PRND Equipment for CM mission
Project Overview

• Mission/SOW:
 – Categorize PRND equipment for use in CM mission
 – Assist local first responder leadership to better use equipment

• Expected outcomes:
 – Tool to be used by local first responder leadership to size up current inventory
 – Copy/paste verbiage for policies and procedures

• Period of performance: 2 years beginning 9/2015
Major Milestones

• Task 2: *In progress*
 – Review current applicable standards
 – Create categories for equipment (ranges and limitations)
 – Completion anticipated: End of January

• Task 3:
 – Document Consequence Management Relevant Mission Space
 – Conduct webinars to solicit interagency feedback

• Task 4:
 – Develop CONOPS for CM Missions using categorized PRND equipment

• Task 5:
 – Scientifically validate CONOPS
 – Lab and field test

• Task 6:
 – Develop actionable knowledge products and training for first responders
December Meeting

- **Overview of current categorization scheme**
- **Brainstorm session**
 - Importance factors for CM
 - Attempts at categorization

Brooke Buddemeier, LLNL
Chuck Finfrock, BNL
Al Goodwyn, SRNL
RaJah Mena, CM Consultant
Frank Moore, RAP Region 5
Steve Musolino, RAP Region 1 and BNL support
Alexis Reed, CTOS
Dave Trombino, RAP Region 7
Don Van Etten, CTOS and CM Consultant
Typical types of equipment used by responders in initial response

In order of likelihood:

• Survey meters (hot dog GM, ion chamber, uR meter)
• Contamination meters (e.g., pancake GM)
• Self Reading dosimeter (Non-Alarming PERD)
• Personal Radiation Detector (PRD)
• Personal Emergency Radiation Detector (PERD)
• Electronic Dosimeter
• Passive Dosimeter
• Radio-Isotope Identification Device (RIID)
• Other?
<table>
<thead>
<tr>
<th>Manufacturer/Vendor</th>
<th>Model</th>
<th>[Draft] NIMS Type</th>
<th>Weight (oz)</th>
<th>Dimensions (LxWxH in)</th>
<th>IP Rating, Water Tightness</th>
<th>Temp Range (°F)</th>
<th>Battery Type</th>
<th>Expected Unit Lifetime (yrs)</th>
<th>Gamma Detector 1 (High Sensitivity)</th>
<th>Gamma Detector 2 (High Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC</td>
<td>NukeAlert 951</td>
<td>Type 2</td>
<td>6.4</td>
<td>3.75 x 2.5 x 1.25</td>
<td>IP54, "Watertight"</td>
<td>-10 to 122</td>
<td>2 AA</td>
<td>2+ years @ 48hrs/week</td>
<td>10 Years Min</td>
<td>Cesium Iodide Scintillator No</td>
</tr>
<tr>
<td>BNC</td>
<td>PalmRAD SPRD 920</td>
<td>Type 2</td>
<td>24.7</td>
<td>5.71 x 3.94 x 1.97</td>
<td>IP54, Water splash</td>
<td>-4 to 122</td>
<td>2 AA</td>
<td>≥ 14 h</td>
<td>10 Years Min</td>
<td>Scintillator Nal GM Tube</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer/Vendor</th>
<th>Model</th>
<th>Gamma Readout (defined answers only)</th>
<th>Gamma Energy Range</th>
<th>Total Gamma Dose Rate Range</th>
<th>Maximum Dose Rate</th>
<th>Maximum Dose</th>
<th>Number of Adjustable set points for Dose Rate Alarm</th>
<th>Number of Adjustable set points for Dose Alarm</th>
<th>Data Logging (defined answers only) automatic or manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC</td>
<td>NukeAlert 951</td>
<td>1 - 9</td>
<td>Down to 20 keV</td>
<td>0.035 mR/h to 1.1 mR/h</td>
<td>13 mRem/hr</td>
<td>N/A</td>
<td>1</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Canberra</td>
<td></td>
<td></td>
<td>1 - 9</td>
<td>1 uR/h to 500 R/h</td>
<td>500 R</td>
<td>999 R</td>
<td>2</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>D-Tect</td>
<td>UltraRadiac Plus</td>
<td>Rem (Sv), Rad (Gy)</td>
<td>60 keV to 1.3 MeV</td>
<td>1 uR/h to 500 R/h</td>
<td>500 R</td>
<td>999 R</td>
<td>2</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>D-Tect</td>
<td>mini-RadDX</td>
<td>Rem (Sv) and 1-9</td>
<td>50 keV to 3 MeV</td>
<td>1 uR/h to 70 mR/h</td>
<td>70 mRem/hr</td>
<td>No</td>
<td>4</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Mirion</td>
<td>mini-RadD</td>
<td>1 - 9</td>
<td>30 keV to 3 MeV</td>
<td>0.035 mR/h to 1.1 mR/h</td>
<td>1.1 mRem/hr</td>
<td>N/A</td>
<td>3</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Thermo</td>
<td>RadEye G</td>
<td>Rem (Sv)</td>
<td>45 keV to 1.3 MeV</td>
<td>5 uR/h to 10 R/h</td>
<td>10 R/h</td>
<td>N/A</td>
<td>2</td>
<td>2</td>
<td>Automatic</td>
</tr>
</tbody>
</table>
Exposure Rate Range

Instruments that measure accumulated dose

N42.20 EPD Standard
N42.49 PERD Standard

DoseRAE2
1703MO-1BT
DoseRAE Pro
GammaRAE IIIR
 NRF50
 - - 1704M
 - - 1704A-M
 ** DMC-3000 **
 1605BT
 + RadEye GF
 RAD60
 Ultra Radiac-Plus
 TruDose
 EPD Mk2
 DOSICARD DOSIMAN
 Canary III - 4083
 Dose-I
 ** Sentry EC **
 + RDS 31 MP Survey Meter
 Radeye PRD-ER
 Radeye G
 ** PED Personal Elect. Dosim **
 - - SR-10 Super RIID
 RadPavise
 Radarge
 Mini Rad-DX
 - - SM2000ID
 {RADEye PRD}
 N42.17A HP SM std
 N42.33 SM standard
 N42.32 PRD standard
DNDO Alignment

- Current DNDO NIMS Typing only Defines:
 - PRD
 - Type 2 (gamma)
 - Type 1 (gamma/neutron)
 - RIID
 - Type 2 (Low/Med resolution)
 - Type 1 (High Resolution)
 - Backpack
 - Type 4 (gamma)
 - Type 3 (gamma + RIID)
 - Type 2 (gamma/neutron)
 - Type 1 (gamma/neutron + RIID)
 - Vehicle Mounted
 - Type 4 (gamma)
 - Type 3 (gamma + RIID)
 - Type 2 (gamma/neutron)
 - Type 1 (gamma/neutron + RIID)
Factors Important in CM

• Helps to Have:
 – Track integrated exposure / Dose
 – Alarm at exposure rate set points > 1 mR/h
 – Alarm at integrated exposure set points
 – Strong /Loud Vibration/Audible Alarm
 – Rugged construction
 – Change parameters / set points in the field
 – Read out in Dose Rate
 – Battery Change
 – Field Readable
 – Geo-reference / Data logging
 – Ease to Decon (IP 67)
 – Short Over-range recovery time

• Should Not:
 – Auto Adjust Background (at mrem/hr levels)
 – Over-Range to Zero
 – Long time to alarm
Big Picture Detection/ Measurement Missions

• Event Recognition / Clearance
• Contamination Footprint Characterization
 – Model normalization
 – Transportation corridors
 – PAG/PAR
 – Establish Control zone / Staging / Reception center locations
• Worker Safety
 – Critical infrastructure / Agricultural
 – Public Health and Lifesaving Activities
• Mass Care
 – Population monitoring & decontamination
• Public Health and Medical
 – Uptake / Exposure indication
> **Next Steps…**

Table 3.2—Mission-oriented detector selection.

<table>
<thead>
<tr>
<th>Mission</th>
<th>Alarming Dosimeter</th>
<th>PRD</th>
<th>PERD</th>
<th>Survey Meter Type 1</th>
<th>Survey Meter Type 2</th>
<th>RID</th>
<th>Backpack</th>
<th>Mobile</th>
<th>Aerial</th>
<th>Portal Monitor</th>
<th>Sensor Networks</th>
<th>Medical Instrumentation</th>
<th>Smart Phone App</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelter/Evacuation Recommendations</td>
<td></td>
</tr>
<tr>
<td>Confirmation of Nuclear Yield</td>
<td>●</td>
<td>O</td>
<td>●</td>
<td>●</td>
<td>O</td>
<td>●</td>
<td>O</td>
<td>O</td>
<td>●</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>—</td>
</tr>
<tr>
<td>Location of Ground Zero</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Yield Estimation</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>O</td>
<td>●</td>
<td>—</td>
<td></td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Survey of Dangerous Radiation Zone</td>
<td>●</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>O</td>
<td>●</td>
<td>—</td>
<td></td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dose Monitoring at Shelters</td>
<td>●</td>
<td>O</td>
<td>●</td>
<td>●</td>
<td>O</td>
<td>●</td>
<td>O</td>
<td>O</td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Location of Safest Evacuation Routes</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>