other organisms, and communities.)

half-life (biological)—The time required for a biological system, such as that of a human, to eliminate, by natural processes, half of the amount of a substance (such as a radioactive material) that has entered it.

half-life (radiological)—The time in which one-half of the atoms of a particular radionuclide disintegrate into another nuclear form. Half-lives for specific radionuclides vary from millionths of a second to billions of years.

hazardous chemical—Any chemical that is a physical hazard or a health hazard as defined under the Occupational Safety and Health Act and the Emergency Planning and Community Right-to-Know Act.

hazardous constituent—A constituent listed in Title 40 of the *Code of Federal Regulations* Part 261, Appendix VII or VIII, that may cause a waste to be listed as a Resource Conservation and Recovery Act hazardous waste.

hazardous waste—A category of waste regulated under the Resource Conservation and Recovery Act. To be considered hazardous, a waste must be a solid waste under RCRA and must exhibit at least one of four characteristics described in Title 40 of the *Code of Federal Regulations* (CFR), Section 261.20-24 (ignitability, corrosivity, reactivity, and toxicity), or be specifically listed by the U.S. Environmental Protection Agency in 40 CFR 261.31-33.
high-efficiency particulate air (HEPA) filter—An air filter capable of removing at least 99.97 percent of particles 0.3 micrometers (about 0.00001 inches) in diameter. These filters include a pleated fibrous medium (typically fiberglass) capable of capturing very small particles.

high-level waste or high-level radioactive waste—High-level waste is the highly radioactive waste material resulting from the reprocessing of spent nuclear fuel, including liquid waste produced directly in reprocessing and any solid material derived from such liquid waste that contains fission products in sufficient concentrations; and other highly radioactive material that is determined, consistent with existing law, to require permanent isolation.

hydraulic conductivity—A measure of the rate at which water can move through a permeable medium (e.g., soil) at a specified pressure and temperature.

hydraulic gradient—The change in elevation of the water table over a distance, resulting in groundwater movement.

hydrodynamic experiments—Hydrodynamic experiments are driven by high-explosives to assess the performance and safety of nuclear weapons. During a nuclear weapon function test, the behavior of solid materials is similar to liquids, hence the term hydrodynamic. These experiments are conducted using test assemblies that are representative of nuclear weapons. Hydrodynamic experimentation is a central component in maintaining nuclear weapons design and assessment capability. It is coupled with high-performance computer modeling and simulation to certify, without underground nuclear testing, the safety, reliability, and performance of the nuclear physics package of weapons.

hydrodynamic test—A dynamic, integrated systems test of a mock-up nuclear package during which the high explosives are detonated and the resulting motions and reactions of materials and components are observed and measured. The explosively generated high pressures and temperatures cause some of the materials to behave hydraulically (like a fluid). Hydrodynamic tests are used to obtain diagnostic information on the behavior of a nuclear weapon’s primary assembly (using simulant materials for the fissile materials in an actual weapon) and to evaluate the effects of aging on the nuclear weapons remaining in the stockpile.

hydrogeology—The study of the occurrence, distribution, and chemistry of all water, including groundwater, surface water, and rainfall.

hydrology—The study of water, including groundwater, surface water, and rainfall.

hydrophytic—A property of a plant that can grow in water or in soil too water-logged for most plants to survive.

industrial waste—As used in this site-wide environmental impact statement, nonradiological and nonhazardous solid or semisolid material generated from site cleanup activities.

in situ—In the natural or original position.

institutional controls—Measures taken by Federal or state organizations to maintain waste management facilities safely for a period of time. The measures, active or passive, may include site access control, site monitoring, facility maintenance, and erosion control.
intensity (of an earthquake)—A measure of the effects (due to ground shaking) of an earthquake at a particular location, based on observed damage to structures built by humans, changes in the Earth’s surface, and reports of how people felt the earthquake. Earthquake intensity is measured in numerical units on the Modified Mercalli scale. (See Modified Mercalli Intensity Scale.)

inventory, radionuclide—The total amount (by volume and/or activity) of radioactive material in a container, building, or disposal facility.

isotope—Any of two or more variations of an element in which the nuclei have the same number of protons (i.e., the same atomic number) but different numbers of neutrons so that their atomic masses differ. Isotopes of a single element possess almost identical chemical properties, but often different physical properties (e.g., carbon-12 and -13 are stable, but carbon-14 is radioactive).

latent cancer fatality (LCF)—A death from cancer occurring some time after, and postulated to be due to, exposure to ionizing radiation or other carcinogens.

latent cancer morbidity—A statistically based estimate of cancer incidences from, and occurring some time after, exposure to ionizing radiation or other carcinogens.

long-term stewardship—Activities necessary to ensure protection of human health and the environment following closure of a site. Long-term stewardship includes engineered and institutional controls designed to contain or to prevent exposure to residual contamination and waste such as monitoring and maintenance activities, record-keeping activities, inspections, groundwater monitoring and treatment, access control, posting signs, and periodic performance reviews.

low-level radioactive waste (LLW)—Radioactive waste not classified as high-level radioactive waste, transuranic (TRU) waste, spent fuel, or byproduct material as defined by Section 11e(2) of the Atomic Energy Act of 1954, as amended. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level radioactive waste, provided the concentration of TRU elements is less than 100 nanocuries per gram.

maximally exposed individual (MEI)—A hypothetical individual whose location and habits result in the highest total radiological or chemical exposure (and thus dose) from a particular source for all exposure routes (inhalation, ingestion, external exposure).

maximum contaminant level (MCL)—Under the Safe Drinking Water Act, the maximum permissible concentration of a specific constituent in drinking water that is delivered to any user of a public water system that serves 15 or more connections and 25 or more people. The standards set as maximum contaminant levels take into account the feasibility and cost of attaining the standard.

maximum reasonably foreseeable accident—A maximum reasonably foreseeable accident is an accident with the most severe consequences that can reasonably be expected to occur.

millirem—One thousandth (10^{-3}) of a rem. (See rem.)

missions—In this site-wide environmental impact statement, the term “missions” refers to the major responsibilities assigned to the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) (described in Chapter 1, Section 1.1). DOE/NNSA accomplishes these major responsibilities by assigning groups or types of activities to DOE/NNSA’s system of security laboratories, production facilities, and other sites.
mitigation—(1) Avoiding an impact altogether by not taking a certain action or parts of an action; (2) minimizing impacts by limiting the degree or magnitude of an action and its implementation; (3) rectifying an impact by repairing, rehabilitating, or restoring the affected environment; (4) reducing or eliminating the impact over time by preservation and maintenance operations during the life of an action; or (5) compensating for an impact by replacing or providing substitute resources or environments.

mixed low-level radioactive waste—Low-level radioactive waste that also contains hazardous components regulated under the Resource Conservation and Recovery Act (42 U.S.C. 6901 et seq.).

mixed waste—Waste containing both radioactive and hazardous components, as defined by the Atomic Energy Act and Resource Conservation and Recovery Act, respectively. Mixed waste intended for disposal must meet the Land Disposal Restrictions as listed in Title 40 of the Code of Federal Regulations Part 268. Mixed waste is a generic term for specific types of mixed waste such as mixed low-level radioactive waste and mixed transuranic waste.

Modified Mercalli Intensity Scale—The Modified Mercalli Intensity Scale is a standard of relative measurement of earthquake intensity developed to fit construction conditions in most of the United States. It is a 12-step scale, with values from I (not felt except by a very few people) to XII (damage total). A Modified Mercalli Intensity is a numerical value on the Modified Mercalli Scale. (See intensity [of an earthquake].)

Mojave Global Change Facility (MGCF)—MGCF was established in Area 5 of the Nevada National Security Site to examine the impact of global climate change factors other than increased carbon dioxide (i.e., increasing summer monsoon rains, increased nitrogen deposition, and disturbance or destruction of the desert soil crust) on the Mojave Desert ecosystem.

morphology—The observation of the form of lands.

nanocurie—0.000000001 (10⁻⁹) of a curie. (See curie.)

NEPA review—The process used to comply with Section 102(2) of the National Environmental Policy Act (NEPA).

neutron—An uncharged elementary particle with a mass slightly greater than that of the proton. Neutrons are found in the nucleus of every atom heavier than hydrogen-1. (See nucleus and proton.)

neutron (n) radiation—The emission of neutrons from atomic nuclei. Neutrons are uncharged subatomic particles of nearly the same mass as protons. Interaction with atomic nuclei in matter results indirectly in ionization and thus an absorbed dose to biological material. Neutron bombardment of heavy nuclei (e.g., uranium, plutonium) can result in fission. Highly penetrating, neutrons can be stopped by thick masses of concrete, water, or paraffin.

Nevada Desert Free-Air Carbon Dioxide Enrichment (FACE) Facility—An environmental research facility located in Area 5 of the Nevada National Security Site that conducts long-term environmental research. FACE is a state-of-the-art facility designed to study responses of an undisturbed desert ecosystem to increasing levels of atmospheric carbon dioxide. This facility is in a standby condition due to lack of funding.

noncommunity water supply—A water system that provides water for drinking or household purposes to 25 or more persons at least 60 days per year or has 15 or more service connections. Noncommunity water systems serve either a transient or a nontransient population.
nontransient, noncommunity water system—A water system that regularly serves at least 25 of the same people more than 6 months per year. For example, a school or business with its own water supply is considered a nontransient system.

nuclear forensics—Nuclear forensics, the analysis of nuclear materials recovered from either the capture of unused materials or the radioactive debris following a nuclear explosion, can contribute significantly to the identification of the sources of the materials and the industrial processes used to obtain them. In the case of an explosion, nuclear forensics can also reconstruct key features of the nuclear device.

nuclear material—A composite term applied to: (1) special nuclear material; (2) source material such as uranium or thorium or ores containing uranium or thorium; and (3) byproduct material, which is any radioactive material that is made radioactive by exposure to the radiation incident to the process of producing or using special nuclear material.

nuclear testing—An underground nuclear weapons test of either a single underground nuclear explosion or two or more underground nuclear explosions conducted at the Nevada National Security Site within an area delineated by a circle with a diameter of 2 kilometers and conducted within a total period of 0.1 seconds. The yield of a test shall be the aggregate yield of all explosions in the test.

nuclear weapons simulator—A device that simulates some aspect of a nuclear weapon, but cannot produce an explosion resulting from the energy released by reactions involving atomic nuclei, either fission, fusion, or both.

nuclear weapon pit—The pit is the central core of a nuclear weapon containing plutonium-239 and/or highly enriched uranium that undergoes fission when compressed by high explosives. The pit and the high explosive are known as the “primary” of a nuclear weapon.

nucleus—The positively charged central portion of an atom that composes nearly all of the atomic mass and consists of protons and neutrons, except in hydrogen, in which it consists of one proton only. (See neutron and proton.)

nuclide—An atomic nucleus specified by its atomic weight, atomic number, and energy state; a radionuclide is a radioactive nuclide.

occupational dose—Whole-body radiation dose received by workers participating in a given task or over the course of employment.

perennial stream—A stream that flows throughout the year.

permeability—The rate at which liquids or gases pass through materials in a specified direction. In hydrology, it is used to describe the capacity of a rock, sediment, or soil for transmitting groundwater. Permeability depends on the size and shape of the pores between soil particles and how they are interconnected.

person-rem—A unit of collective radiation dose applied to populations or groups of individuals (see collective dose); that is, a unit for expressing the dose when summed across all persons in a specified population or group. One person-rem equals 0.01 person-sieverts.

person-sievert (person-Sv)—A unit of collective radiation dose applied to populations or groups of individuals (see collective dose); that is, a unit for expressing the dose when summed across all persons in a specified population or group. One person-sievert equals 100 person-rems.
photon—A unit of electromagnetic energy exhibiting behavior like that of a particle.

picocurie—0.000000000001 \(10^{-12}\) of a curie. (See curie.)

piezometer—An instrument used for measuring the pressure of groundwater.

pit (nuclear)—The pit is the central core of a nuclear weapon containing plutonium-239 and/or highly enriched uranium that undergoes fission when compressed by high explosives. The pit and the high explosive are known as the “primary” of a nuclear weapon.

pit (waste management)—An excavation similar to a trench within which waste is emplaced for disposal.

pollution prevention—The use of materials, processes, and practices that reduce or eliminate the generation and release of pollutants, contaminants, hazardous substances, and waste into land, water, and air. For the U.S. Department of Energy, this includes recycling activities.

polychlorinated biphenyls (PCBs)—A group of toxic, persistent chemicals regulated under the Toxic Substances Control Act used for insulating purposes in electrical transformers and capacitors and in gas pipeline systems.

population dose—See collective dose.

programs—The U.S. Department of Energy (DOE) and National Nuclear Security Administration (NNSA) are organized into program offices, each of which has primary responsibilities within the set of DOE/NNSA missions. Funding and direction for activities at DOE/NNSA facilities are provided through these program offices, and similarly coordinated sets of activities to meet program office responsibilities are often referred to as “programs.” Programs are usually long-term efforts with broad goals or requirements.

projects—This term is used to describe activities with a clear beginning and end that are undertaken to meet a specific goal or need. Projects can vary in scale from very small (such as a project to undertake one experiment or a series of small experiments) to major (such as a project to construct and start up a new nuclear facility). Projects are usually relatively short-term efforts and can cross multiple programs and missions, although they are usually “sponsored” by a primary program office. In this site-wide environmental impact statement (SWEIS), “projects” is usually used more narrowly to describe construction activities, including facility modifications (such as a project to build a new office building or to establish and demonstrate a new capability). Construction projects considered reasonably foreseeable at the Nevada National Security Site over about a 10-year period are discussed and analyzed in this SWEIS.

proton—An elementary nuclear particle with a positive charge equal in magnitude to the negative charge of the electron; it is a constituent of all atomic nuclei. The atomic number of an element indicates the number of protons in the nucleus of each atom of that element. (See electron and nucleus.)

public—Anyone who may be impacted by, interested in, or aware of operations at the Nevada National Security Site or other U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) facilities. With respect to normal operations or accidents analyzed in this site-wide environmental impact statement, the public includes anyone outside the boundary of the DOE/NNSA property that may be exposed to contaminants.

public water system (PWS)—A system for the provision to the public of water for human consumption through pipes or other constructed conveyances, if such system has at least 15 service connections or regularly serves at least 25 individuals.
pulse power—The technology of using electrical energy stores for producing multi-terawatt \((10^{12} \text{ Watts or higher})\) pulses of electrical power for inertial confinement fusion, nuclear weapon effects simulation, and directed energy weapons.

quality factor—The factor by which the absorbed dose (rad or gray) is to be multiplied to obtain a quantity that expresses, on a common scale for all ionizing radiation, the biological damage (rem or sievert) to an exposed individual. It is used because some types of radiation, such as alpha particles, are more biologically damaging internally than other types. (See absorbed dose, gray, rad, rem, and sievert).

rad—See radiation absorbed dose.

radiation absorbed dose (rad)—A unit of absorbed dose. One rad is equal to an absorbed dose of 0.01 joules per kilogram (1 rad is equal to 0.01 grays). The joule is the SI (International System of Units) unit of energy. (See absorbed dose, gray, quality factor, rem, and sievert.)

radioactive decay—The decrease in the amount of any radioactive material with the passage of time, due to the spontaneous emission from the atomic nuclei of either alpha or beta particles, often accompanied by gamma radiation. (See half-life.)

radioactive waste—Solid, liquid, or gaseous material that contains radionuclides regulated under the Atomic Energy Act of 1954, as amended, and of negligible economic value considering costs of recovery.

radioactivity—**Defined as a process:** The spontaneous transformation of unstable atomic nuclei, usually accompanied by the emission of ionizing radiation. **Defined as a property:** The property of unstable nuclei in certain atoms to spontaneously emit ionizing radiation during nuclear transformations.

radioisotope thermoelectric generator (RTG)—An electrical generator that derives its electric power from heat produced by the decay of radioactive strontium-90, plutonium-238, or other suitable isotopes. The heat generated is directly converted into electricity, in a passive process, by an array of thermocouples.

radiological survey—The evaluation of the radiation hazard accompanying the production, use, or existence of radioactive materials under a specific set of conditions. Such evaluation customarily includes a physical survey of the disposition of land, materials, and equipment, measurements or estimates of the levels of radiation that may be involved, and a sufficient knowledge of processes affecting these materials to predict hazards resulting from unexpected or possible changes in land, materials, or equipment.

radionuclide—An unstable element that decays or disintegrates spontaneously, emitting radiation.

real-time radiography—A nondestructive test method whereby an image is produced electronically, rather than on film, so that very little lag time occurs between the item being exposed to radiation and the resulting image.

Record of Decision (ROD)—A concise public document that records a Federal agency’s decision(s) concerning a Proposed Action for which the agency has prepared an environmental impact statement. The ROD is prepared in accordance with the requirements of the Council on Environmental Quality National Environmental Policy Act regulations (Title 10 of the Code of Federal Regulations (CFR), Section 1021.315, and 40 CFR 1505.2). A ROD identifies the alternatives considered in reaching the decision, the decision made, the environmentally preferable alternative(s), factors balanced by the agency in making the decision, whether all practicable means to avoid or minimize environmental harm have been adopted, and if not, why they were not. (See environmental impact statement.)
region of influence (ROI)—A site-specific geographic area in which the principal direct and indirect effects of actions are likely to occur.

release fraction—The portion of the total inventory of radioactivity that could be released to the atmosphere in a given accident.

rem (roentgen equivalent man)—A unit of radiation dose equivalent. The dose equivalent in rems equals the absorbed dose in rads multiplied by the appropriate quality factor (1 rem is equal to 0.01 sieverts). (See absorbed dose, gray, quality factor, and sievert.)

remote-handled waste—in general, radioactive waste that must be handled at a distance to protect workers from unnecessary exposure (waste with a dose rate of 200 millirem per hour or more at the surface of the waste package). (See contact-handled waste.)

Resource Conservation and Recovery Act (RCRA)—A law that gives the U.S. Environmental Protection Agency and authorized states the authority to control hazardous waste from “cradle to grave” (i.e., from the point of generation to the point of ultimate disposal), including its minimization, generation, transportation, treatment, storage, and disposal. RCRA also sets forth a framework for the management of nonhazardous solid wastes. (See hazardous waste and solid waste.)

restricted airspace—An area of airspace in which the controlling authority has determined that air traffic must be restricted, if not continually prohibited. It denotes the existence of unusual, often invisible, hazards to aircraft such as artillery firing, aerial gunnery, or guided missiles.

risk—the probability of a detrimental effect on life, health, property, and/or the environment from exposure to a hazard. Risk is often expressed quantitatively as the probability of an adverse event occurring multiplied by the consequence of that event (i.e., the product of these two factors).

roentgen—a unit of exposure to ionizing x or gamma radiation equal to or producing one electrostatic unit of charge per cubic centimeter of air. (See gamma radiation and x-rays.)

runoff—that portion of precipitation, snowmelt, or irrigation water that moves over the land surface as a sheet or channelized flow.

sanitary landfill—as defined in this site-wide environmental impact statement, a disposal facility that accepts nonhazardous and nonradioactive industrial waste. (See industrial waste.)

saturated zone—the area below the water table where all spaces (fractures and rock pores) are completely filled with water.

scientific notation—a notation adopted by the scientific community to deal with very large and very small numbers. Scientific notation uses a number times 10 and either a positive or negative exponent to show how many places to the left or right the decimal place has been moved. For example, in scientific notation, 120,000 would be written as 1.2×10^5, and 0.000012 would be written as 1.2×10^{-5}.

seep—a spot where groundwater discharges onto the land surface, often forming the source of a small stream.

seismicity—the study of the worldwide distribution of earthquakes; primarily related to location, size, and probability of occurrence.

shielding—Any material or obstruction used to absorb radiation in order to protect personnel or equipment.
sievert (Sv)—The SI (International System of Units) unit of radiation dose equivalent. The dose equivalent in sieverts equals the absorbed dose in grays multiplied by the appropriate quality factor (1 sievert is equal to 100 rem). (See absorbed dose, gray, quality factor, rad, and rem.)

silt—A sedimentary material consisting of fine mineral particles, intermediate in size between sand and clay. In general, soils categorized as silt show greater rates of erosion than soils categorized as sand.

solid waste—(1) In general, solid wastes are nonliquid, nonsoluble discarded materials ranging from municipal garbage to industrial wastes that contain complex and sometimes hazardous substances. Solid wastes include sewage sludge, agricultural refuse, demolition wastes, and mining residues. (2) For purposes of Resource Conservation and Recovery Act regulation, solid waste is any garbage; refuse; sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility; and other discarded material. Solid waste includes solid, liquid, semisolid, or contained gaseous material resulting from industrial, commercial, mining, and agricultural operations and from community activities. Solid waste does not include solid or dissolved material in domestic sewage or irrigation return flows or industrial discharges that are point sources subject to permits under Section 402 of the Clean Water Act. Finally, solid waste does not include source, special nuclear, or byproduct material as defined by the Atomic Energy Act. A more detailed regulatory definition of solid waste can be found in Title 40 of the Code of Federal Regulations, Section 261.2, and Title 6 of the New York Code of Rules and Regulations, Part 360. (See hazardous waste and Resource Conservation and Recovery Act.)

source term—The amount of a specific pollutant (e.g., chemical, radionuclide) emitted or discharged to a particular environmental medium (e.g., air, water) from a source or group of sources. It is usually expressed as a rate (i.e., amount per unit of time).

special nuclear material (SNM)—SNM is (1) plutonium, uranium-233, uranium enriched in isotopes of uranium-233 or -235, or any other material that the U.S. Nuclear Regulatory Commission determines to be SNM, or (2) any material artificially enriched by any of these radioactive materials.

special use airspace—Airspace where activities must be confined because of their nature or where limitations are imposed upon aircraft operations that are not part of those activities, or both. This airspace includes restricted airspace, military operations areas, and controlled firing areas.

spent nuclear fuel—Fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated.

stabilization—Treatment of waste or a waste site to protect the biosphere from contamination.

stakeholder—Any person or organization with an interest in or affected by future activities impacting cleanup of the site. Stakeholders may include representatives from Federal and state agencies, Congress, American Indian Tribal governments, unions, educational groups, industry, environmental groups, other groups, and members of the general public.

stochastic (effects)—Effects that occur by chance. In the radiation protection context, the main stochastic health effects from exposure to high levels of radiation are cancer and genetic effects.

storage (waste)—The collection and containment of waste in a retrievable manner, requiring surveillance and institutional control, as not to constitute disposal.

storage facility (RCRA)—A building used for storing radioactive or hazardous wastes for greater than 90 days.
subcritical experiments—Subcritical experiments are performed with special nuclear material (for example, plutonium) in a manner that prevents the material from achieving a nuclear explosion. The experiments are designed to improve current knowledge of the dynamic properties of new or aged nuclear weapons parts and materials and to assess the effects of new manufacturing techniques on weapon performance. Subcritical experiments can vary any or all factors that influence criticality (mass, density, shape, volume, concentration, moderation, reflection, neutron absorption, enrichment, and interactions). Because there is no nuclear explosion, subcritical experiments are consistent with the U.S. nuclear testing moratorium.

succession—Relatively orderly, predictable, and progressive replacement of one plant community (called a stage) by another until a relatively stable climax community occupies the site (e.g., abandoned farm field to mature forest).

sump—A pit or reservoir serving as a drain or receptacle for liquids.

tectonic—Relating to the deformation of the crust of the Earth.

test bed—An area that includes physical structures or designated terrain where tests and experiments are conducted.

transient, noncommunity water system—Regularly serves at least 25 individuals, but not the same individuals, for more than 60 days per year. For example, a rest area, campground or restaurant with less than 25 employees on its own water supply is considered a transient water system.

transloading—Transfer of material at an intermodal transfer facility from one packaging to another for purposes of continuing the movement of the material in commerce.

transuranic—Refers to any artificially made, radioactive element whose atomic number is higher than that of uranium (atomic number 92), including neptunium, plutonium, americium, and curium.

transuranic (TRU) waste—Radioactive waste containing alpha particle-emitting radionuclides having an atomic number greater than 92 (the atomic number of uranium) and half-lives greater than 20 years, in concentrations greater than 100 nanocuries per gram.

tritium—A beta-emitting radioactive isotope of hydrogen whose nucleus contains one proton and two neutrons. Because it is chemically identical to natural hydrogen, tritium can easily be taken into the body by any ingestion pathway. The symbols for tritium are T and 3H; the latter symbol is more frequently encountered.

vadose zone (unsaturated zone)—The zone between the land surface and the water table (saturated zone); also called the zone of aeration.

waste acceptance criteria—A document that establishes U.S. Department of Energy/National Nuclear Security Administration Nevada Site Office waste acceptance criteria. The document provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) accepts low-level radioactive waste and mixed low-level radioactive waste for disposal. It includes requirements for the generator’s waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 Radioactive Waste Management Site and Area 5 Radioactive Waste Management Complex for storage or disposal.
waste characterization—The identification of waste composition and properties by reviewing process knowledge, nondestructive examination, nondestructive assay, or sampling and analysis. Characterization provides the basis for determining appropriate storage, treatment, handling, transportation, and disposal requirements.

waste generator—An individual, facility, corporation, government agency, or other institution that produces waste material for certification, treatment, storage, or disposal.

wetlands—An area that is inundated or saturated by surface water or groundwater at a frequency and duration sufficient to support a prevalence of vegetation typically adapted for life in those conditions, including swamps, marshes, bogs, and similar areas.

wind rose—A circular diagram showing, for a specific location, the percentage of the time the wind is from each compass direction. A wind rose is used in assessing consequences of airborne releases and shows the frequency of different windspeeds for each compass direction.

worker—Any worker whose day-to-day activities are controlled by process safety management programs and a common emergency response plan associated with a facility or facility area. This definition includes any individual within a facility/facility area who would participate in or support activities required for implementation of the alternatives.

x-rays—Penetrating electromagnetic radiation with a wavelength much shorter than that of visible light. X-rays are identical to gamma rays, but originate outside the nucleus, either when the inner orbital electrons of an excited atom return to their normal state or when a metal target is bombarded with high-speed electrons. (See electron, gamma radiation, and nucleus.)

zeolite—Any of various hydrous silicates utilized for their adsorbent and catalytic properties. Inorganic ion-exchange materials used for water purification or water softening are often zeolites.
CHAPTER 13
INDEX
Federal Facility Compliance Act, 9-3, 9-20

G
Greater-Than-Class C, 3-18, 1-1, 3-14–3-15, 3-21, 3-25, 3-40, 3-49, 3-56, 3-72, 3-78, 3-83, 4-171, 4-177–4-178, 4-194–4-195, 4-211, 4-213–4-214, 4-232–4-233, 4-235–4-238, 4-239, 5-2, 5-10, 5-12, 5-20–5-21, 5-27, 5-85, 5-89, 5-97–5-108, 5-110, 5-118, 5-119, 5-125, 5-128, 5-133–5-135, 5-137, 5-173–5-174, 5-176, 5-179, 5-204–5-206, 5-227, 5-238, 5-259–5-260, 6-4, 6-12–6-13, 6-16, 6-18, 6-28, 6-40–6-42, 6-44–6-46, 6-57, 6-59, 6-65, 6-70, 7-5, 8-7–8-8, 9-10–9-12

H
hazardous air pollutants, 3-69, 3-78, 3-82, 3-88, 4-130, 4-132, 4-136–4-137, 4-139, 4-141, 4-180, 4-198–4-199, 4-216–4-217, 4-225, 4-243, 4-245, 4-254, 1-143–1-144, 1-151–1-155, 1-158, 1-190–1-192, 1-197, 1-200, 2-02, 2-28, 2-39, 2-54, 2-56, 2-63, 2-65, 2-66–2-67, 2-69, 2-77, 2-79, 2-82, 2-83–2-84, 4-218, 4-242, 4-257, 5-142–5-143, 6-49–6-51, 6-53, 6-67–6-68, 9-2, 9-14
National Council on Radiation Protection, 4-176, 4-253, 5-207
National Emission Standards for Hazardous Air Pollutants, 4-139, 4-141–4-142, 4-145, 4-178, 4-219, 4-225, 4-244, 5-143, 5-155–5-156, 5-195, 5-197, 5-199–5-200, 5-202, 9-2, 9-14
National Environmental Policy Act of 1969 (NEPA), 1-1, 1-3, 1-5, 1-7, 1-10, 1-12–1-16, 1-19–1-22, 1-25–1-29, 1-31, 2-14–2-15, 3-1, 3-1–3-2, 3-5, 3-9–3-10, 3-25, 3-30–3-31, 3-35–3-36, 3-42–3-43, 3-50, 3-58, 3-92–3-93, 5-2, 5-5, 5-20–5-26, 5-28–5-30, 5-32–5-35, 5-41, 5-45, 5-49, 5-55–5-57, 5-75, 5-81, 5-83, 5-85, 5-97, 5-99, 5-105–5-106, 5-125, 5-135, 5-145, 5-165, 5-167–5-168, 5-178, 5-180, 5-212, 6-1, 6-3, 6-5–6-6, 6-9, 6-11, 6-13–6-15, 6-17–6-18, 6-32, 6-35, 6-54, 7-2, 7-6, 7-17, 8-1, 8-6–8-7, 9-1, 9-4–9-6, 9-11, 9-25, 10–10–10–3
National Nuclear Security Administration (NNSA), 1-1, 1-3, 1-4–1-5, 1-11, 1-13–1-14, 1-16–1-13, 2-1–2-3, 2-5–2-6, 2-10, 2-12–2-13, 2-15, 3-1–3-2, 3-6, 3-9–3-11, 3-13–3-25, 3-28–3-31, 3-33–3-34, 3-46, 3-48–3-51, 3-54, 3-57–3-58, 3-61, 3-64, 3-67, 3-69, 3-71–3-72, 3-75, 3-89, 3-91–3-93, 4-1–4-3, 4-5–4-7, 4-9, 4-12, 4-14, 4-16–4-22, 4-26–4-27, 4-32–4-33, 4-38–4-39, 4-54–4-55, 4-59, 4-73, 4-77, 4-79, 4-82, 4-83–4-84, 4-87–4-88, 4-94–4-95, 4-98–4-99, 4-101, 4-113–4-114, 4-118, 4-122, 4-124, 4-126–4-127, 4-142, 4-148–4-149, 4-152, 4-155, 4-157, 4-160–4-163, 4-165, 4-167–4-174, 4-179–4-180, 4-183–4-185, 4-188–4-191, 4-194–4-195, 4-202, 4-206–4-209, 4-213, 4-219, 4-224–4-228, 4-230, 4-233, 4-238–4-239, 4-247, 4-250, 4-255, 5-1–5-2, 5-4–5-10, 5-12–5-13, 5-15, 5-17, 5-19, 5-20–5-22, 5-25–5-36, 5-40–5-42, 5-55, 5-62, 5-68, 5-76–5-85, 5-87–5-89, 5-91–5-93, 5-96–5-145, 5-155, 5-165, 5-167–5-168, 5-171–5-192, 5-195, 5-197–5-198, 5-201, 5-203–5-205, 5-214, 5-216–5-219, 5-224, 5-227–5-228, 5-230, 5-233,
14.0 DISTRIBUTION LIST

The U.S. Department of Energy provided copies of this Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada to Federal, state, and local elected and appointed government officials and agencies; American Indian representatives; national, state, and local environmental and public interest groups; and other organizations and individuals as listed. Approximately 175 copies of the final site-wide environmental impact statement (SWEIS), 360 copies of the Summary of the final SWEIS, and 35 compact discs (CDs) of the final SWEIS were sent to interested parties.

Copies will be provided to others on request.

United States Congress

U.S. Senate

The Honorable Michael D. Crapo, Idaho
The Honorable Dean Heller, Nevada
The Honorable Orrin Hatch, Utah
The Honorable Jeff Flake, Arizona
The Honorable Mike Lee, Utah
The Honorable John McCain, Arizona
The Honorable Harry Reid, Nevada
The Honorable James Risch, Idaho

U.S. Senate Committees

The Honorable Barbara Mikulski, Chairman, Committee on Appropriations
The Honorable Thad Cochran, Vice Chairman, Committee on Appropriations
The Honorable Dianne Feinstein, Chairman, Subcommittee on Energy and Water Development
The Honorable Lamar Alexander, Ranking Member, Subcommittee on Energy and Water Development
The Honorable Ron Wyden, Chairman, Committee on Energy and Natural Resources
The Honorable Lisa Murkowski, Ranking Member, Committee on Energy and Natural Resources
The Honorable Carl Levin, Chairman, Committee on Armed Services
The Honorable John McCain, Ranking Member, Committee on Armed Services
The Honorable Ben Nelson, Chairman, Subcommittee on Strategic Forces, Committee on Armed Services
The Honorable Jeff Sessions, Ranking Member, Subcommittee on Strategic Forces, Committee on
Armed Services

U.S. House of Representatives

The Honorable Mark Amodei, Nevada
The Honorable Dina Titus, Nevada
The Honorable Rob Bishop, Utah
The Honorable Jason Chaffetz, Utah
The Honorable Trent Franks, Arizona
The Honorable Joe Heck, Nevada
The Honorable Raul Labrador, Idaho
The Honorable Jim Matheson, Utah
The Honorable Mike Simpson, Idaho

U.S. House of Representatives Committees

The Honorable Harold Rogers, Chairman, Committee on Appropriations
The Honorable Nita Lowey, Ranking Member, Committee on Appropriations
The Honorable Rodney P. Frelinghuysen, Chairman, Subcommittee on Energy and Water Development, Committee on Appropriations
The Honorable Peter J. Visclosky, Ranking Member, Subcommittee on Energy and Water Development, Committee on Appropriations
The Honorable Fred Upton, Chairman, Committee on Energy and Commerce
The Honorable Henry A. Waxman, Ranking Member, Committee on Energy and Commerce
The Honorable Howard P. “Buck” McKeon, Chairman, Committee on Armed Services
The Honorable Adam Smith, Ranking Member, Committee on Armed Services
Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada

The Honorable Michael Turner, Chairman, Subcommittee on Strategic Forces, Committee on Armed Services
The Honorable Loretta Sanchez, Ranking Member, Subcommittee on Strategic Forces, Committee on Armed Services

Federal Agencies

Advisory Council on Historic Preservation
Defense Nuclear Facilities Safety Board
Federal Aviation Administration
U.S. Department of Agriculture Forest Service
U.S. Department of Defense
 United States Air Force
U.S. Department of Health and Human Services
U.S. Department of Homeland Security
 FEMA Region IX
U.S. Department of the Interior
 Bureau of Indian Affairs
 Bureau of Land Management
 Bureau of Reclamation
 Fish and Wildlife Service
 National Park Service
 Oakland Regional Office
U.S. Department of Labor
U.S. Department of Transportation
 Federal Highway Administration
 Surface Transportation Board
U.S. Environmental Protection Agency
 EPA Region 9
 Headquarters – Office of Federal Activities

State Government

Arizona State Government

Governor
 Jan Brewer

State Official
 Aubrey Godwin, Arizona Radiation Regulatory Agency

California State Government

Governor
 Jerry Brown

Idaho State Government

Governor
 C. L. “Butch” Otter
Chapter 14
Distribution List

Nevada State Government

Governor
Brian Sandoval

State Officials
Robert J. Halstead, Agency for Nuclear Projects
Joseph C. Strolin, Agency for Nuclear Projects
Catherine Cortez Masto, Attorney General
Brian K. Krolicki, Lieutenant Governor
Marta Adams, Chief Deputy Attorney General
Leo Drozdoff, Department of Conservation and Natural Resources
Colleen Cripps, Division of Environmental Protection

Michael Elges, Division of Environmental Protection
David Emme, Division of Environmental Protection
Timothy H. Murphy, Division of Environmental Protection
Peter Reinschmidt, Department of Public Safety
Ronald James, State Historic Preservation Office
Christopher Young, Department of Transportation, Environmental Services Division
Department of Wildlife

Utah State Government

Governor
Gary Herbert

State Officials
Rusty Lundberg, Division of Radiation Control
Bill Craig, Division of Radiation Control

State NEPA Clearinghouses

Sherri Zendri, Arizona Department of Environmental Quality
Scott Morgan, California State Clearinghouse
Susan Burke, Idaho Department of Environmental Quality
Erick Neher, Idaho Department of Environmental Quality
Skip Canfield, Nevada State Clearinghouse
Judy Edwards, Public Lands Policy Coordination Office, Office of the Governor, Utah

Local Government

Mayors
Carolyn Goodman, Las Vegas

City Officials
Amargosa Valley Town Board
Beatty Town Board
Caliente Town Board
Tom Seaver, Indian Springs Town Advisory Board
Pahrump Town Board
Pioche Town Board
Tonopah Town Board
James Eason, Town of Tonopah
Cindy Kaminski, Tonopah Town Board
Robert Murnane, Henderson
Randall Walker, Las Vegas, Director, Department of Aviation
Daniel McArthur, St. George
County Officials

Churchill County Commissioners, Nevada

Clark County, Nevada
Shane Ammerman, Director, Office of Sustainability
Don Burnette, County Manager
Erik Muller, Public Information Officer
Irene Navis, Director, Office of Emergency Management
Lewis Wallenmeyer, Director, Department of Air Quality

Clark County Commissioners, Nevada
Susan Brager
Larry Brown
Tom Collins
Chris Giunchigliani
Steve Sisolak
Mary Beth Scow
Lawrence Weekly

Douglas County Commissioners, Nevada

Elko County Commissioners, Nevada
Demar Dahl

Esmeralda County Commissioners, Nevada
Nancy Boland

Eureka County, Nevada
Abby Johnson, Nuclear Waste Advisor and EIS Coordinator

Eureka County Commissioners, Nevada

Humboldt County Commissioners, Nevada

Lander County Commissioners, Nevada

Lincoln County, Nevada
Connie Simkins

Lincoln County Commissioners, Nevada
Paul Donohue
Ed Higbee
Paul Mathews
George “Tommy” Rowe

Lyon County Commissioners, Nevada

Mineral County Commissioners, Nevada

Nye County, Nevada
L. Darrell Lacy, Nuclear Waste Repository Project Office
Pam Webster, County Manager
Roger McRae, H.M.H., C.E.M., Nuclear Waste Repository Project Office
Beth McGee, Nuclear Waste Repository Project Office
Joe Ziegler, Nuclear Waste Repository Project Office

Nye County Commissioners, Nevada
Andrew Borasky
Joni Eastley
Gary Hollis
Dan Schinhofen
Lorinda Wichman

Pershing County Commissioners, Nevada

Storey County Commissioners, Nevada

Washington County Commissioners, Utah
Dennis Drake

Washoe County Commissioners, Nevada
White Pine County Commissioners, Nevada
John Lampros
Chapter 14
Distribution List

American Indian Representatives

Chairpersons
The Honorable Richard Arnold, Pahrump Paiute Tribe
The Honorable Alvin Marques, Ely Shoshone Tribe
The Honorable Melvin R. Joseph, Lone Pine Paiute-Shoshone Reservation
The Honorable Israel Naylor, Fort Independence Indian Tribe
The Honorable Dale “Chad” Delgado, Jr., Bishop Paiute Indian Tribe
The Honorable Wayne Dyer, Yomba Shoshone Tribe
The Honorable Eldred Enas, Colorado River Indian Tribes
The Honorable Bill Saulque, Benton Paiute Indian Tribe
The Honorable George Gholson, Timbisha Shoshone Tribe
The Honorable Virginia Sanchez, Duckwater Shoshone Tribe
The Honorable Virgil “Dave” Moose, Big Pine Paiutes Tribe of the Owens Valley
The Honorable Manual Savala, Kaibab Band of Southern Paiutes
The Honorable William Anderson, Moapa Paiutes Tribe
The Honorable Jeanine Borchardt, Paiute Indian Tribes of Utah
The Honorable Tonia Means, Las Vegas Paiute Tribe
The Honorable Charles Wood, Chemehuevi Indian Tribe

Representatives
Danelle Gutierrez, Big Pine Paiute Tribe of the Owens Valley
William J. Helmer, Big Pine Paiute Tribe of the Owens Valley
Gerald Kane, Bishop Paiute Tribe
Jay Kane, Bishop Paiute Tribe
Jeriann Kane, Bishop Paiute Tribe
Ron Escobar, Chemehuevi Indian Tribe
Darryl King, Chemehuevi Indian Tribe
Johnny Hill, Colorado River Indian Tribes
Betty L. Cornelius, Colorado River Indian Tribes
Philip Smith, Colorado River Indian Tribes
Richard Arnold, Consolidated Group of Tribes and Organizations
Kathy Adams Blackeye, Duckwater Shoshone Tribe
Maurice Frank-Churchill, Duckwater Shoshone Tribe
Sandra Barela, Ely Shoshone Tribe
Jerry Charles, Ely Shoshone Tribe
Julie Huber, Fort Independence Indian Tribe
Richard Wilder, Fort Independence Indian Tribe
Brittanni Wero, Kaibab Band of Southern Paiutes
Brittanni Wero, Kaibab Paiute Tribe
Janice Aten, Lone Pine Paiute-Shoshone Tribe
Lalovi Miller, Moapa Band of Paiutes
Clarabelle Jim, Pahrump Paiute Tribe
Cynthia V. Lynch, Pahrump Paiute Tribe
Carmen Martineau, Paiute Indian Tribes of Utah
Dorena Martineau, Paiute Indian Tribes of Utah
Shanandoah Martineau, Paiute Indian Tribes of Utah
Barbara Durham, Timbisha Shoshone Tribe
Pauline Esteves, Timbisha Shoshone Tribe
Grace Goad, Timbisha Shoshone Tribe
Ian Zabarte, Western Shoshone National Council
Johnnie L. Bobb, Western Shoshone National Council
Darlene Dewey, Yomba Shoshone Tribe
Elisa Mockerman, Yomba Shoshone Tribe
Nevada Site Specific Advisory Board

Kathleen Bienenstein
Matthew Clapp
Daniel Cross
Thomas Fisher, Ph.D.
Arthur Goldsmith
Donna Hruska
Barry LiMarzi
Michael Moore
James Weeks

Public Reading Rooms and Libraries

<table>
<thead>
<tr>
<th>Library Name</th>
<th>Address</th>
<th>City, Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amargosa Valley Library</td>
<td>829 E. Farm Road, HCR 69 box 401-T</td>
<td>Amargosa, NV 89020</td>
</tr>
<tr>
<td>Beatty Library District</td>
<td>400 North Fourth Street, Beatty, NV 89003-0129</td>
<td>Beatty, NV 89003-0129</td>
</tr>
<tr>
<td>Clark County Library</td>
<td>1401 E. Flamingo Road, Las Vegas, NV 89119</td>
<td>Las Vegas, NV 89119</td>
</tr>
<tr>
<td>Green Valley Library</td>
<td>2797 N. Green Valley Parkway, Henderson, NV 89014</td>
<td>Henderson, NV 89014</td>
</tr>
<tr>
<td>Indian Springs Library</td>
<td>715 Gretta Lane, Indian Springs, NV 89018</td>
<td>Indian Springs, NV 89018</td>
</tr>
<tr>
<td>Kingman Public Library</td>
<td>3269 North Burbank Street, Kingman, AZ 86402</td>
<td>Kingman, AZ 86402</td>
</tr>
<tr>
<td>Lincoln County Library</td>
<td>63 Main Street, Pioche, NV 89043</td>
<td>Pioche, NV 89043</td>
</tr>
<tr>
<td>Nevada State Library and Archives</td>
<td>100 Stewart Street, Carson City, NV 89193</td>
<td>Carson City, NV 89193</td>
</tr>
<tr>
<td>North Las Vegas Library</td>
<td>Main Branch, 2300 Civic Center Drive, North Las Vegas, NV 89030</td>
<td>North Las Vegas, NV 89030</td>
</tr>
<tr>
<td>Pahrump Community Library</td>
<td>701 East Street, Pahrump, NV 89048-0578</td>
<td>Pahrump, NV 89048-0578</td>
</tr>
<tr>
<td>Public Reading Room for the Nuclear Testing Archive</td>
<td>755C East Flamingo Road, Las Vegas, NV 89119</td>
<td>Las Vegas, NV 89119</td>
</tr>
<tr>
<td>Rainbow Library</td>
<td>3150 N. Buffalo Drive, Las Vegas, NV 89128</td>
<td>Las Vegas, NV 89128</td>
</tr>
<tr>
<td>Reno – Downtown Library</td>
<td>301 South Center Street, Reno, NV 89501</td>
<td>Reno, NV 89501</td>
</tr>
<tr>
<td>St. George Library</td>
<td>88 West 100 South, St. George, UT 84770</td>
<td>St. George, UT 84770</td>
</tr>
<tr>
<td>Summerlin Library</td>
<td>1771 Inner Circle Drive, Las Vegas, NV 89134</td>
<td>Las Vegas, NV 89134</td>
</tr>
<tr>
<td>Tonopah Library</td>
<td>167 South Central Street, Tonopah, NV 89049-0449</td>
<td>Tonopah, NV 89049-0449</td>
</tr>
<tr>
<td>UNLV Lied Library</td>
<td>4505 Maryland Parkway, Las Vegas, NV 89154-7001</td>
<td>Las Vegas, NV 89154-7001</td>
</tr>
</tbody>
</table>
Organizations/Public Interest Groups

Katherine Fuchs, Alliance for Nuclear Accountability
Susan Gordon, Alliance for Nuclear Accountability
Richard Nelson, BEC Environmental
Louis Zeller, Blue Ridge Environmental Defense League
Rev. Mac Legerton, Center for Community Action
Janet Greenwald, Citizens for Alternatives to Radioactive Dumping
Lisa Rutherford, Citizens for Dixies Future
Mildred McCain, Citizens for Environmental Justice
Daniel Hirsch, Committee to Bridge the Gap
Joni Arends, Concerned Citizens for Nuclear Safety
Jenny Chapman, Desert Research Institute
Cynthia Martinez, Desert National Wildlife Refuge
Timothy Ballo, Earthjustice
Seth Kirshenbarg, Energy Communities Alliance
Vickie Patton, Environmental Defense Fund
Chuck Broscious, Environmental Defense Institute
Katie Colten, Federation of American Scientists
David Culp, Friends Committee on National Legislation (Quaker)
Erich Pica, Friends of the Earth
Louis Clark, Government Accountability Project
Bradley Angel, Greenaction for Health and Environmental Justice
John Hadder, Healing Ourselves and Mother Earth
Molly Johnson, Healing Ourselves and Mother Earth
Jennifer Viereck, Healing Ourselves and Mother Earth
Vanessa Pierce, Healthy Environment Alliance of Utah
Neil Sullivan, ICF International
Marion Lewis, Indian Springs Civic Association
Arjun Makhijani, Ph.D., Institute for Energy and Environmental Research
Dennis Bechtel, Intertech Services
James Powell, Keep Yellowstone Nuclear Free
Tammi Tiger, Las Vegas Indian Center
Matt Lydon, Local #525: Plumbers, Pipefitters, HVAC Technicians
George H. Jones, Local 669
Greg Mello, Los Alamos Study Group
Paula Cotter, National Association of Attorney Generals
Meg Power, National Community Action Foundation
Linda Sikkema, National Conference of State Legislators
Jacqueline Pata, National Congress of American Indians
Michele Nellenbach, National Governors Association
Kesner Flores, National Tribal Environment Council
Margene Bullcreek, Native Community Action Council
Thomas Cochran, Natural Resources Defense Council
David Goldstein, Natural Resources Defense Council
Mary Lou Anderson, Nevada Desert Experience
Jim H. Haber, Nevada Desert Experience
Richard and Ming Lai, Nevada Desert Experience
Judy Treichel, Nevada Nuclear Waste Task Force
Ron Greene, NTS Guide Service
Lisa Steward, Nuclear Energy Institute
Diane D’Arrigo, Nuclear Information and Resource Service
Jay Coghlan, Nuclear Watch New Mexico
Steve Kovac, Nuclear Watch New Mexico
Glenn Carroll, Nuclear Watch South
Ralph Hutchinson, Oak Ridge Environmental Peace Alliance
Kevin Martin, Peace Action Education Fund
Madeline Riley, Physicians for Social Responsibility
Ed Hopkins, Sierra Club
Pat Moran, Sheet Metal Workers International Association
Emily J. Duncan, Solar Energy Industries Association
Kathleen Gensler, Solar Energy Industries Association
Darren Enns, Southern Nevada Building & Construction Trades Council
Don Hancock, Southwest Research and Information Center
Keny Polman, The Alternative
Jimmie Powell, The Nature Conservancy
David Alberswerth, The Wilderness Society
Marylia Kelly, Tri-Valley Communities Against a Radioactive Environment
Scott Yundt, Tri-Valley Communities Against a Radioactive Environment
Donald Baepher, University of Nevada, Las Vegas, Harry Reid Center
William E. Brown, Jr., University of Nevada, Las Vegas
Helen Neill, University of Nevada, Las Vegas
Ellen Murphy, Veterans for Peace
Rich Halvey, Western Governors’ Association
Jacqueline Cabasso, Western States Legal Foundation
Susan Shaer, Women’s Action for New Directions
Chapter 14
Distribution List

Individuals

Adams, Elliott
Amidon, John
Baber, Kathleen
Bant, Adelleen
Belisle, Mavis
Bergel, Peter
Blakeley, Morgan
Blubaugh, Lisa
Brauer, Ann
Brower, Jim
Brown, Chris
Buesch, David
Busse, Barbara
Calabro, Richard A.
Cardwell, Stephanie
Cavalier, Gary
Cherie, Cindy
Cherup, Alex
Chesnut, Dwayne A.
Clarke, Brenda
Conn, Rev., Jim
Cope, Julie
Corbus, Lorie
Creek-Water, Mark
D’Amato, Carla
Davie, Wendy
Davis, Carol
Davison, Heather
Dawe, Walter & Wendy
Dimmick, Ross
Dodd, Jody
Doub, Marian
Doyle, Kevin
Duckett, Laurie
Dunn, Jesse
Dwyer, Anabel
Dyken, Mark
Ediger, Peter
Fallon, Jean
Fanning, Don G. Fireland
Fragosa, William
Free, Scott
Gable, Gregory
Gerhardt, Barbara
Goldberg, Norene
Gospodotich, Diane
Gowans, Alan & LuAnn
Greenwald, Lynne
Hamblin, Lee
Hartsough, David
Hedrick, Kimberly
Henry, Lorraine
Hollis, Larry
Houx, Craig
Intino, Mario
Isaacs, Jennifer
Jahnkow, Carol
Johnson, Robert
Johnson, Russ
Johnson, Tim
Kauffman, Barrett
Knox, Meridel
Kocher, Rob
Kostoff, K.J.
Lasahn, J.
Lonner Egert, Jolie
Luna, Karla
Mac, Pat
MacKenzie, Therese
McCabe, Eileen
McCorkell, George
McGrail, John M.
McNeill Cebe, Genevieve
Medlin, Kaye
Meola, Bob
Micciche, Linda
Miles, Loulena
Miles, Yvonne
Miller, Allison L.
Minden, Gary
Morgan, Patricia
Morton, Jenna
Nathans, Suzanne
Nicodemus, Laura
Nielsen, Cynthia
Obermayer, Hank
Page, Marcus
Pagenkopp, Robin
Pasbjerg, Lisa
Preston, David
Raines, Kennon
Reimer, Nancy
Rice, Megan
Richardson, Debra
Ricks, W.E.
Rodriguez, David
Rogers, Elizabeth
Romeshburg, Denise
Rosia, Ashley
Russell, Bob
Russum, Charles
Schlosser, Cindy
Schofield, Roger
Senn, Irene
Sharples, Vivien
Shaw, Lisa
Simon, Mark
Sislin, Caitlin
Slater, Alice
Sloan, Robert & Rita
Somerville, Austin
Spatz, Midgene
Spoon, Jeremy
Spotts, Richard
Tatio-Medlin, April
Taylor, Deanna
Taylor, F.
Terrell, Walt
Thawley, Bob
Thuringer, Roy
Tokerud, Harold
Trepanier, Lionel
Vesperman, Gary
Voegele, Michael
Wayman, Rick
Weaver, Phyllis
Wegst, Walter
Williamson-Page, Juliana
Wisniewski, Michael
CHAPTER 15
LIST OF PREPARERS
15.0 LIST OF PREPARERS

This Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada (NNSS SWEIS) was prepared by the U.S. Department of Energy (DOE). The organizations and individuals listed below contributed to the overall effort in the preparation of this document.

LINDA COHN, U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OPERATIONS
SWEIS Responsibilities: U.S. Department of Energy, Document Manager
Education: Undergraduate Studies in Political Science
Experience/Technical Specialty: Twenty-eight years. NEPA Compliance Officer. American Indian consultation program management and cultural resources management.

MICHAEL WEST, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS Responsibilities: Project Manager
Education: M.S., Environmental Engineering, Johns Hopkins University
B.S., Environmental Engineering, Syracuse University
Experience/Technical Specialty: Eighteen years. NEPA analysis, environmental studies, regulatory analysis, and program management.

ANTHONY BECKER, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS Responsibilities: Hydrology (Surface Water Resources)
Education: M.S., Biology, William Paterson University
B.S., Biology, Richard Stockton College
Experience/Technical Specialty: Six years. NEPA analysis, biological and water resources impact analyses, wetland evaluation, and analyses of land use compatibility.

KAREN O. BULL, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
SWEIS Responsibilities: Environmental Laws, Regulations, and Permits
Education: B.A., Aquatic Biology, University of California, Los Angeles
Experience/Technical Specialty: Twenty-six years. Regulatory compliance, environmental permit compliance, audits and assessments, NEPA analysis, and water resources impact analysis.
FREDERICK J. CAREY, PRESIDENT, POTOMAC-HUDSON ENGINEERING, INC.

SWEIS RESPONSIBILITIES: SENIOR TECHNICAL ADVISOR

Education:
- M.S., Environmental Engineering, Johns Hopkins University
- B.S., Civil Engineering, University of Maryland
- Registered Professional Engineer

Experience/Technical Specialty:
- Nineteen years. NEPA analysis, engineering design, environmental studies, regulatory analysis, and program management.

EDWARD L. CARR, ICF INTERNATIONAL

SWEIS RESPONSIBILITIES: AIR QUALITY AND METEOROLOGY IMPACTS FOR RADIOLOGICAL AND NONRADIOLOGICAL AIR QUALITY IMPACTS

Education:
- M.S., Atmospheric Science, University of Washington
- B.S., Meteorology, San Jose State University

Experience/Technical Specialty:
- Twenty-six years. Air quality impact assessments, air quality modeling, emission inventory development, and meteorological data collection and assessment.

JENNY B. CHAPMAN, DESERT RESEARCH INSTITUTE

SWEIS RESPONSIBILITIES: REVIEWER, ENVIRONMENTAL AND CULTURAL RESOURCE SECTIONS

Education:
- M.A., Geological, The University of Texas at Austin
- B.S., Geology, Sul Ross State University

Experience/Technical Specialty:

KAREN L. CRAWFORD, ICF INTERNATIONAL

SWEIS RESPONSIBILITIES: CULTURAL RESOURCES

Education:
- M.A., Anthropology, University of California, Davis
- B.A., Anthropology, California State University Long Beach, 1997
- Registered Professional Archaeologist

Experience/Technical Specialty:
- Fifteen years. NEPA analysis, historic and archaeological resources studies, and American Indian consultation.

SANDY B. ENYEART, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

SWEIS RESPONSIBILITIES: DEPUTY PROJECT MANAGER, CHAPTERS 1 AND 2

Education:
- B.S., Civil Engineering, Georgia Institute of Technology
- B.F.A., Art, Idaho State University
- Registered Professional Engineer

Experience/Technical Specialty:
- Thirty-six years. NEPA analysis, cumulative impacts, safety analyses, environmental monitoring, and water resources management and impact analysis.
JEFFREY FRAHER, DTRA
SWEIS Responsibilities: Technical Reviewer

Education:
M.S., Aviation Science
B.S., Civil Engineering

Experience/Technical Specialty:
Twenty-one years. Environmental and civil engineering, with 12 years military operations.

MILTON E. GORDEN, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
SWEIS Responsibilities: Transportation, Risk Assessment

Education:
B.S., Nuclear Engineering, North Carolina State University

Experience/Technical Specialty:
Twenty-one years. Waste management, transportation, human health impacts, socioeconomics, and environmental remediation technologies.

JOSEPH A. GRIESHABER, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS Responsibilities: Technical Advisor

Education:
MBA, Finance
M.S., Biology
B.S., Biology

Experience/Technical Specialty:
Thirty-six years. Includes 23 years of environmental management, NEPA documentation, and analysis on projects for Federal agencies. Specialties include socioeconomics, land use, and environmental justice.

ROBIN W. GRIFFIN, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS Responsibilities: Socioeconomics and Environmental Justice

Education:
M.S., Environmental Management
B.A., English

Experience/Technical Specialty:
Fourteen years. NEPA analysis, socioeconomics, environmental justice, community services, and land use.

SETH HARTLEY, ICF INTERNATIONAL
SWEIS Responsibilities: Technical Reviewer for Air Quality and Affected Environment and Technical Support for Air Quality Analysis

Education:
M.S., Atmospheric Sciences
B.S., Physics

Experience/Technical Specialty:
Nine years. Air pollution and air quality, particularly as related to transportation; general numerical modeling; engineering; and data handling and analysis issues.
SHARON HEJAZI, NEVADA SITE OFFICE
SWEIS Responsibilities: Site Legal Review (NSO Federal)

Education:
- B.S., Psychology, University of Utah
- J.D., University of Utah

Experience/Technical Specialty:
Twenty-four years. Twenty-one years as a Federal attorney providing environmental counsel.

ROY KARIMI, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
SWEIS Responsibilities: Transportation, Risk Assessment

Education:
- Sc.D., Nuclear Engineering, Massachusetts Institute of Technology
- N.E., Nuclear Engineering, Massachusetts Institute of Technology
- M.S., Nuclear Engineering, Massachusetts Institute of Technology
- B.S., Chemical Engineering, Abadan Institute of Technology

Experience/Technical Specialty:
Thirty-one years. Nuclear power plant safety, risk and reliability analysis, design analysis, criticality analysis, accident analysis, consequence analysis, spent fuel dry storage safety analysis, and probabilistic risk assessment.

DAVID LECHEL, LECHEL, INC.
SWEIS Responsibilities: Summary Preparation

Education:
- M.S., Fisheries Biology, Michigan State University
- B.S., Fisheries Biology, Michigan State University

Experience/Technical Specialty:
Thirty-eight years. Thirty-one years in management and preparation of NEPA documents (biological resources, cumulative impacts) and regulatory compliance; 6 years in ecological studies and assessment.

JOHN L. LEPPERT, U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION
SWEIS Responsibilities: Stockpile Stewardship

Education:
- B.S., General Engineering

Experience/Technical Specialty:
Forty-one years, plus 10 years active duty U.S. Air Force Civil Engineering, including duties as Base Chief of Engineering. Vertical and Horizontal Construction, over 30 years Civil Service, including assignments with the U.S. Army Corps of Engineers, Civil Works Department.

JAMIE MARTIN-NAUGHTON, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS Responsibilities: Geology and Soils

Education:
- B.S., Geology-Biology

Experience/Technical Specialty:
Nine years. Geology and soils, aesthetics, cultural resources, and field research for environmental and NEPA-related projects.
STEVE MIRSKY, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
SWEIS RESPONSIBILITIES: HUMAN HEALTH, INTENTIONAL DESTRUCTIVE ACTS, AND ACCIDENTS

Education:
M.S., Nuclear Engineering, The Pennsylvania State University
B.S., Mechanical Engineering, Cooper Union
Registered Professional Engineer

Experience/Technical Specialty:
Thirty-five years. Safety analysis, nuclear power plant design, operations, foreign nuclear power plant system analysis, accident analysis, thermal hydraulics, shielding and dose assessment, and spent nuclear fuel dry storage safety analysis.

CYNTHIA ONG, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS RESPONSIBILITIES: TRAFFIC, ENVIRONMENTAL NOISE

Education:
M.S., Environmental Sciences, Miami University
B.S., Civil Engineering, Purdue University

Experience/Technical Specialty:
Eleven years. NEPA analysis, transportation, traffic, noise, stormwater, and utilities.

DOUGLAS A. OUTLAW, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
SWEIS RESPONSIBILITIES: HUMAN HEALTH LEAD, FACILITY ACCIDENTS LEAD, TECHNICAL EXPERT

Education:
Ph.D., Nuclear Physics, North Carolina State University
M.S., Nuclear Physics, North Carolina State University
B.S., Nuclear Physics, North Carolina State University

Experience/Technical Specialty:
Thirty-three years. Nuclear physics, safety analysis, and risk assessment.

KIRK OWENS, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
SWEIS RESPONSIBILITIES: TECHNICAL LEAD HUMAN ENVIRONMENT

Education:
B.S., Environmental Resource Management, The Pennsylvania State University

Experience/Technical Specialty:
Thirty-three years. Radioactive waste management, regulatory analysis, environmental compliance and assessment, and radiological impacts assessment.

POLLY QUICK, ICF INTERNATIONAL
SWEIS RESPONSIBILITIES: TECHNICAL ADVISOR, VISUAL RESOURCES IMPACT ANALYSIS

Education:
Ph.D., Anthropology
M.A., Anthropology
B.A., Anthropology

Experience/Technical Specialty:
Thirty-six years. NEPA analysis, aesthetics, cultural resources, and environmental justice.
BRIAN RAMOS, ICF INTERNATIONAL
SWEIS RESPONSIBILITIES: CULTURAL RESOURCES REVIEWER
Education: Ph.D., Anthropology, University of California, Davis
Experience/Technical Specialty:
Fifteen years. NEPA analysis, cultural resources, and environmental justice.

GARY ROLES, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
SWEIS RESPONSIBILITIES: WASTE MANAGEMENT
Education: M.A., Nuclear Engineering, University of Arizona
B.S., Mechanical Engineering, Arizona State University
Experience/Technical Specialty:
Thirty-two years. Radioactive waste management, regulatory and compliance analysis, and NEPA analysis.

ANNE ROTHWEILER, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
SWEIS RESPONSIBILITIES: PROJECT SUPPORT
Education: M.S., Environmental Science, University of Nevada, Las Vegas
B.S., Biology, University of Tulsa
Experience/Technical Specialty:
Ten years. Environmental Scientist. NEPA analysis, administrative record management, and cumulative impacts.

DEBBIE SHINKLE, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS RESPONSIBILITIES: GIS TEAM LEAD, RESOURCE AUTHOR FOR LAND USE
Education: B.A., Environmental Studies, University of Pittsburgh
Experience/Technical Specialty:
Ten years. NEPA analysis, land use, utilities, Geographic Information Systems (GIS) and mapping, and graphics.

STACEY SHUELER, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS RESPONSIBILITIES: GROUNDWATER RESOURCES
Education: B.S., Environmental Science, University of North Carolina at Wilmington
Experience/Technical Specialty:
Ten years. NEPA documentation, site remediation, wetlands, biological resources, water resources, and geology and soils.
MICHAEL G. SKOUGARD, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS RESPONSIBILITIES: ALTERNATIVES DEVELOPMENT, BIOLOGICAL RESOURCES IMPACTS, CUMULATIVE IMPACTS

Education: M.S., Botany, Brigham Young University
 B.S., Law Enforcement, Brigham Young University

Experience/Technical Specialty:
 Thirty-four years. NEPA analysis, biological resources, water resources, utilities and infrastructure, and Federal program and project management.

CARRIE STEWART, STOLLER-NAVARO
SWEIS RESPONSIBILITIES: MANAGEMENT SUPPORT

Education: M.A., Computer and Information Technologies, Webster University
 M.A., Human Resources and Development, Webster University
 B.S., Geology, California Polytechnic University, Pomona

Experience/Technical Specialty:
 Twenty-three years. NEPA specialist and advisor.

JENNIFER LYN STOCK, ICF INTERNATIONAL
SWEIS RESPONSIBILITIES: VISUAL RESOURCES ANALYSIS

Education: B.S., Landscape Architecture, Pennsylvania State University, University Park

Experience/Technical Specialty:
 Twelve years. Visual resources analyses for PEAs, EAs, Iss, EISs, and EIRs.

NEIL SULLIVAN, ICF INTERNATIONAL
SWEIS RESPONSIBILITIES: DEPUTY PROJECT MANAGER

Education: M.S., Integrated Environmental Management
 B.S., Human and Physical Geography

Experience/Technical Specialty:
 Fifteen years. NEPA documentation for infrastructure and energy projects, environmental program management, and technical and policy analysis.

NATE WAGNOR, ICF INTERNATIONAL
SWEIS RESPONSIBILITIES: VISUAL RESOURCES

Education: M.S., Human Dimensions of Ecosystem Science and Management
 B.S., Natural Resources Integrated Policy and Planning

Experience/Technical Specialty:
 Six years. Parks and recreation and visitor use characteristics.
GILBERT H. WALDMAN, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
SWEIS RESPONSIBILITIES: HUMAN HEALTH – NORMAL OPERATIONS AND ACCIDENTS
Education: M.S., Engineering Management, Johns Hopkins University
B.S., Nuclear Engineering, University of Florida

Experience/Technical Specialty:
Nineteen years. Radiological impacts analysis, radiological dose modeling, and radiological risk assessments.

DEBRA A. WALKER, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS RESPONSIBILITIES: QUALITY ASSURANCE LEAD
Education: B.S., Biology

Experience/Technical Specialty:
Thirty-four years. NEPA analysis, biological resources, water resources, quality assurance/controls, and program and project management.

BRIAN M. WHIPPLE, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS RESPONSIBILITIES: SENIOR RESOURCE LEAD FOR HYDROLOGY, TECHNICAL GUIDANCE, METHODOLOGY, AND QA/QC REVIEWS
Education: M.S., Information Science
B.S., Environmental Engineering

Experience/Technical Specialty:
Seventeen years. NEPA analysis, environmental remediation, engineering studies, and regulatory compliance.

ANDREA WILKES, POTOMAC-HUDSON ENGINEERING, INC.
SWEIS RESPONSIBILITIES: INFRASTRUCTURE, ENERGY
Education: M.A., Science Writing, Johns Hopkins University
B.S., Civil and Environmental Engineering, University of Wisconsin-Madison
B.S., English Literature, University of Wisconsin-Madison

Experience/Technical Specialty:
Twenty-five years. Environmental engineering, science writing, and NEPA documentation and analysis.

KAREN E. WILLIAMS, U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION
SWEIS RESPONSIBILITIES: WSE-RELATED
Education: B.A., Biology

Experience/Technical Specialty:
Thirty-four years. Radiological analysis (radiochemistry lab, Area 5 RWMS – low-level, transuranic, and mixed wastes).