The CEMP samples water supplies yearly from selected communities that host a CEMP station. These stations test for the presence of man-made radioactivity. CEMP analyzes the samples for tritium because it bonds easily with water and typically is the first radioactive contaminant to be detected in groundwater.

- CEMP’s network of monitoring stations use instruments to detect airborne radiation (if present) and record weather data. This information is available real-time on the CEMP web site at www.cemp.dri.edu.

- Private citizens operate CEMP monitoring stations in Nevada, Utah, and California communities and ranches near the Nevada National Security Site.

- Desert Research Institute administers the CEMP for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office.

CEMP monitoring test results are available at www.cemp.dri.edu

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaven Springs</td>
<td>13.8</td>
<td>12.4</td>
<td>10.7</td>
<td>9.7</td>
<td>22.6</td>
<td>20</td>
<td>12</td>
<td>16</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Alamo</td>
<td>-0.3</td>
<td>0.4</td>
<td>0.8</td>
<td>-6.4</td>
<td>-9.7</td>
<td>-4</td>
<td>-3</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Amargosa Valley</td>
<td>-0.3</td>
<td>-0.1</td>
<td>0.0</td>
<td>6.4</td>
<td>-6.4</td>
<td>-3</td>
<td>-2</td>
<td>3</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td>Beatty</td>
<td>0.4</td>
<td>0.1</td>
<td>-0.2</td>
<td>3.2</td>
<td>-12.9</td>
<td>-3</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boulder City</td>
<td>22.6</td>
<td>21.6</td>
<td>24.1</td>
<td>19.3</td>
<td>35.4</td>
<td>24</td>
<td>29</td>
<td>35</td>
<td>27</td>
<td>34</td>
</tr>
<tr>
<td>Caliente</td>
<td>4.7</td>
<td>4.7</td>
<td>5.4</td>
<td>3.2</td>
<td>-3.2</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Cedar City</td>
<td>-0.2</td>
<td>-0.1</td>
<td>0.2</td>
<td>6.4</td>
<td>0.0</td>
<td>3</td>
<td>-4</td>
<td>-4</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>Delta</td>
<td>0.1</td>
<td>-0.1</td>
<td>-0.1</td>
<td>3.2</td>
<td>6.4</td>
<td>-8</td>
<td>2</td>
<td>-1</td>
<td>-0.8</td>
<td>1</td>
</tr>
<tr>
<td>Duckwater</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ely</td>
<td>2.7</td>
<td>2.7</td>
<td>2.8</td>
<td>16.1</td>
<td>9.7</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldfield</td>
<td>0.2</td>
<td>0.0</td>
<td>0.4</td>
<td>3.2</td>
<td>-9.7</td>
<td>0</td>
<td>-4</td>
<td>5</td>
<td>-0.3</td>
<td><1</td>
</tr>
<tr>
<td>Henderson</td>
<td>23.5</td>
<td>22.4</td>
<td>23.2</td>
<td>32.2</td>
<td>16.1</td>
<td>24</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>Indian Springs</td>
<td>0.1</td>
<td>-0.3</td>
<td>0.1</td>
<td>3.2</td>
<td>9.7</td>
<td>-5</td>
<td>-1</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>0.3</td>
<td>0.8</td>
<td>0.8</td>
<td>12.9</td>
<td>3.2</td>
<td>-5</td>
<td>3</td>
<td>-2</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Medlin's Ranch</td>
<td>8.4</td>
<td>3.8</td>
<td>5.1</td>
<td>3.2</td>
<td>0.0</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Mesquite</td>
<td>0.2</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milford</td>
<td>-0.3</td>
<td>0.0</td>
<td>-0.3</td>
<td>0.0</td>
<td>12.9</td>
<td>1</td>
<td>-5</td>
<td>-2</td>
<td>-1</td>
<td><1</td>
</tr>
<tr>
<td>Nyala Ranch</td>
<td>0.0</td>
<td>0.5</td>
<td>0.5</td>
<td>-3.2</td>
<td>9.7</td>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Overton</td>
<td>0.0</td>
<td>0.1</td>
<td>-0.1</td>
<td>12.9</td>
<td>6.4</td>
<td>-4</td>
<td>3</td>
<td>2</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>Pahrump</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>3.2</td>
<td>-5</td>
<td>-1</td>
<td>2</td>
<td>-2.0</td>
<td>1</td>
</tr>
<tr>
<td>Pioche</td>
<td>-0.2</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>6.4</td>
<td>-7</td>
<td>2</td>
<td>-1</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>Rachel</td>
<td>0.0</td>
<td>-0.1</td>
<td>-0.2</td>
<td>-6.4</td>
<td>3.2</td>
<td>-1</td>
<td>-1</td>
<td>9</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Sarcobatus Flats</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>19.3</td>
<td>-3.2</td>
<td>-3</td>
<td>3</td>
<td>-7</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>Stone Cabin</td>
<td>0.6</td>
<td>0.5</td>
<td>0.8</td>
<td>-6.4</td>
<td>0.0</td>
<td>2</td>
<td>-2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

* Those results that are slightly above background are far below U.S. Environmental Protection Agency regulatory limits.
Frenchman Flat Peer Review
In 2010, a peer review was conducted that provided an independent evaluation of the Frenchman Flat (FF) model by nationally recognized experts.

Peer Review Participants:
- Dr. Mary Lou Zoback, Risk Management Solutions, Newark, California.
- Dr. Chunmiao Zheng, Department of Geological Sciences, University of Alabama.
- Mr. James Rumabaugh, Environmental Simulations Inc., Reinholds, Pennsylvania.
- Dr. Ken Czerwinski, Department of Chemistry, University of Nevada, Las Vegas.

The U.S. Department of Energy and State of Nevada Division of Environmental Protection, as part of the Federal Facility and Consent Order (FFACO) strategy, considered the recommendations of the peer review panel while determining whether or not the FF model is an acceptable tool for forecasting and monitoring radionuclide transport in the groundwater.

Peer Review Process
The FF Model Peer Review committee addressed the following specific questions:

1. Are the modeling approaches, assumptions, and results consistent with the use of the model as a decision tool?
2. Do the results adequately account for uncertainty?
3. Do the data and model results support transition to model evaluation (Corrective Action Decision Document/Corrective Action Plan [CADD/CAP] stage)?

Peer Review Conclusions
The FF model explored a wide range of assumptions, methods, and data and concluded the work should proceed to the CADD/CAP stage with an emphasis on monitoring.

An internal technical panel noted a caveat to the above statement by identifying the need for a few additional studies (examples include water level monitoring, non steady-state simulations, seismic events, climate change) in order to enhance the results.

DOE’s Response
- Generally accepted Peer Review conclusions
- Answered all peer review comments
- Requested State approval to advance to CADD/CAP stage

State of Nevada’s Response
The State of Nevada Division of Environmental Protection considered the recommendations of the peer review panel in determining if the model was suitable for corrective action studies.

The State accepted the FF model in November 2010. Acceptance was predicated on DOE incorporating previously agreed to corrections to the FFACO strategy, computer codes, and peer review recommendations into the CADD/CAP.

Model Evaluation Studies
The preferred corrective action is **Closure in Place** with monitoring and institutional controls. The focus of the CADD/CAP is on model evaluation. Data collection activities will be undertaken to address key remaining uncertainties in the flow and transport models and to build confidence in model forecasts.

Recommended locations for Frenchman Flat model evaluation wells. Two model evaluation wells are planned to be drilled in 2012. Geologic, geochemical, and hydraulic information will be collected to test model assumptions and address concerns raised by the State of Nevada and Peer Review Panel.

Results from the model evaluation studies will be used to determine if the model is sufficient to proceed to the closure stage. If not, the model may be updated and/or additional model evaluation data will be collected.

Frenchman Flat Peer Review and Model Evaluation

The peer review process is a key component of the UGTA strategy.

Nevada National Security Site

Frenchman Flat Peer Review and Model Evaluation

Model Evaluation Studies

The preferred corrective action is **Closure in Place** with monitoring and institutional controls. The focus of the CADD/CAP is on model evaluation. Data collection activities will be undertaken to address key remaining uncertainties in the flow and transport models and to build confidence in model forecasts.

Model evaluation well locations were identified based on the Frenchman Flat model and the results of the surface magnetic survey conducted subsequently.

Peer Review Process

The FF Model Peer Review committee addressed the following specific questions:

1. Are the modeling approaches, assumptions, and results consistent with the use of the model as a decision tool?
2. Do the results adequately account for uncertainty?
3. Do the data and model results support transition to model evaluation (Corrective Action Decision Document/Corrective Action Plan [CADD/CAP] stage)?

Peer Review Conclusions
The FF model explored a wide range of assumptions, methods, and data and concluded the work should proceed to the CADD/CAP stage with an emphasis on monitoring.

An internal technical panel noted a caveat to the above statement by identifying the need for a few additional studies (examples include water level monitoring, non steady-state simulations, seismic events, climate change) in order to enhance the results.

DOE’s Response
- Generally accepted Peer Review conclusions
- Answered all peer review comments
- Requested State approval to advance to CADD/CAP stage

State of Nevada’s Response
The State of Nevada Division of Environmental Protection considered the recommendations of the peer review panel in determining if the model was suitable for corrective action studies.

Model Evaluation Studies
The preferred corrective action is **Closure in Place** with monitoring and institutional controls. The focus of the CADD/CAP is on model evaluation. Data collection activities will be undertaken to address key remaining uncertainties in the flow and transport models and to build confidence in model forecasts.

Recommended locations for Frenchman Flat model evaluation wells. Two model evaluation wells are planned to be drilled in 2012. Geologic, geochemical, and hydraulic information will be collected to test model assumptions and address concerns raised by the State of Nevada and Peer Review Panel.

Results from the model evaluation studies will be used to determine if the model is sufficient to proceed to the closure stage. If not, the model may be updated and/or additional model evaluation data will be collected.
During 2009, four hydrogeologic investigation wells were drilled and completed (ER-EC-11, ER-20-7, ER-20-8 and ER-20-8 #2); tritium contaminated groundwater was encountered at these wells, located both on and off the Nevada National Security Site.

During 2010, four additional wells (ER-EC-12, ER-20-4, ER-EC-13 and ER-EC-15) were drilled and completed; no tritium discovered in these wells.

Two more wells (ER-20-11 and ER-EC-14) planned for drilling in the summer of 2012; total of 10 wells drilled as part of the Pahute Mesa Phase II characterization effort.

Wells drilled to depths of approximately 2,000 to 4,000 feet and completed with multiple isolated completion zones; well construction allows for subsequent aquifer specific testing.

Excavated sumps are used to contain drilling fluids, geologic material, and groundwater removed during well construction.
The complex sub-surface geology creates technical challenges for scientists to accurately determine where and how fast groundwater and contaminants migrate. Underground Test Area activities involve characterizing the geology and the uncertainty of contaminant migration. The geologic models provide the initial framework for all Underground Test Area modeling.

The complex geologic features of the Nevada National Security Site include:

- More than 300 different geologic units representing more than 500 million years of geologic history
- At least seven Tertiary*-age calderas (i.e., large volcanic depressions)
- Mesozoic*-age thrust faults and folds (relatively "old") – due to compression
- Basin-and-range normal faults (relatively "young") – due to extension
- Granite rising through highly deformed sedimentary rocks
- Several deep (up to a mile) alluvial-filled basins

* Tertiary Period (dates from 65 to 1.8 million years ago). Virtually all major existing mountain ranges were formed during this period.
* Mesozoic Era (dates from around 250 to 65 million years ago). This era marks the beginning of land animals and plants.

Aquifers vs. Confining Units

- **Aquifer** – Unit through which water moves.
- **Confining unit** (also referred to as an "aquitard") – Unit that generally is impermeable to water movement.

The rocks of the Nevada National Security Site are categorized according to their hydrologic properties (e.g., aquifer or confining unit). These units are then grouped into larger hydrostratigraphic units (colored layers on the cross sections). These hydrostratigraphic units together with faults, form the three-dimensional Hydrostratigraphic Framework Models.

Cross Sections – Vertical slices through the Hydrostratigraphic Framework Models showing arrangement of hydrostratigraphic units below ground level and inside the models.

In addition to recent groundwater studies, the Underground Test Area team is tapping into and expanding upon, approximately 50 years of groundwater research.
UGTA Groundwater Transport Models

Transport Modeling Process

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop Conceptual Model</td>
<td>Describe, using field data, pictures, and words, how reality is thought to work – state the problem. Also identify what is uncertain.</td>
</tr>
<tr>
<td>2. Build Mathematical Model</td>
<td>Create a grid that mimics key features (geology), specify properties needed to compute groundwater transport.</td>
</tr>
<tr>
<td>3. Calibrate the mathematical model to reality</td>
<td>Adjust mathematical model to match reality. Rock properties, groundwater flow directions, etc. must be considered.</td>
</tr>
<tr>
<td>4. Check the uncertainty in the mathematical model</td>
<td>The FFACO requires an evaluation of radionuclide migration uncertainty via the "contaminant boundary."</td>
</tr>
</tbody>
</table>

An agreement (Federal Facility Agreement and Consent Order, FFACO) between the U.S. Department of Energy and the State of Nevada Division of Environmental Protection requires that groundwater flow and transport models be created for each UGTA Corrective Action Unit. These models are designed to forecast radionuclide migration in groundwater for the next 1,000 years.

A groundwater model is a mathematical approximation of real groundwater flow and transport used to forecast the location and future movement of contaminants in complex geologic settings.

Models help scientists understand how contaminants move in groundwater.

Radionuclides will move slowly from tests in alluvium, but readily from tests in hard, fractured rock.

Radionuclide Regulatory Groups

<table>
<thead>
<tr>
<th>Regulatory Group</th>
<th>Maximum Contaminant Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta/Photo Emitter</td>
<td>4 mrem/yr</td>
</tr>
<tr>
<td>Gross Alpha Particles</td>
<td>40 Ci/L</td>
</tr>
<tr>
<td>U</td>
<td>30 μg/L</td>
</tr>
</tbody>
</table>

Pahute Mesa Status

- Radionuclides may be released slowly from tests in porous rocks.
- Radionuclides may be released quickly from tests in hard, fractured rocks.
- Areas where hard, fractured rock is predominant and underground nuclear testing was conducted may be of more concern.

Frenchman Flat Example

The contaminant boundary is the region where there is a 95 percent chance that contaminants do not exceed Safe Drinking Water Act regulatory standards, as specified in the FFACO. That is, the area outside the contaminant boundary has only a five percent chance to be contaminated during the next 1,000 years.
Ground water flow can be described by mathematical equations; these equations can be represented as a model containing important features of the flow system on a computer.

USGS is simulating ground water flow in the southern part of the Amargosa Desert in Nevada and California to assess the effects of pumping from agriculture and solar project development on endangered species habitat, spring flow to the Amargosa River, and the alteration of flow paths from the Nevada National Security Site (NNSS).

USGS is revising the Death Valley regional ground water flow system model and constructing a detailed model inset into the area of the southern Amargosa Desert.

Revision to the regional model includes extending the simulation period of the model from 1998 through 2003 and updating and correcting the hydrogeologic framework model with NNSS model information.

Lithology of the Amargosa Desert is being examined to incorporate more detail of the basin-fill deposits into the inset model.

Pumping scenarios will be run on the calibrated linked models.
An agreement between the U.S. Department of Energy and the State of Nevada Division of Environmental Protection requires that groundwater flow and transport models be created for each Underground Test Area (UGTA) Corrective Action Unit to forecast radionuclide migration in groundwater for the next 1,000 years.

A groundwater model is a mathematical approximation of real groundwater flow and transport used to forecast the location and future movement of contaminants in complex geologic settings.

1. Water flows slowly in the alluvium in Frenchman Flat because basin recharge is minimal.

2. Water transmitting properties of rock are assigned to different geologic units.

3. Compare mathematical model results to data.

4. Uncertain knowledge impact on geochemical velocity.

For more information about the Environmental Management program, contact:
U.S. Department of Energy | National Nuclear Security Administration Nevada Site Office | Office of Public Affairs
P.O. Box 90518, Las Vegas, NV 89193-0518 | (702) 295-3521 | envmgmt@nv.doe.gov | www.nv.energy.gov

May 2011, Log No. 2011-174
WHAT WE DO

WATER RIGHTS (SURFACE AND GROUNDWATER)
 • APPROPRIATIONS
 • REALLOCATION
 • MONITORING
WATER AVAILABILITY (PERENNIAL YIELD)
ADJUDICATIONS
DAM SAFETY
FLOODPLAIN MANAGEMENT
WELL DRILLING REGULATIONS

Nevada water law is based on two fundamental concepts: prior appropriation and beneficial use. Prior appropriation (also known as "first in time, first in right") allows for the orderly use of the state's water resources by granting priority to senior water rights. This concept ensures the senior uses are protected, even as new uses for water are allocated.

All water may be appropriated for beneficial use as provided in Chapters 533 and 534 of the Nevada Revised Statutes. Irrigation, mining, recreation, commercial/industrial and municipal uses are examples of beneficial uses, among others.
A large, geographically diverse outdoor laboratory, the NNSS is a preferred testing ground for National Nuclear Security Administration (NNSA) defense programs as well as many other research and development efforts.

- Big - 1,360 square miles
- Secure - Access to the site is controlled
- Remote - Surrounded by federally owned land

NNSS Programs

Defense Experimentation and Stockpile Stewardship

A primary mission of the NNSS is to help ensure that the nation's nuclear weapons remain safe, secure, and reliable. The Stockpile Stewardship program conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed at the NNSS.

- Device Assembly Facility
- Criticality Experiments Facility
- U1a Complex
- Joint Actinide Shock Physics Experimental Research
- Big Explosives Experimental Facility
- Dense Plasma Focus

For further NNSS information contact:
Office of Public Affairs
NNSA Nevada Site Office
(702) 295-3521
nevada@nv.doe.gov
www.nv.energy.gov
NNSS Programs

Homeland Security and Defense Applications
Homeland Security and Defense Applications personnel are the nation’s experts in detecting and locating “dirty bombs,” “loose nukes,” and radiological sources. They train and enable our nation’s first responders who would be among the first to confront a radiological or nuclear emergency.

- Remote Sensing Laboratory
- Federal Radiological Monitoring and Assessment Center
- T-1 Training Area
- Nonproliferation Test and Evaluation Complex
- Radiological/Nuclear Countermeasures Test and Evaluation Complex

National Center for Nuclear Security
As the United States embarks on a new era of arms control, the tools for treaty verification must be more accurate and reliable and must work at stand-off distances. The National Center for Nuclear Security is poised to become the proving grounds for these technologies.

Environmental Management
The Environmental Management Program addresses the environmental legacy from historic nuclear weapons-related activities, while ensuring the health and safety of workers, the public, and the environment.

- Environmental Restoration
- Waste Management

For further NNSS information contact:
Office of Public Affairs
NNSA Nevada Site Office
(702) 295-3521
nevada@nv.doe.gov
www.nv.energy.gov
On August 23, 2010, National Nuclear Security Administration (NNSA) Administrator Thomas D’Agostino joined representatives from Nevada’s congressional delegation, the U.S. Department of State, U.S. Department of Defense and the U.S. Department of Homeland Security to announce the new name of NNSA’s 1,360 square mile facility located 65 miles northwest of Las Vegas.

The new name for the site – the Nevada National Security Site (NNSS) – better reflects the diversity of nuclear, energy and homeland security activities conducted at the site.
The Nevada Site Specific Advisory Board (NSSAB) is made up of southern Nevada residents and is federally chartered to provide recommendations to the Environmental Management Program at the Nevada National Security Site.

In 2002, the U.S. Department of Energy asked the NSSAB to site the location of a groundwater well that could be used to gain data for the groundwater characterization activities. In 2006, after four years of extensive research, the NSSAB recommended three groundwater wells on and near Pahute Mesa. In 2009, the U.S. Department of Energy drilled well ER-20-7, which was one of the NSSAB’s recommended sites.
Protecting the public is best achieved through computer modeling, ongoing monitoring and limiting access.
Radiation occurs naturally in the environment.

Tritium and What it Means to You

- Tritium is a radioactive form (isotope) of hydrogen
- Half-life is 12.3 years
- Like hydrogen, tritium can bond with oxygen to form tritiated water which is chemically identical to normal water
- Tritium naturally occurs in surface waters at 10 to 30 picocuries per liter (U.S. Environmental Protection Agency standard for safe drinking water is 20,000 picocuries per liter [4 mrem per year])
- Tritium primarily enters the body when people eat or drink water containing tritium
- Tritium emits a weak form of radiation (low-energy beta particle) that cannot penetrate deeply into tissue or travel far in air
- Half of tritium is excreted about 10 days after exposure

*A rem measures the biological damage, or “dose” of radiation. A millirem (mrem) is one one-thousandth of a rem.

Average Annual Radiation Source and Dose*

The average person receives approximately 620 mrem of radiation per year from all sources. The maximum legal radiation dose limit for a person whose profession permits exposure is 5,000 mrem per year.

• Wells and springs on the Nevada National Security Site are sampled to help locate groundwater contamination.

• In areas where groundwater contamination has been located on the Nevada National Security Site, wells and springs are monitored over time to determine if the levels of radioactivity are changing.

• Groundwater wells and springs near the Nevada National Security Site are monitored to determine if any radioactivity has migrated off the site.

Planned sample frequencies for wells and springs in the RREMP network differ and are related to their proximity to source areas (UGTA CAUs) and the availability of baseline data for each well/spring. Changes in planned sample frequencies are primarily related to evolving objectives, owner requests, and well/spring accessibility (e.g., road and weather conditions, owner permission).

Sampling results from monitoring sites located off the Nevada National Security Site (2000-2010)

Reported tritium values are differences between measurements made of water samples obtained at target locations (wells and springs) and measurements of background water samples. The inherent randomness of radioactive emissions and the generally low concentrations of tritium in well/spring samples make it possible to obtain background measurements larger than well/spring measurements, resulting in negative reported values.

Monitoring results are updated annually in the Nevada National Security Site Environmental Report. This report is available at www.nv.energy.gov/library/publications/aser.aspx

For more information about the Environmental Management program, contact:

U.S. Department of Energy - National Nuclear Security Administration
Nevada Site Office - Office of Public Affairs
P.O. Box 98518, Las Vegas, NV 89193-8518 - (702) 295-3521 - envmgt@nv.doe.gov - www.nv.energy.gov

May 2011, Log No. 2011-169

- Not Sampled
- Site is no longer monitored
- Site monitored at Nevada Site Office request; no set schedule
Sampling Results from 2010 Drilling

No contamination was found in wells during 2010 drilling.

Well ER-EC-15
- Located in the Bench subdomain, downgradient of underground nuclear tests in southwest Pahute Mesa
- Three saturated aquifers
 - UPLFA – slotted completion zone over lava flow*
 - TCA – slotted completion zone over entire welded ash-flow tuff*
 - TSA - slotted completion zone over entire welded ash-flow tuff*

Well ER-EC-13
- Located in the Northwestern Timber Mountain Moat subdomain, downgradient of underground nuclear tests in southwest Pahute Mesa
- Two saturated aquifers
 - FCCM-upper – slotted completion zone over upper portion of lava flow*
 - FCCM-lower – slotted completion zone over lower portion of lava flow*

Well ER-20-4
- Located in the Southwestern Pahute Mesa subdomain, downgradient of underground nuclear tests in Central Pahute Mesa
- One saturated completion zone
 - CHZCM/CFCU – slotted completion zone over two adjacent lava flows*

Well ER-EC-12
- Located in the Bench subdomain, downgradient of underground nuclear tests in southwest Pahute Mesa; did not expect to see contamination
- Two saturated aquifers
 - TCA - slotted completion zone over entire welded ash-flow tuff*
 - TSA - slotted completion zone over entire welded ash-flow tuff*

*No contamination was found in drilling discharge with field equipment and confirmed with discrete samples analyzed in an offsite laboratory.
Hydrologic Source Term Modeling

1) Where are radionuclides after underground testing?
- Post-test drilling, re-entry mining and sampling over time shows radionuclides are in melt glass, on rubble, and soluble in water

2) What affects radionuclide release to groundwater?
- For tests located in/near the unsaturated zone, gas transport can disperse and dilute radionuclide inventory before it affects the saturated zone
- Altered zones can speed up or slow down release
- Test heat can speed up initial transport
- Convection in chimney can cause upward transport

3) How do the radionuclides move in groundwater once released?
- Dissolved in groundwater and move with it; affected by solubility constraints and sorption to rock surfaces
- Diffusion into the rock matrix slows transport
- Plutonium can move on colloids (sub-microscopic particles) and be filtered out by fractures
- Pumping can remove and re-introduce radionuclides

Per controlled radionuclide migration studies conducted in Frenchman Flat, these figures show examples of how pumping can move radionuclides from a cavity to a pumping well, and how pumping discharge at the surface can infiltrate through the unsaturated zone. Snapshots show ambient conditions at 10 years after detonation (no pumping has occurred), pumping at 14, 17, 18, and 26 years, and after pumping at 27 years.
Source Term Information

The Nevada National Security Site hosted 828 underground nuclear detonations. Understanding the source term is key for modeling contaminant transport in groundwater.

Frenchman Flat
- 10 detonations
- Most announced yields are <20 kiloton, giving a calculated cavity radius of about 40 m*
- Represents about 0.2% of the Nevada National Security Site (NNSS) underground nuclear test inventory activity**
- All detonations were in vertical shafts
- Detonation points are saturated
- Cavities are located in alluvial and volcanic rocks

Frenchman Flat tests
Frenchman Flat tests showing working point above water (red dots), working point below water table (green dot). Sphere is 2 cavity radii at maximum announced yield.

Yucca Flat/Climax Mine
- 747 detonations (three in Climax Mine)
- Announced yields range from zero to 500 kiloton (maximum of announced yield range), making the largest calculated cavity radius about 87 m*
- Represents about 39% of the NNSS underground nuclear test inventory activity**, 12% associated with unsaturated tests, 27% with saturated tests
- Most detonations were in vertical shafts; two were in tunnels in Climax Mine
- 170 saturated and 577 unsaturated detonation points
- Cavities located in alluvial, volcanic, carbonate and granitic rocks

Yucca Flat/Climax Mine tests
Yucca Flat/Climax Mine tests showing working point above water (red dots), working point below water table (green dots), working point in granite (pink dots) and working point in carbonate (yellow dots). Sphere is 2 cavity radii at maximum announced yield.

Pahute Mesa
- 18 detonations in Western Pahute Mesa; 64 detonations in Central Pahute Mesa
- Announced yields range from 19 kiloton to 1.3 megaroton, giving calculated cavity radii of 30 m and 115 m*, respectively
- Represents about 60% of the NNSS underground nuclear test inventory activity**
- All detonations were in vertical shafts
- All detonation points are considered saturated
- All cavities are in volcanic rock

Pahute Mesa tests
Pahute Mesa tests showing working point above water (red dots), working point below water table (green dot). Sphere is 2 cavity radii at maximum announced yield.

Pahute Mesa tests
Pahute Mesa tests showing working point above water (red dots), working point below water table (green dot). Sphere is 2 cavity radii at maximum announced yield.

Rainier Mesa/Shoshone Mountain
- 68 detonations
- Most announced yields are <20 kiloton, giving a calculated cavity radius of about 36 m*; two vertical tests have a calculated cavity radii of about 72 m* (at the maximum of the announced yield range of 200 kiloton)
- Represents about 1% of the NNSS underground nuclear test inventory activity**
- Almost all detonations were in tunnels; two were in vertical shafts
- Working points are above the water table; detonations are unsaturated (most) and saturated
- Cavities are located in volcanic rocks

Rainier Mesa tests
Rainier Mesa tests showing working point above water (red dots). Sphere is 2 cavity radii at maximum announced yield.

Rainier Mesa/Shoshone Mountain tests
Shoshone Mountain tests showing working point above water (red dots). Sphere is 2 cavity radii at maximum announced yield.
Nevada National Security Site
Underground Test Area (UGTA) Overview

The UGTA team is responsible for evaluating the impact of historic nuclear tests on groundwater resources and studying the extent of contaminant migration.

The UGTA Approach:

- Organized into five Corrective Action Units (CAUs)
- A CAU is a grouping of Corrective Action Sites (CASs), based on the locations of historic underground nuclear tests and similar geology
- Each CAU is analyzed and evaluated
- Wells are drilled to collect field data (samples)
- Field data is used to create three-dimensional computer models
- Models are used to estimate groundwater flow and transport parameters
- Models are decision tools for identifying locations and forecasting potential transport of radionuclides
- Monitoring of groundwater is used to evaluate model predictions and ensure compliance with regulatory requirements

The UGTA team is composed of DOE staff and a number of organizations, including:

- Lawrence Livermore National Laboratory
- Los Alamos National Laboratory
- Desert Research Institute
- United States Geological Survey
- State of Nevada
- National Security Technologies
- Navarro-Intera

UGTA activities are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO), a legally binding document agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense.
UGTA Strategy Flowchart

UGTA Strategy Flowchart

NDEP - State of Nevada Division of Environmental Protection

NNSA/NSO - U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

CAU - Corrective Action Unit group of sites under investigation. There are five CAUs within UGTA

CAIP - Corrective Action Investigation Plan: looks at existing information from the weapons testing program, the regional flow models, and one-dimensional transport simulations to determine the best options for site characterization and prioritization

CADD/CAP - Corrective Action Decision Document/Corrective Action Plan: includes developing and negotiating an initial compliance boundary, developing monitoring programs for model testing and closure, and identifying institutional controls

CR - Closure Report: involves negotiating the final compliance boundary for CAU/Closure, developing a closure report, which must be approved by NDEP, and developing and initiating a long-term closure monitoring program

Ground water flow can be described by mathematical equations; these equations can be represented as a model containing important features of the flow system on a computer.

USGS is simulating ground water flow in the southern part of the Amargosa Desert in Nevada and California to assess the effects of pumping from agriculture and solar project development on endangered species habitat, spring flow to the Amargosa River, and the alteration of flow paths from the Nevada National Security Site (NNSS).

USGS is revising the Death Valley regional ground water flow system model and constructing a detailed model inset into the area of the southern Amargosa Desert.

Revision to the regional model includes extending the simulation period of the model from 1998 through 2003 and updating and correcting the hydrogeologic framework model with NNSS model information.

Lithology of the Amargosa Desert is being examined to incorporate more detail of the basin-fill deposits into the inset model.

Pumping scenarios will be run on the calibrated linked models.
During well development, characterization wells are pumped to remove drilling fluids and particulates. Hydraulic testing and sampling are then performed to collect aquifer data for use in computer models to predict groundwater movement and contaminant boundaries.

• During 2010, well development, testing and sampling completed at wells ER-20-8#2, ER-EC-11 and ER-20-7
• In 2011, well development, testing and sampling planned for wells ER-20-4, ER-20-8 and ER-EC-12
• In 2012, well development, testing and sampling planned for wells ER-20-11 and ER-EC-13

Completed wells are instrumented with pressure transducers to monitor aquifer specific water level responses related to pumping/drilling

Overlay of Long-Term Water Level Measurements for Central Bench Area and North

Well completion designs allow for testing of isolated aquifers and discrete access to collect aquifer-specific data (e.g., water levels/head measurements and groundwater samples)

Workers install pump at a well

Typical fluid storage sump near well